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Abstract
Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, 
gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding 
complex social cognition and behavior face a “black box” problem: What are the underlying mental processes rapidly 
occurring between perception and action and why are there such vast individual differences? In this review, we promote 
electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing 
whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., 
general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of 
the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, 
sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of 
these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working 
in the field of social and affective neuroscience.

Keywords EEG microstates · ERP microstates · Social neuroscience · Affective neuroscience · Social interaction · Neural 
networks

Introduction

Goal of the Review

Imagine that you are in a line to board the bus to go pick 
up your child from kindergarten. As the bus pulls up, you 
notice an elderly woman down the sidewalk, burdened 
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with shopping bags, preparing to cross the busy street. She 
asks you for help. You face a difficult choice. Do you help 
the elderly woman and miss the bus to pick up your child 
on time? Or do you board the bus and hope that someone 
else will come to her aid? This example demonstrates how 
social interaction requires the rapid processing of a variety 
of multifaceted socio-affective signals, such as eye gaze, 
facial expressions,  gestures, physical contact, postures, 
and speech. Further, these signals must then be integrated 
with evaluations, social knowledge, and expectations stored 
in the brain. Researchers interested in understanding such 
complex social cognition and behavior are facing a “black 
box”: What are these distinct and rapid mental processes 
occurring between perceiving the bus situation described 

above and making the decision to help or not (e.g., conflict 
monitoring, neediness evaluation, planning behavior)? In 
addition, why might some people make the decision to 
help and others not? In this review, we aim to promote the 
analysis of electroencephalography (EEG) microstates (see 
Box 1) as an ideal approach for “opening the black box” 
and answering essential questions in the field of social and 
affective neuroscience. The microstate approach can be 
used to analyze both averaged EEG data (i.e., event-related 
potentials: ERPs; see Box 1) and non-averaged EEG data 
(i.e., continuous EEG; see Box 1), recorded at rest or during 
specific (socio-affective) states. EEG microstates provide 
unique information on the temporal dynamics of our socio-
affective mind at a milliseconds timescale. Specifically, and 

Fig. 1  Number of microstate publications per year. The y-axis 
displays the number of publications as indexed in PubMed from 
1987 to 2022 including the terms “EEG OR ERP AND microstates” 
(black bars) or the terms “(EEG OR ERP) AND (microstates 
AND (social OR affective))” (red bars) in the title, keywords, or 
abstract. Introduced by Dietrich Lehmann in 1987 (Lehmann et  al. 

1987), microstates initially drew limited attention within the EEG 
community as indexed by 126 publications over the next 25  years 
(1987–2012). In the last decade (2013–2022), more than  400 
publications have followed. Note that only a minority (around 1/8) of 
all publications focused on applying microstates to ERP data

Box 1  Glossary

Scalp field maps: In topographic EEG analyses, recorded EEG data are conceptualized as a series of spatial field distributions at successive 
time points, which are called scalp field maps (“landscapes,” see Box 2). Changes in these topographic potential distribution maps can be 
interpreted as changes in the configuration of the electrical field of the brain. Topographic changes in scalp field maps over time occur step-
wise and discontinuously (see Microstates) and are related to the activation of at least partially different neuronal populations. Note that the 
configuration of topographic maps is reference-independent

EEG microstates: Periods of time of quasi-stable EEG scalp topography, which are concatenated by abrupt transitions in the electric field 
configurations of the brain. Critically, electrical field properties change in a step-wise manner rather than in a continuous one. The onset and 
offset of microstates can be identified by segmentation procedures that have been implemented for both continuous EEG data and evoked 
potentials. A key strength of the microstate approach is that it does not rely on a priori selections of the reference, electrodes, or time points

Global field power (GFP): The spatial standard deviation in scalp field maps indicating the overall voltage differences across all EEG channels 
(Skrandies 1990). GFP quantifies the amount of activity at a specific point in time. GFP does not depend on the reference chosen and can be 
calculated as the root of the mean of the squared potential differences in the field. GFP is typically low at the transition from one microstate to 
another, indicating a period during which the spatial field configuration is in a transient state

Global Map Dissimilarity (GMD): The stability versus changes in the spatial configuration of two electrical fields scaled to unitary strength 
(normalized by their GFP). High dissimilarity occurs when subsequent topographic maps change rapidly. Thus, times of high dissimilarity 
indicate the transition between two subsequent microstates. GMD can be calculated as the GFP of the difference map

Event-related potentials (ERPs) vs. continuous EEG: ERPs are short segments of brain activity time-locked to specific events of interest. 
Depending on the research question, typical ERP epochs comprise hundreds of milliseconds after stimulus onset. Stimulus-evoked patterns 
of brain activity are identified by averaging across many trials and thereby increasing the signal-to-noise ratio. In contrast, no averaging is 
performed when analyzing continuous EEG data. Continuous EEG data can be recorded either at rest or at specific socio-affective states of 
interest (e.g., while watching emotional videos)
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in contrast to other approaches, the microstate approach 
allows for identifying, timing, sequencing, and quantifying 
the activation of large-scale brain networks that are 
associated with distinct socio-affective states (e.g., being 
stressed, because you might not be able to pick up your child 
on time in the example above) and that explain individual 
differences in socio-affective traits (e.g., general willingness 
to help others). The recent increase in publications indicates 
that more and more researchers recognize the potential of 
the EEG microstate approach in the fields of cognitive and 
clinical neuroscience (see Fig. 1; for reviews, see Galderisi 
and Mucci 2002; Khanna et al. 2015; Michel and Koenig 
2018). However, we still see large, untapped potential 
for this analysis approach to better understand our socio-
affective mind.

