177 research outputs found

    EEG Microstates During Resting Represent Personality Differences

    Get PDF
    We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the ‘microstates'. The microstates were clustered into four classes of map topographies (A-D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative "atoms of thought”, are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophreni

    EEG Microstates in Social and Affective Neuroscience.

    Get PDF
    Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding complex social cognition and behavior face a "black box" problem: What are the underlying mental processes rapidly occurring between perception and action and why are there such vast individual differences? In this review, we promote electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working in the field of social and affective neuroscience

    Temporal dynamics of the default mode network characterise meditation induced alterations in consciousness

    Get PDF
    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network

    EEG Microstates Change in Response to Increase in Dopaminergic Stimulation in Typical Parkinson’s Disease Patients.

    Get PDF
    Objectives: Characterizing pharmacological response in Parkinson’s Disease (PD) patients may be a challenge in early stages but gives valuable clues for diagnosis. Neurotropic drugs may modulate Electroencephalography (EEG) microstates (MS). We investigated EEG-MS default-mode network changes in response to dopaminergic stimulation in PD. Methods: Fourteen PD subjects in HY stage III or less were included, and twentyone healthy controls. All patients were receiving dopaminergic stimulation with levodopa or dopaminergic agonists. Resting EEG activity was recorded before the first daily PD medication dose and 1 h after drug intake resting EEG activity was again recorded. Time and frequency variables for each MS were calculated. Results: Parkinson’s disease subjects MS A duration decreases after levodopa intake, MS B appears more often than before levodopa intake. MS E was not present, but MS G was. There were no significant differences between control subjects and patients after medication intake. Conclusion: Clinical response to dopaminergic drugs in PD is characterized by clear changes in MS profile. Significance: This work demonstrates that there are clear EEG MS markers of PD dopaminergic stimulation state. The characterization of the disease and its response to dopaminergic medication may be of help for early therapeutic diagnosis.post-print606 K

    EEG Microstate Dynamics Associated with Dream-Like Experiences During the Transition to Sleep.

    Get PDF
    Consciousness always requires some representational content; that is, one can only be conscious about something. However, the presence of conscious experience (awareness) alone does not determine whether its content is in line with the external and physical world. Dreams, apart from certain forms of hallucinations, typically consist of non-veridical percepts, which are not recognized as false, but rather considered real. This type of experiences have been described as a state of dissociation between phenomenal and reflective awareness. Interestingly, during the transition to sleep, reflective awareness seems to break down before phenomenal awareness as conscious experience does not immediately fade with reduced wakefulness but is rather characterized by the occurrence of uncontrolled thinking and perceptual images, together with a reduced ability to recognize the internal origin of the experience. Relative deactivation of the frontoparietal and preserved activity in parieto-occipital networks has been suggested to account for dream-like experiences during the transition to sleep. We tested this hypothesis by investigating subjective reports of conscious experience and large-scale brain networks using EEG microstates in 45 healthy young subjects during the transition to sleep. We observed an inverse relationship between cognitive effects and physiological activation; dream-like experiences were associated with an increased presence of a microstate with sources in the superior and middle frontal gyrus and precuneus. Additionally, the presence of a microstate associated with higher-order visual areas was decreased. The observed inverse relationship might therefore indicate a disengagement of cognitive control systems that is mediated by specific, inhibitory EEG microstates

    Brain electric fields, belief in the paranormal, and reading of emotion words

    Get PDF
    The present work reports two experiments on brain electric correlates of cognitive and emotional functions. (1) Studying paranormal belief, 35-channel resting EEG (10 believers and 13 skeptics) was analyzed with "Low Resolution Electromagnetic Tomography" (LORETA) in seven frequency bands. LORETA gravity centers of all bands shifted to the left in believers vs. sceptics, and showed that believers had stronger left fronto-temporo-parietal activity than skeptics. Self-rating of affective attitude showed believers to be less negative than skeptics. The observed EEG lateralization agreed with the ‘valence hypothesis’ that posits predominant left hemispheric processing for positive emotions. (2) Studying emotions, positive and negative emotion words were presented to 21 subjects while "Event-Related Potentials" (ERPs) were recorded. During word presentation (450 ms), 13 microstates (steps of information processing) were identified. Three microstates showed different potential maps for positive vs. negative words; LORETA functional imaging showed stronger activity in microstate #4 (106-122 ms) for positive words right anterior, for negative words left central; in #6 (138-166 ms) for positive words left anterior, for negative words left posterior; in #7 (166-198 ms), for positive words right anterior, for negative words right central. In conclusion: during word processing, the extraction of emotion content starts as early as 106 ms after stimulus onset; the brain identifies emotion content repeatedly in three separate, brief microstate epochs; and, this processing of emotion content in the three microstates involves different brain mechanisms to represent the distinction positive vs. negative valence.Die Arbeit umfasst zwei Experimente zu hirnelektrischen Korrelaten kognitiver und emotionaler Funktionen. (1) Glauben an paranormale PhĂ€nomene: 35-Kanal Ruhe-EEG (10 GlĂ€ubige, 13 Skeptiker) wurde mit "Low Resolution Electromagnetic Tomography" (LORETA) analysiert (7 EEG-FrequenzbĂ€nder). LORETA zeigte Links-Verschiebung der Schwerpunkte aller BĂ€nder bei GlĂ€ubigen durch erhöhte AktivitĂ€t links fronto-temporo-parietal. Die Affektive Haltung war im Selbst-Rating bei GlĂ€ubigen weniger negativ als bei Skeptikern. Die EEG-Lateralisierung passt zur Valenz-Hypothese emotionaler Verarbeitung, die vorwiegend linkshemisphĂ€rische AktivitĂ€t bei positiver Emotion postuliert. (2) Zur Emotions-Verarbeitung wurden 21 Versuchspersonen emotional positive und negative Wörter gezeigt und dabei "Event-Related Potentials" (ERPs) registriert. 13 MikrozustĂ€nde (Informations-Verarbeitungsschritte) wurden wĂ€hrend der Darbietungszeit (450 ms) identifiziert. In 3 MikrozustĂ€nden unterschieden sich die topographischen ERP-Karten fĂŒr positive und negative Wörter. LORETA zeigte erhöhte AktivitĂ€t im Mikrozustand #4 (106-122 ms) fĂŒr positive Wörter rechts anterior, fĂŒr negative links zentral; im Mikrozustand #6 (138-166 ms) fĂŒr positive Wörter links anterior, fĂŒr negative links posterior; im Mikrozustand #7 (166-198 ms) fĂŒr positive Wörter rechts anterior, fĂŒr negative rechts zentral. Zusammenfassend: die Extraktion emotionalen Gehalts beginnt bereits 106 ms nach Stimulusbeginn, umfasst repetitiv drei separate, kurze Verarbeitungsschritte, und erfolgt in diesen Schritten auf unterschiedliche Art, d.h. benutzt unterschiedliche Hirnmechanismen zur Inkorporation der Unterscheidung positiv-negativ

