43 research outputs found

    ECG Signal Compression Using Discrete Wavelet Transform

    Get PDF

    Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems

    Full text link
    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health Informatic

    Adaptive Speech Compression Based on Discrete Wave Atoms Transform

    Get PDF
    This paper proposes a new adaptive speech compression system based on discrete wave atoms transform. First, the signal is decomposed on wave atoms, then wave atom coefficients are truncated using a new adaptive thresholding which depends on the SNR estimation. The thresholded coefficients are quantized using Max Lloyd scalar quantizer. Besides, they are encoded using zero run length encoding followed by Huffman coding. Numerous simulations are performed to prove the robustness of our approach. The results of current work are compared with wavelet based compression by using objective criteria, namely CR, SNR, PSNR and NRMSE. This study shows that the wave atoms transform is more appropriate than wavelets transform since it offers a higher compression ratio and a better speech quality

    Effective high compression of ECG signals at low level distortion

    Get PDF
    An effective method for compression of ECG signals, which falls within the transform lossy compression category, is proposed. The transformation is realized by a fast wavelet transform. The effectiveness of the approach, in relation to the simplicity and speed of its implementation, is a consequence of the efficient storage of the outputs of the algorithm which is realized in compressed Hierarchical Data Format. The compression performance is tested on the MIT-BIH Arrhythmia database producing compression results which largely improve upon recently reported benchmarks on the same database. For a distortion corresponding to a percentage root-mean-square difference (PRD) of 0.53, in mean value, the achieved average compression ratio is 23.17 with quality score of 43.93. For a mean value of PRD up to 1.71 the compression ratio increases up to 62.5. The compression of a 30 min record is realized in an average time of 0.14 s. The insignificant delay for the compression process, together with the high compression ratio achieved at low level distortion and the negligible time for the signal recovery, uphold the suitability of the technique for supporting distant clinical health care

    The new fuzzy analytical hierarchy process with interval type-2 trapezoidal fuzzy sets and its application

    Get PDF
    The degree of type-1 fuzzy sets membership function cannot express the linguistic variable of a complex problem. The type-2 fuzzy sets as a problem solver such that more fuzziness for constructing membership functions can be handled. Recently, many multi-criteria decision making (MCDM) methods have been expanded using type-2 fuzzy sets. Analytical Hierarchy Process (AHP) is one of the well-known MCDM that can take into account multiple and conflicting criteria at the same time. Our goal is to develop an interval type-2 trapezoidal fuzzy AHP through the new proposed ranking i.e. the modified total integral value. Based on the illustrative examples for trapezoidal type-2 fuzzy sets, the new proposed ranking has a well-performance in ranking. Furthermore, we apply the new trapezoidal type-2 fuzzy AHP to a supplier selection problem. Based on the results of the application, the new fuzzy AHP has the same ranking results as the existing fuzzy AHP

    State-of-the-art Survey of Data Hiding in ECG Signal

    Get PDF
    With the development of new communication technologies, the number of biomedical data that is transmitted is constantly increasing. This is sensitive data and therefore it is very important to preserve privacy when transmitting it. For this purpose, techniques for data hiding in biomedical signals are used. This is a comprehensive survey of research papers that covers the latest techniques for data hiding in ECG signal and old techniques that are not covered by the latest surveys. We show an overview of the methodology, robustness, and imperceptibility of the techniques

    Low Bit-rate Color Video Compression using Multiwavelets in Three Dimensions

    Get PDF
    In recent years, wavelet-based video compressions have become a major focus of research because of the advantages that it provides. More recently, a growing thrust of studies explored the use of multiple scaling functions and multiple wavelets with desirable properties in various fields, from image de-noising to compression. In term of data compression, multiple scaling functions and wavelets offer a greater flexibility in coefficient quantization at high compression ratio than a comparable single wavelet. The purpose of this research is to investigate the possible improvement of scalable wavelet-based color video compression at low bit-rates by using three-dimensional multiwavelets. The first part of this work included the development of the spatio-temporal decomposition process for multiwavelets and the implementation of an efficient 3-D SPIHT encoder/decoder as a common platform for performance evaluation of two well-known multiwavelet systems against a comparable single wavelet in low bitrate color video compression. The second part involved the development of a motion-compensated 3-D compression codec and a modified SPIHT algorithm designed specifically for this codec by incorporating an advantage in the design of 2D SPIHT into the 3D SPIHT coder. In an experiment that compared their performances, the 3D motion-compensated codec with unmodified 3D SPIHT had gains of 0.3dB to 4.88dB over regular 2D wavelet-based motion-compensated codec using 2D SPIHT in the coding of 19 endoscopy sequences at 1/40 compression ratio. The effectiveness of the modified SPIHT algorithm was verified by the results of a second experiment in which it was used to re-encode 4 of the 19 sequences with lowest performance gains and improved them by 0.5dB to 1.0dB. The last part of the investigation examined the effect of multiwavelet packet on 3-D video compression as well as the effects of coding multiwavelet packets based on the frequency order and energy content of individual subbands
    corecore