The Basis of EEG Microstates

The EEG microstate approach originates from the “brain 
mapping approach,” which analyzes the series of scalp field 
maps (see Box 1) over time. Scalp field maps represent the 
momentary spatial distribution of brain electrical fields 
(i.e., scalp topographies; for a more detailed description 
of the brain mapping approach, see Box 2). In analyzing 
scalp topographies in broad-band EEG,1 Dietrich Lehmann 
and colleagues made a fundamental observation (Lehmann 
et al. 1987). Rather than randomly shifting over time, the 
scalp topographies tend to remain quasi-stable for a short 

period (during which the strength of the electric fields 
increases and decreases) and then change very quickly into 
a new topography, which then remains quasi-stable for 
another period. As different scalp topographies must have 
been produced by different configurations of generators in 
the brain (e.g., Vaughan 1982; Michel et al. 2004), it has 
been assumed that periods of quasi-stable topographies 
correspond to periods of synchronized activation of large-
scale neural networks (e.g., Michel et al. 2009; Michel and 
Koenig 2018). Researchers reasoned that these periods may 
represent basic building blocks of information processing 
and named them “microstates”. This idea aligns with the 
contemporary view that brain functions involve information 
processing in widespread neural networks (e.g., Bressler and 
Menon 2010; He 2014; Fries 2015).

There are two basic steps to identify and analyze 
microstates, which are, despite slight methodological 
differences, similar for continuous EEG and ERPs (for a 
more detailed description, refer to Murray et  al. 2008; 
Michel et al. 2009; Michel and Koenig 2018). First, one 
needs to reveal the most dominant topographies both within 
and across individuals by applying some sort of cluster or 
factor analysis (for details, see Murray et al. 2008; Michel 
et al. 2009). The optimal number of clusters are selected 
based on criteria that evaluate the quality of clustering (for 
an overview, see Murray 2009; Custo et al. 2017). The 
majority of continuous EEG studies have investigated four 
prototypical topographies (i.e., microstate classes) that 
are highly similar across studies. Though these microstate 
classes have been associated with activity of circumscribed 
neural networks, the specific function of each microstate 
class is still an active area of research (Michel and Koenig 

Box 2  EEG waveform analysis vs. EEG brain mapping/microstates

Recorded EEG data are usually displayed as a series of waves over time in a two-dimensional matrix, with one dimension indicating data 
points over time (in milliseconds) and the other dimension indicating the amplitude (in microvolts) at a respective electrode (Buzsáki et al. 
2012; Jackson and Bolger 2014). Typical EEG waveform analysis faces two major challenges. First, it can be difficult to justify restricting 
statistical analyses to only one or a few electrode sites (e.g., Murray et al. 2008). One might argue that statistical tests could be extended to 
a large number or even all electrode sites, but this would lead to an inflation of type 1 errors (e.g., Keil et al. 2014). Second, the selection of 
reference electrodes (e.g., Cz, mastoids, etc.) has a key impact on the findings of EEG waveform analysis (e.g., Yao et al. 2019). Specifically, 
the reference determines the level of zero voltage; thus, the voltage amplitude at all other channels will be displayed in relation to the chosen 
reference. Consequently, statistical analysis of EEG waveforms will be reference-dependent, making it difficult to compare findings across 
studies using different reference electrodes (for a visualization of this issue, see Murray et al. 2008). Even if studies rely on an identical 
reference electrode, any finding is dependent on the amplitude recorded at the reference, with the risk that noise at this single electrode may 
affect the signal in all other electrodes

The brain mapping approach represents an alternative way to display and analyze multi-channel EEG data as a series of scalp field maps—
i.e., the momentary spatial distribution of brain electrical fields (scalp topographies)—over time. Changes in scalp field maps reflect a 
distribution shift of active neuronal populations, mirroring changes in the activity of distinct neural networks (e.g., Vaughan 1982; Michel 
et al. 2004). Importantly, using a different reference electrode will, of course, change the zero line, but not the topography of the map. As a 
metaphor, the topography of scalp field maps is often illustrated by its “landscape,” containing characteristic “gradients, mountain peaks, and 
valley troughs.” The shape of a mountain range remains the same even if the height of the surface of the sea (i.e., the zero line) underneath 
the mountain increases or decreases (e.g., Murray et al. 2008; Michel et al. 2009). In addition, justifying the selection of individual EEG 
channels for statistical tests (which is often more or less arbitrary) is no longer required with the EEG brain mapping approach (note that it is 
also possible to use ERP microstate analysis as a data-driven technique for defining the windows of waveform analysis of well-known ERP 
components, for examples, see Nash et al. 2013; Schiller et al. 2023b)

1 Recent studies have also performed microstate analysis separately 
for different frequency bands, see, e.g., Férat et al. (2022).



 Brain Topography

1 3

2018; see Box 3 for an overview of the four prototypical 
microstate classes). Also note that recent research has 
trended to report cluster solutions with more than four 
classes (for a recent review, see Tarailis et  al. 2023). 
Regarding ERPs, the number and topographies of the 
microstate classes depend on the task and the time window 
of analysis (for examples, see ERP studies listed in Table 1).