    On the Reliability of the EEG Microstate Approach.

    Get PDF
    EEG microstates represent functional brain networks observable in resting EEG recordings that remain stable for 40-120ms before rapidly switching into another network. It is assumed that microstate characteristics (i.e., durations, occurrences, percentage coverage, and transitions) may serve as neural markers of mental and neurological disorders and psychosocial traits. However, robust data on their retest-reliability are needed to provide the basis for this assumption. Furthermore, researchers currently use different methodological approaches that need to be compared regarding their consistency and suitability to produce reliable results. Based on an extensive dataset largely representative of western societies (2 days with two resting EEG measures each; day one: n = 583; day two: n = 542) we found good to excellent short-term retest-reliability of microstate durations, occurrences, and coverages (average ICCs = 0.874-0.920). There was good overall long-term retest-reliability of these microstate characteristics (average ICCs = 0.671-0.852), even when the interval between measures was longer than half a year, supporting the longstanding notion that microstate durations, occurrences, and coverages represent stable neural traits. Findings were robust across different EEG systems (64 vs. 30 electrodes), recording lengths (3 vs. 2 min), and cognitive states (before vs. after experiment). However, we found poor retest-reliability of transitions. There was good to excellent consistency of microstate characteristics across clustering procedures (except for transitions), and both procedures produced reliable results. Grand-mean fitting yielded more reliable results compared to individual fitting. Overall, these findings provide robust evidence for the reliability of the microstate approach

    EEG microstates as biomarker for psychosis in ultra-high-risk patients

    Get PDF
    Resting-state EEG microstates are brief (50-100 ms) periods, in which the spatial configuration of scalp global field power remains quasi-stable before rapidly shifting to another configuration. Changes in microstate parameters have been described in patients with psychotic disorders. These changes have also been observed in individuals with a clinical or genetic high risk, suggesting potential usefulness of EEG microstates as a biomarker for psychotic disorders. The present study aimed to investigate the potential of EEG microstates as biomarkers for psychotic disorders and future transition to psychosis in patients at ultra-high-risk (UHR). We used 19-channel clinical EEG recordings and orthogonal contrasts to compare temporal parameters of four normative microstate classes (A-D) between patients with first-episode psychosis (FEP; n = 29), UHR patients with (UHR-T; n = 20) and without (UHR-NT; n = 34) later transition to psychosis, and healthy controls (HC; n = 25). Microstate A was increased in patients (FEP & UHR-T & UHR- NT) compared to HC, suggesting an unspecific state biomarker of general psychopathology. Microstate B displayed a decrease in FEP compared to both UHR patient groups, and thus may represent a state biomarker specific to psychotic illness progression. Microstate D was significantly decreased in UHR-T compared to UHR-NT, suggesting its potential as a selective biomarker of future transition in UHR patients

    Transient Topographical Dynamics of the Electroencephalogram Predict Brain Connectivity and Behavioural Responsiveness During Drowsiness.

    Get PDF
    As we fall sleep, our brain traverses a series of gradual changes at physiological, behavioural and cognitive levels, which are not yet fully understood. The loss of responsiveness is a critical event in the transition from wakefulness to sleep. Here we seek to understand the electrophysiological signatures that reflect the loss of capacity to respond to external stimuli during drowsiness using two complementary methods: spectral connectivity and EEG microstates. Furthermore, we integrate these two methods for the first time by investigating the connectivity patterns captured during individual microstate lifetimes. While participants performed an auditory semantic classification task, we allowed them to become drowsy and unresponsive. As they stopped responding to the stimuli, we report the breakdown of alpha networks and the emergence of theta connectivity. Further, we show that the temporal dynamics of all canonical EEG microstates slow down during unresponsiveness. We identify a specific microstate (D) whose occurrence and duration are prominently increased during this period. Employing machine learning, we show that the temporal properties of microstate D, particularly its prolonged duration, predicts the response likelihood to individual stimuli. Finally, we find a novel relationship between microstates and brain networks as we show that microstate D uniquely indexes significantly stronger theta connectivity during unresponsiveness. Our findings demonstrate that the transition to unconsciousness is not linear, but rather consists of an interplay between transient brain networks reflecting different degrees of sleep depth
    • 

    corecore