Second, the dominant topographies, which have been 
identified on the group-level, are then fit back to the 
original, individual EEG data for labeling each time point 
as the topography it correlates best with (in terms of GMD, 
see Box 1). Once the periods of quasi-stable topographies 
(i.e., microstates) are defined (usually lasting 60-120 ms 
for continuous EEG data: Brandeis et al. 1995, Michel and 
Koenig 2018; the duration of an ERP microstate is more 
variable and depends on the specific ERP component, 
ranging from very brief [< 100 ms] to several hundreds 
milliseconds in duration: Sur and Sinha 2009; Luck 2012), 
one can extract different parameters or features from each 
microstate class (see Box 4) to analyze associations with 
socio-affective traits or differences across experimental 
treatments or groups.

Benefits of EEG Microstates

Compared to EEG waveform analysis, the EEG microstate 
approach has three key benefits. First, the microstate 

approach is reference-independent by analyzing temporal 
dynamics of scalp field maps whose topographies do 
not depend on the location of the reference electrode. 
Thereby, microstate analysis avoids a potential source of 
bias (i.e., the choice of the “appropriate” reference) that 
critically affects the findings and replicability of EEG 
waveform analysis. Second, the microstate approach offers 
unique quantifications of the EEG data with potential 
neurophysiological relevance that are not available in 
typical waveform analyses (see the parameters listed in 
Box 4). Third, by considering information from all available 
electrodes and time points, it allows a comprehensive, data-
driven approach. In waveform analysis, effects may go 
unnoticed (e.g., during periods of low amplitude) because 
analyses are restricted to a few specific time windows, ERP 
components, and electrode positions. Moreover, as these 
decisions are often flexibly based on self-selected “prior 
research” or subjective parameters discovered via the 
“visual inspection of the data,” they involve a high number 
of researcher degrees of freedom (Murray et al. 2008; Keil 
et al. 2014). In comparison, the data-driven approach of 
EEG microstates reduces these degrees of freedom, although 
deciding about the cluster solution can yet affect the reported 
results.

Box 3  The four prototypical microstate classes in resting EEG

a Note that Custo et al. source-localized seven microstate classes (with the topographies of the first four classes resembling the prototypical ones).

The majority of microstate studies analyzing resting EEG have investigated four prototypical microstate classes, which typically explain 
70–80% of variance in the EEG (e.g., Koenig et al. 2002). Researchers have aimed to illuminate the functional significance of these four 
prototypical microstate classes, as summarized below. These assumptions are based on research associating microstate classes with specific 
neural sources in combined EEG and fMRI studies (e.g., Britz et al. 2010) and in a source analysis approach (e.g., Custo et al. 2017a), and 
with circumscribed functions in studies using experimental manipulations (e.g., Seitzman et al. 2017). However, there is also controversial 
evidence regarding these assumed functions (in particular, regarding microstate class C, for details, see Tarailis et al. 2023) demonstrating the 
need for more research here

Microstate class Underlying neural sources Assumed functions

A

 

Temporal regions Auditory processing, and subject's arousal/arousability

B

 

Occipital regions Visual processing

C

 

Anterior cingulate cortex, inferior frontal 
regions

Processing of self-referential internal mentation, and 
interoceptive-automatic processing

D

 

Fronto-parietal regions Attention-related processing, and executive functioning
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Table 1  Overview of peer-reviewed studies utilizing the microstate approach in social and affective neuroscience

References Construct of interest Continuous EEG or 
ERPs

Traits or states N1

Bréchet et al. (2021) Sustained attention, meditation Continuous States 43
Burra et al. (2016) Direct gaze ERPs States 16
Cacioppo et al. (2012) Love ERPs States 20
Cacioppo et al. (2015) Loneliness, attention ERPs Traits 105
Cacioppo et al. (2016) Loneliness, attention, threat ERPs Traits 27
Cacioppo et al. (2018) Lust, romantic intentions ERPs States 30
Chen et al. (2021) Valence, arousal Continuous States 51
Decety and Cacioppo (2012) Morality ERPs States 10
Du et al. (2022) Trait anxiety Continuous Traits 203
Gianotti et al. (2007) Emotional valence ERPs States 21
Gianotti et al. (2008) Valence, arousal ERPs States 32
Globig et al. (2023) Honesty, dishonesty ERPs States 150
Guo et al. (2020) Neuroticism Continuous Traits 336
Han et al. (2020) Attractiveness ERPs States 25
Han et al. (2022) Attractiveness ERPs States 23
Hu et al. (2021) Stress Continuous States 56
Hu et al. (2022) Clustering approaches, valence Continuous States 32
Hu et al. (2023) Emotional states Continuous States 32
Iannotti et al. (2022) Self-other voice discrimination ERPs States 26
Kadier et al. (2021) Stress Continuous Traits 14
Kaur et al. (2020) Approach, withdrawal Continuous Traits 39
Kleinert and Nash (2022) Aggression Continuous Traits 110
Kleinert et al. (2022) Self-control Continuous Traits 171
Koban et al. (2012) Cooperation, competition ERPs States, Traits 34
Li et al. (2021) Disgust Continuous Traits 265
Liang et al. (2022) Emotional audiovisual integration ERPs States 28
Liu et al. (2023) Emotional states Continuous States 78
Mueller and Pizzagalli (2016) Social threat, fear conditioning ERPs States 16
Nash et al. (2013) Self-control, social decision-making ERPs States 45
Nash et al. (2022) Religious belief Continuous Traits 69
Nash et al. (2023) Anxiety and performance monitoring ERPs States, Traits 110
Ortigue et al. (2009) Motor intentions ERPs States 24
Ortigue et al. (2010) Motor intentions ERPs States 20
Pedroni et al. (2017) Risk-taking Continuous States 39
Pegna et al. (2015) Biological motion ERPs States 17
Pipinis et al. (2017) Somatic awareness Continuous States 94
Pizzagalli et al. (2000) Affective attitude, valence ERPs States, Traits 18
Pizzagalli et al. (2003) Social threat, fear conditioning ERPs States 50
Prete et al. (2022) Valence, emotional faces ERPs States 16
Schiller et al. (2023a) Emotion recognition, social behavior, stress ERPs States 60
Schiller et al. (2016) Intergroup bias ERPs States 84
Schiller et al. (2019b) Oxytocin Continuous States, Traits 91
Schiller et al. (2020a) Oxytocin, intergroup bias, empathy ERPs States, Traits 91
Schiller et al. (2020b) Prosociality Continuous Traits 55
Schiller et al. (2023b) Oxytocin, trust ERPs States 169
Schlegel et al. (2012) Paranormal belief Continuous Traits 37
Sikka et al. (2020) Stress Continuous States 50
Takehara et al. (2020) Suppression of facial expressions Continuous States 25
Tarailis et al. (2021) Somatic awareness Continuous Traits 202
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Applications of EEG Microstates

Applying the microstate approach to ERPs and to continuous 
EEG offers insights into the rapid neural network dynamics 
underlying our socio-affective mind regarding two main 
research goals: i) mapping the mind in action by examining 
socio-affective states; ii) mapping the individual mind 
by examining socio-affective traits. Table 1 provides an 
overview of studies applying the microstate approach in 
social and affective neuroscience. To delineate the scope of 
our review, we decided to focus on studies analyzing healthy 
participants. Overall, there are four main applications of 
EEG microstates, which are illustrated in Fig. 2.

Mapping the Mind in Action: Socio‑affective States

Socio‑affective States and Microstate Analysis of ERPs 
(Application 1)

Microstate analysis of ERPs enables the researcher to 
identify, time, and sequence neurophysiological processes 
across distinct experimental conditions or trial types, such 
as anxiety vs. no-anxiety (Nash et al. 2023), conditioned 
fear vs. safety stimuli (Pizzagalli et  al. 2003; Mueller 
and Pizzagalli 2016), direct vs. averted gaze (Burra et al. 
2016), honest vs. dishonest decisions (Globig et al. 2023), 
ingroup- vs. outgroup-related information (Walker et al. 
2008; Schiller et al. 2020a), less vs. more attractive faces 
(Han et al. 2020, 2022), self- vs. other-voice processing 

This table includes studies using the EEG microstate approach analyzing socio-affective states (“states”) or individual differences (“traits”) in 
the socio-affective mind in healthy populations
1 Total sample size before participant exclusion

Table 1  (continued)

References Construct of interest Continuous EEG or 
ERPs

Traits or states N1

Tanaka et al. (2021) Subliminal affective face priming ERPs States 49
Thierry et al. (2006) Human bodies, faces ERPs States 12
Tomescu et al. (2022) Social imitation Continuous States, Traits 65
Walker et al. (2008) Other-race face processing ERPs States 13
Walter and Koenig (2022) Religious experience during worship Continuous States 60
Zanesco et al. (2020) Personality, mood, attention performance Continuous States, Traits 227
Zanesco et al. (2021b) Self-awareness, meditation Continuous States 60
Zanesco et al. (2021a) Somatic awareness Continuous Traits 61
Zelenina et al. (2022) Oxytocin Continuous States 20
Zerna et al. (2021) Emotion regulation ERPs States 107
Zhang et al. (2021) Empathy, disgust Continuous Traits 196

Box 4  Microstate parameters for statistical analysis

Microstate parameters utilized for statistical analysis Potential interpretation regarding underlying neural network 
processing (Michel et al. 2009; Khanna et al. 2015; Michel and 
Koenig 2018)

For continuous EEG (computed for each microstate class):
 Average duration of all microstates belonging to the same class Stability of a neural network
 Frequency of occurrence (independent of its duration) Tendency of a neural network to activate
 Coverage (percentage of total time a microstate class is present) Relative dominance of one neural network over others
 Transition probabilities (of a given microstate class to any other) Tendency of one network to activate after another network’s activation

For ERPs (computed for each microstate):
 Onset latency Onset of neural network activation
 Offset latency Offset of neural network activation
 Duration Duration of neural network activation
 Intensity (operationalized by the mean GFP) Mean activation strength of a neural network
 Area under the GFP curve Total activation strength of a neural network
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(Iannotti et al. 2022), social vs. non-social stimuli/contexts 
(Thierry et al. 2006; Ortigue et al. 2009, 2010; Cacioppo 
et al. 2012, 2015, 2016, 2018; Koban et al. 2012; Decety and 
Cacioppo 2012; Pegna et al. 2015), stereotype-congruent vs. 
stereotype-incongruent information (Schiller et al. 2016), 
stress vs. no stress (Schiller et al. 2023a) and neutral vs. 
emotional stimuli (Pizzagalli et al. 2000; Gianotti et al. 2007, 
2008; Cacioppo et al. 2016; Tanaka et al. 2021; Zerna et al. 
2021; Liang et al. 2022; Prete et al. 2022) (Fig. 3).

Schiller et al. (2016) provide an example demonstrating 
quantitative differences across ERPs in the incongruent and 
the congruent condition of the Implicit Association Test 
(IAT), a widely-cited measure of implicit bias (Greenwald 
et  al. 1998). This study addressed whether the IAT 
effect (i.e., longer response times when confronted with 
stereotype-incongruent information) is due to additional 
mental processes in the incongruent condition, or due 
to longer duration of the same processes. The authors 
identified seven microstates from stimulus presentation to 
response production that occurred in the same temporal 
sequence in both IAT conditions. However, participants 
showed a longer duration of one early-occurring microstate 
(starting around 220 ms after stimulus presentation) and 

of one late-occurring microstate (starting around 450 ms 
after stimulus presentation) in the incongruent condition, 
compared to the congruent condition. To shed light on the 
nature of the mental process underlying each microstate, the 
authors used source localization, linking the early microstate 
to lingual gyrus activity and the late microstate to activity 
in the middle cingulate cortex and posterior parietal areas. 
Based on these results, the authors suggested that the 
IAT effect is due to the prolongation of early-occurring 
perceptual processing as well as the implementation of late-
occurring cognitive control, which is needed to select the 
correct motor response.

Response time differences in socio-affective behaviors, 
however, can also be due to qualitative processing 
differences. For example, Globig et al. (2023) analyzed 
ERPs during honest and dishonest social decision-making. 
Behaviorally, participants needed more time to lie than to tell 
the truth about the outcome of an incentivized card game. 
On the neural level, the authors found that the response time 
difference between the two conditions (lying and telling the 
truth) was the result of an additional microstate (occurring 
between 450 and 540  ms after stimulus presentation), 
unique to dishonest decisions, interrupting the antecedent 

Fig. 2  Overview of the four main applications of EEG microstates. 
As the first application, one can “map the mind in action” by 
analyzing ERP microstates evoked by particular socio-affective 
information. Consider the bus example described at the beginning 
of this review. ERP microstate analysis opens the “black box” by 
identifying, timing, and sequencing mental processes occurring 
between hearing the request by the elderly woman and making 
the decision to help or not (e.g., neediness evaluation, conflict 
monitoring, planning behavior). One can then compare these 
processes’ characteristics across different socio-affective states, 
for instance, a non-stressed state vs. a stressed state. The second 
application is to reveal the “socio-affective mind in action” by 
comparing neural network dynamics extracted from continuous EEG 
data across a variety of socio-affective states, for instance, during 
discrete emotions, or during social exclusion vs. social inclusion. The 

third and fourth application of EEG microstates can be subsumed 
under the “neural trait approach,” i.e., “mapping the individual mind” 
by examining socio-affective traits (e.g., Schiller et  al., 2019a;  for a 
review, see Nash et al. 2014). Briefly, this approach indexes objective 
information from stable brain-based characteristics to reveal the 
sources of individual differences in socio-affective traits (e.g., 
behavioral intergroup bias, emotion detection ability, prosociality, 
tendency to deceive others,  theory of mind). Microstate parameters 
from both ERP data (third application) and continuous EEG data 
(fourth application) are promising “neural trait candidates” as they 
possess high retest-reliabilities (for ERP: Jouen et  al. 2021; for 
continuous EEG: Khanna et al. 2014; Liu et al. 2020; Schiller et al. 
2020b; Antonova et  al. 2022; Kleinert et  al. 2023) and heritability 
(continuous EEG: da Cruz et al. 2020)



 Brain Topography

1 3

microstate. Source localization indicated that the microstate 
unique to dishonest decisions was characterized by activity 
in the dorsolateral prefrontal cortex and the orbitofrontal 

cortex, whereas the antecedent microstate was characterized 
by activity in the supplementary motor areas. Based on the 
order of appearance and their pattern of neural activation, 
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the authors speculated that when participants decide to lie, 
a unique process related to inhibiting the response selection 
process (i.e., telling the truth) occurred.

The benefit of the comprehensive ERP microstate analysis 
approach is also illustrated by research using classical 
conditioning paradigms to study brain mechanisms in the 
acquisition of social threat. Among the several studies on 
modulations of ERP components during fear conditioning, 
the latencies used for computing these components have 
varied greatly (Miskovic and Keil 2012; Ferreira de Sá et al. 
2019; Sperl et al. 2021), with some focusing on early-latency 
(e.g., C1; Thigpen et al. 2017), others on mid-latency (e.g., 
N170; Camfield et al. 2016), and still others on late-latency 
components (e.g., LPP; Panitz et al. 2015, 2018; Bacigalupo 
and Luck 2018). However, as noted above, effects can easily 
be overlooked (e.g., during periods of low amplitude) if 
time windows for statistical ERP analyses are restricted 
to a few specific components and electrode positions 
(Murray et al. 2008). To overcome these methodological 
problems, two ERP studies applied the microstate approach 
to fear conditioning paradigms to help determine the 
electrophysiological signatures of responses to social threat 
(Pizzagalli et al. 2003; Mueller and Pizzagalli 2016). In 
these studies, the authors investigated ERPs elicited by 
socially-relevant conditioned stimuli (face stimuli) that 
had been paired with an unpleasant unconditioned stimulus 
(aversive noise). Critically, microstate analysis revealed that 
fear-conditioned faces modulated activity in visual brain 
regions within 80 ms after stimulus presentation (Mueller 
and Pizzagalli 2016). These early neural responses were 
overlooked in many prior studies that limited their analyses 
to specific (often late-latency) ERP components. This 
example illustrates how the comprehensive, data-driven 
nature of the microstate approach minimizes the risk of 
missing essential neurophysiological effects.

Socio‑affective States and Microstate Analysis 
of Continuous EEG (Application 2)

Though relatively few in number at this point, recent work 
examining continuous EEG showcases the potential that 
microstates have for revealing the neural network dynamics 
of the socio-affective mind in action, at a millisecond scale, 
in several key ways (see Fig. 3).

First, microstate analysis can be combined with 
experimental designs (e.g., modulating the brain levels of 
hormones that regulate socio-affective processing: Schiller 
et al. 2019b; Zelenina et al. 2022; inducing psychosocial 
stress: Sikka et al. 2020; Kadier et al. 2021; Hu et al. 2021; 
performing social imitation tasks: Tomescu et al. 2022) to 
examine how manipulations causally change microstate 
parameters extracted from continuous EEG recorded after 
the experimental manipulation. For example, Schiller et al. 
(2019b) investigated the effects of experimentally increasing 
the availability of oxytocin in the nervous system by means 
of intranasal administration, compared to the administration 
of a placebo substance. The authors sought to illuminate 
the neurophysiological mechanisms underlying oxytocin’s 
well-known effects in the socio-affective domain (e.g., 
Meyer-Lindenberg et al. 2011; Ma et al. 2016). Globally, 
oxytocin increased stability (longer durations) across all 
four canonical resting networks, as recorded 45 min after 
substance administration (i.e., where most effective oxytocin 
effects are observed; see Spengler et al. 2017). Furthermore, 
oxytocin showed some microstate-class specific effects 
on further parameters, such as increasing the occurrence 
of microstate D (associated with attentional processing), 
decreasing the occurrence of microstate C (associated 
with interoceptive-automatic processing), and decreasing 
transitions from microstate B (associated with visual 
processing) to microstate C. The authors suggest that these 
results are in line with the anxiolytic effect of oxytocin to 
promote more attentional processing of external or social 
stimuli. Notably, Zelenina et al. (2022) conducted a similar 
study, examining the impact of oxytocin on neural network 
dynamics, but across a different time frame (i.e., continuous 
EEG was measured at various time windows, ranging from 
15 to 100 min after substance administration). The results in 
this study partially mirror those in the Schiller et al. (2019b) 
study, demonstrating that, across time windows, oxytocin 
caused increased coverage and duration of microstates A 
and D, and decreased coverage of microstates B and C. The 
authors similarly reasoned that oxytocin seems to promote 
processes that tune the brain towards social stimuli.

Second, researchers have also manipulated socio-affective 
states using experimental manipulations administered across 
multiple sessions. For example, Zanesco and colleagues 
(2021) examined the impact of a 3-month meditation training 
on resting neural networks by means of microstate analysis 

Fig. 3  Mapping the mind in action. Examples of the application of 
the microstate approach in ERPs (application 1) and in continuous 
EEG (application 2) are shown on the left and right side, respectively. 
A ERPs are recorded while participants are confronted with 
specific socio-affective information (e.g., non-threatening faces vs. 
threatening faces, non-social vs. social stimuli). B Scalp topographies 
of 6 clusters in the sequence of their occurrence. C Microstates across 
time for two conditions plotted over Global Field Power (GFP). 
D Exemplary quantitative and qualitative differences between the 
two conditions. E Continuous EEG is recorded while participants 
are resting with their eyes closed. F Scalp topographies of the 4 
prototypical microstate classes during continuous EEG: class A in 
green, class B in orange, class C in pink, and class D in violet. G 
Exemplary 2-s of microstates are shown for three individuals in two 
conditions (e.g., no stress vs. stress; happy mood vs. sad mood). All 
microstates belonging to class A are highlighted with a black frame. 
H Participants’ mean durations of microstate class A are shown as 
box plots for both conditions. The white diamond shape indicates the 
mean duration in the two conditions, the horizontal line the median. 
All figure panels are based on simulated data

◂



 Brain Topography

1 3

(Zanesco et al. 2021b). Participants were randomly assigned 
to either the 3-month meditation training program or a wait-
list control condition and resting EEG was recorded before 
and after training. Results showed that meditation increased 
mental awareness and quiescence, reflecting a kind of mental 
calm. Microstate analysis revealed six microstate classes in 
the continuous EEG, with four of these classes matching 
the prototypical microstate classes. Intriguingly, meditation 
training was also associated with decreased average duration 
across these microstates. The authors suggested that this 
decreased network stability reflected decreased cognitive 
control and increases in felt attentiveness and serenity. In a 
similar study, Bréchet et al. (2021) demonstrated significant 
topographical changes in EEG microstates in a quiet rest 
period after only 6 weeks of digital meditation training.

Third, microstate analysis can examine if different socio-
affective states involve different neural network dynamics, 
as evidenced by unique changes to microstate features. For 
example, researchers have analyzed continuous EEG data 
recorded while participants are processing socio-affective 
information, such as watching emotional videos (e.g., Chen 
et al. 2021; Hu et al. 2022, 2023; Liu et al. 2023) or engaging 
in worship (Walter and Koenig 2022). For example, Hu 
et  al. (2023) examined archival EEG data in which the 
original authors manipulated emotional states with the 
presentation of music videos. EEG was recorded during 
video presentation. The authors identified four microstate 
classes that had significant overlap with the four prototypical 
microstate classes. Importantly, while microstate C’s 
coverage and occurrence (associated with interoceptive-
automatic processing) showed a positive relation with 
emotional arousal, microstate D (associated with attentional 
processing) occurred more often when watching videos of 
negative valence.

Fourth, microstate analysis can help examine mediators 
of subsequent behavior. For example, Pedroni et al. (2017) 
took the novel step of examining continuous EEG recorded 
during the inter-trial intervals in a risky decision-making 
task. On a behavioral level, results revealed that participants 
took higher risks after a winning trial than after a losing 
trial. On a neural level, microstate analysis of the inter-trial 
intervals revealed that two microstate classes (not referring 
to any of the prototypical resting EEG microstate classes) 
mediated the influence of outcomes of prior decisions 
on subsequent risk-taking on a trial-by-trial basis: one 
microstate class was associated with increased risk-taking, 
and a second microstate class was associated with decreased 
risk-taking. In other words, the two mediators act akin to 
a “gas pedal” and a “brake pedal”, respectively. Notably, 
the “brake” microstate class was source-localized to a 
bilateral prefrontal network, consistent with its role in self-
regulation and cognitive control. This study demonstrates 

how microstate analysis can shed light on the socio-affective 
states that drive subsequent behavior on a single-trial level.

Mapping the Individual Mind: Socio‑affective Traits

Socio‑affective Traits and Microstate Analysis of ERPs 
(Application 3)

Another approach to study individual differences in socio-
affective traits (e.g., behavioral intergroup bias, implicit 
intergroup attitudes, narcissism) is to analyze dispositional 
brain responses to specific socio-affective information, 
measured by ERPs (e.g., ingroup vs. outgroup words, 
Schiller et  al. 2016; outcomes affecting ingroup vs. 
outgroup members, Schiller et al. 2020a; face attractiveness 
judgments, Han et al. 2022, see Fig. 4).

For example, recall Schiller et al.’s (2016) analysis of 
ERPs recorded during the IAT. This study revealed that 
response time differences in the IAT are mainly due to two 
microstates that take longer in the incongruent than in the 
congruent condition. However, what does this tell us about 
the mental processes underlying individual differences in 
implicit bias? In a next step, the authors checked whether 
the individual durations of these two microstates would 
contribute to individual differences in implicit bias. Indeed, 
they found that the longer an individual spent in the later 
occurring microstate when confronted with stereotype-
incongruent information, the larger was this individual’s 
implicit bias. Based on the interpretation that this microstate 
reflected the implementation of cognitive control to select 
between the two competing response options, the authors 
suggest that individual differences in implicit bias are partly 
due to cognitive control ability. This finding illustrates how 
ERP microstate analysis can help to identify which specific 
features of neurophysiological processes drive heterogeneity 
in socio-affective traits.

Finally, one can also compare groups of people who 
already vary in socio-affective traits of interest. For example, 
Cacioppo et al. (2015) prescreened participants using a 
questionnaire on loneliness and, based on the scores, split 
participants into either a high or low loneliness group. These 
two groups then performed a Stroop task containing negative 
and positive words of either social or non-social relevance. 
Utilizing ERP microstate analysis, the authors demonstrated 
that individuals high in loneliness differentiate negative 
social stimuli from negative nonsocial stimuli more quickly 
than individuals low in loneliness (200 ms earlier, beginning 
at 280 ms after stimulus onset). Source localization analysis 
linked this early differentiation process to activity in brain 
regions associated with the orienting and executive control 
aspects of visual attention (e.g., extrastriate cortex, fusiform 
cortex, frontal eye field, dorsolateral prefrontal cortex, 
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Fig. 4  Mapping the individual mind. Examples of the application of 
the microstate approach in ERPs (application 3) and in continuous 
EEG (application 4) are shown on the left and right side, respectively. 
A ERPs are recorded while participants are viewing and responding 
to some specific socio-affective information (e.g., threatening 
faces, social stimuli). B Scalp topographies of the 6 clusters in the 
sequence of their occurrence. C Exemplary individual differences 
in microstates and response times across time plotted over Global 
Field Power (GFP). The hand symbols indicate mean response times. 
Arrows indicate the different durations of the third microstate. D 
Scatterplot of the association between duration of microstate 3 in 
milliseconds and the variable of interest (e.g., mean response time, 

indicated by the hands, in a particular condition of interest). E 
Continuous EEG is recorded while participants are resting with their 
eyes closed. F Scalp topographies of the four prototypical microstate 
classes during resting EEG: class A in green, class B in orange, class 
C in pink, and class D in violet. G Exemplary 2-s of microstates are 
shown for three individuals during resting condition. In panel G, all 
microstates belonging to class A are highlighted with a black frame. 
H Scatterplot of the association between the occurrence of microstate 
class A and the variable of interest (e.g., prosocial preferences, 
behavioral intergroup bias). All figure panels are based on simulated 
data
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and anterior prefrontal cortex extending to the dorsal 
anterior cingulate). Relying on ERP microstates, this study 
demonstrated that loneliness seems to be associated with 
hypervigilance for social threats. This example illustrates 
how researchers can study individual differences in socio-
affective traits by comparing millisecond brain dynamics 
across groups of people varying in these traits of interest.

Socio‑affective Traits and Microstate Analysis of Continuous 
EEG (Application 4)

Microstate analysis of continuous EEG has been used to 
illuminate the sources of individual differences in socio-
affective traits, in domains such as aggression (Kleinert 
and Nash 2022), anxiety (Schiller et al. 2019b; Du et al. 
2022; Nash et al. 2023), approach vs. withdrawal tendency 
(Takehara et al. 2020; Kaur et al. 2020), disgust sensitivity 
(Li et al. 2021), empathy (Zhang et al. 2021), personality 
(Zanesco et al. 2020; Guo et al. 2020; Tomescu et al. 2022), 
prosociality (Schiller et al. 2020b), religious belief (Schlegel 
et al. 2012; Nash et al. 2022), or somatic awareness (Pipinis 
et  al. 2017; Tarailis et  al. 2021; Zanesco et  al. 2021a). 
The majority of these studies have relied on regression 
or correlation analysis to uncover associations between 
features of the prototypical microstate classes (e.g., duration, 
occurrence, coverage, transition probabilities; see Box 4) 
and socio-affective traits (see Fig. 4).

For example, Schiller et al. (2020b) associated individual 
differences in trait prosociality with the prototypical resting-
state microstates. They found that more prosocial individuals 
showed a higher coverage of microstate A and more 
transitions towards this microstate class from microstate 
C. The authors interpret these findings based on links of 
microstate A with auditory processing and microstate 
C with interoceptive-automatic processing (see Box 3). 
They suggest that more prosocial individuals might show 
a tendency to engage in bottom-up, sensory processing 
during rest, as well as a tendency to shift from stimulus-
independent, top-down to more stimulus-dependent, 
bottom-up processing. They further suggest that these 
findings might be interpreted in light of the hypothesis that 
humans are intuitively cooperative and prosocial if they 
do not engage in time-consuming top-down processing 
during decision-making (e.g., Rand et al. 2014; but also see 
Kvarven et al. 2020). Overall, by identifying associations 
of trait prosociality with specific neural network dynamics 
at rest, this study illustrates how the microstate approach 
can help gain new insights into the sources of individual 
differences in socio-affective traits.

Individuals also possess more general and stable 
millisecond-level neural network dynamics that are 
independent of specific networks and that could essentially 
contribute to explain heterogeneity in socio-affective 

traits. For example, average durations and occurrences of 
microstates are inversely correlated across microstate classes 
(Khanna et al. 2014; Kleinert et al. 2022). These correlations 
suggest that individuals show a general tendency for more 
(i.e., fewer but longer-lasting network activations) or less 
(i.e., more but shorter-lasting network activations) network 
stability, potentially indicating the stability of one’s mental 
processing at rest. Following up on research (Kleinert et al. 
2022) demonstrating a positive association between network 
stability and trait self-control, Kleinert and Nash (2022) 
found that individuals with higher levels of trait aggression 
(which is inversely related to self-control) showed less stable 
neural networks (indexed by shorter durations and more 
occurrences of microstates across microstate classes). In a 
related line of research, Tomescu et al. (2022) demonstrated 
more stable neural networks in individuals who are less 
neurotic, more conscientious, more extraverted, and report 
to have more coherent thoughts.

Finally, though less commonly applied, one can also 
illuminate heterogeneity in socio-affective traits by 
comparing neural network dynamics recorded at rest 
across two or more groups of people. This approach in 
particular makes sense for socio-affective traits that are 
more categorical in nature. For example, to illuminate 
why some individuals believe in deities and others do not, 
researchers have compared network features extracted 
from continuous EEG between a group of believers and a 
group of non-believers. They noted an increased coverage 
of a neural network associated with top-down processing 
(i.e., microstate D; Nash et  al. 2022) and a decreased 
coverage of neural networks associated with bottom-up 
and interoceptive-automatic processing (i.e., microstate B, 
Schlegel et al. 2012; microstate C, Nash et al. 2022) in non-
believers. These findings fit with the notion that believers 
show more intuitive reasoning and non-believers more 
analytic reasoning (e.g., Gervais and Norenzayan 2012). 
Future studies might apply this approach to investigate 
similarities and differences in milliseconds brain dynamics 
between other groups, such as people of different gender, 
conservatives vs. liberals, or single people vs. people in 
relationships.

Outlook and Future Directions

The research summarized above illustrates how microstates 
can reveal the temporal dynamics of our socio-affective 
mind. Taking this approach could help to shed light on 
a range of long-standing “black box” puzzles in the field 
of social and affective neuroscience. For example, failed 
attempts to replicate popular socio-affective phenomena 
(e.g., ego depletion, social priming) have left large gaps 
within the theoretical framework of affective and social 
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sciences (e.g., Open Science Collaboration 2015; Vohs 
et al. 2021). To fill these gaps, it may be necessary to study 
the underlying neurophysiological and mental processes 
during these phenomena by means of the microstate 
approach. For example, do self-control demands lead to 
prolonged mental processes in subsequent tasks, indicating 
more cognitive difficulty? Does social priming speed up 
mental processing during the presentation of target stimuli? 
Beyond that, we see many more fascinating research 
questions that could be tackled by microstate research. 
Do adult minds process socio-affective information more 
quickly compared to those of adolescents or children? 
Do our brains—evolutionarily optimized for interacting 
“face-to-face” (e.g., Kock 2004)—process socio-affective 
cues differently in digital environments? Are neural 
networks activated in the same sequence at distinct states 
of consciousness (e.g., distinct sleep stages; Bréchet et al. 
2020; Diezig et al. 2022)? Finally, EEG microstates might 
not only be useful for understanding our socio-affective 
mind, but also for modulating it. Preliminary evidence 
indicates that microstate-neurofeedback training is feasible 
in healthy participants (Diaz Hernandez et al. 2016; Asai 
et al. 2022). One could thus experimentally alter microstate 
features to induce specific socio-affective processes, e.g., 
experimentally increasing a key microstate’s duration at rest 
to decrease trait-levels of anxiety.

Conclusion

In sum, EEG microstate analysis offers a powerful tool for 
opening the “black box” of neurophysiological processing 
underlying our socio-affective mind. This review has 
illustrated how studies utilizing the microstate approach 
have illuminated the sources of socio-affective traits and 
examined distinct socio-affective states, highlighting 
issues of prosocial behavior, emotional processing, and 
social evaluations, as just a few examples. Given the major 
benefit afforded by EEG microstates for identifying, timing, 
sequencing, and quantifying the neural network dynamics 
underlying our socio-affective mind at a milliseconds time 
scale, the microstate approach has the potential to become 
an indispensable part of the methodological toolkit of 
laboratories working in the field of social and affective 
neuroscience.
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