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In recent years, wavelet-based video compressions have become a major focus of research 

because of the advantages that it provides.  More recently, a growing thrust of studies explored 

the use of multiple scaling functions and multiple wavelets with desirable properties in various 

fields, from image de-noising to compression.  In term of data compression, multiple scaling 

functions and wavelets offer a greater flexibility in coefficient quantization at high compression 

ratio than a comparable single wavelet.  The purpose of this research is to investigate the 

possible improvement of scalable wavelet-based color video compression at low bit-rates by 

using three-dimensional multiwavelets.  The first part of this work included the development of 

the spatio-temporal decomposition process for multiwavelets and the implementation of an 

efficient 3-D SPIHT encoder/decoder as a common platform for performance evaluation of two 

well-known multiwavelet systems against a comparable single wavelet in low bitrate color video 

compression.  The second part involved the development of a motion-compensated 3-D 

compression codec and a modified SPIHT algorithm designed specifically for this codec by 

incorporating an advantage in the design of 2D SPIHT into the 3D SPIHT coder.  In an 

experiment that compared their performances, the 3D motion-compensated codec with 

unmodified 3D SPIHT had gains of 0.3dB to 4.88dB over regular 2D wavelet-based motion-

compensated codec using 2D SPIHT in the coding of 19 endoscopy sequences at 1/40 

compression ratio.  The effectiveness of the modified SPIHT algorithm was verified by the 
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results of a second experiment in which it was used to re-encode 4 of the 19 sequences with 

lowest performance gains and improved them by 0.5dB to 1.0dB.  The last part of the 

investigation examined the effect of multiwavelet packet on 3-D video compression as well as 

the effects of coding multiwavelet packets based on the frequency order and energy content of 

individual subbands. 
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1.0 INTRODUCTION 

 
 
 

The paradigm of wavelet-based image compression may be like viewing of a museum 

masterpiece; first you view it from afar to get the impact of the whole picture in coarse 

resolution, then additional pieces of finer information are added as you step closer until you have 

completed viewing of the entire masterpiece.  The spatio-temporal 3-dimensional wavelet-based 

video compression is a natural extension to this paradigm, where the masterpieces were all 

drawn by the same master and the shared information in these masterpieces can be first viewed 

as a coarse 3-dimensional outline, and then the differences can be added as we view them in 

greater detail.  The main objective of this dissertation research is to explore the application of the 

spatiao-temporal three-dimensional multiwavelets to color video compression as a good model 

that fits this paradigm.  The motivation behind this objective is to improve the performance of 

low bit-rate scalable color video compression by using three-dimensional multiwavelet transform 

instead of the single wavelet transform 

There has been a growing number of studies on applications of multiwavelets in various fields, 

from image denoising[9,11-17] and image [2-10,25,26] and video compression[75], to solving 

nonlinear equations [21] where representations with multiple sets of basis functions may offer 

some advantages, are just a few among many studies[1,18-20,22-24,27-29,30-32,34].  However, 

little has been done on applying spatiao-temporal 3-D multiwavelets to video compression, 

although studies have been reported on using 3-D single wavelets on using different 

decomposition structures [38-44,46], on coding improvements [45,47,48,51,71,72], and on codec 
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designs for specific requirements[49,50,52-56,58,59].  The one obvious advantage revealed in all 

these studies is that three-dimensional wavelet-based video coding is that it can provide easier 

scalability in both spatial and temporal domains (frame size and rate change) at the same time 

than two dimensional video coding.  Also, Xu, et. al[75] mentioned, in his study of a motion 

compensated three-dimensional single wavelet coder, that greater gains may be achieved by 

incorporating motion information into the 3-D video coder. 

In 3-D wavelet-based video coding, a tensor product of two-dimensional wavelet on 

transform in the spatial domain and a one-dimensional wavelet transform in the temporal domain 

is performed on a sequence of video frames.  To perform the transform along the temporal 

dimension, a number of frames called group-of-pictures (GOP) must be buffered first, and in 

order to minimize processing delay, the temporal span of GOP is relatively small in comparison 

to the spatial span of the frames.  The three-dimensional wavelet transform using a single 

wavelet has been shown to be efficient for video [39,48-51,71] and medical (MRI and CT) image 

sequence compression [52-54,58], while merits of the two-dimensional spatial multiwavelet 

transform has been investigated in image and video compression, classification, and denoising 

[1-10,12,13,15-18,20,22,25,26,71].  Multiwavelets are designed to combine several desirable 

properties together in the matrix filters which would not be possible for the single wavelet filters; 

these properties include orthogonality, symmetry, high approximation order and compact 

support.  These properties together enable multiwavelet to better represent the signal using fewer 

coefficients than a comparable single wavelet.  In addition, the scaling and wavelet coefficients 

obtained using multiple scaling functions and multiple wavelets can offer greater flexibility 

during the process of coefficient quantization.  In this dissertation, we will show that 
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mulwavelets, with the advantages mentioned above, will give better results on 3-D color video 

compression at higher compression ratios than those obtainable by single wavelet. 

The studies on multiwavelet-based compression of natural images[4,9,26,75] have shown 

some improvements, especially at high compression ratios, in comparison to the compression 

results obtained using single wavelet with comparable properties, although these improvements 

were not extraordinary.  Bell et.al [2] compared color image compression using multiwavelet 

against that using single single wavelet, and showed that certain multiwavelets produce slightly 

better results both subjectively and qualitatively.  However, the studies on signal and image 

denoising by thresholding wavelet coefficients have shown very interesting results:  Strela et.al 

[9] found that some multiwavelets, such as the Chui-Lian multiwavelet, demonstrated obvious 

advantages over single wavelets under very noisy conditions.  Similar conditions exist in the low 

bit-rate color videos.  Since the effect of wavelet shrinkage used in denoising is similar to that of 

bit plane-based encoding of wavelet coefficients, where only the most significant bits of data are 

preserved under high compression, it can be expected that the same multiwavelets that achieved 

good results in image denoising can also be used to improve the three-dimensional wavelet-

based video coding in low band-width environments.  Therefore, this is the motivation behind 

this thesis in the study of the advantages of spatio-temporal three-dimensional multiwavelets in 

exploiting the redundancy in color videos for lossy compression.  Tham [75] had proposed a 

framework for multiwavelet-based two-dimensional video compression with motion estimation 

in transform domain.  His simulation results included an average PSNR of 23.77dB at 0.25 bit-

per-pixel, and an average PSNR 25.06dB on a 0.79 bit-per-pixel compression ratio for the QCIF-

size grayscale Carphone sequence.  We believe his multiwavelet-based model did not take full 

advantage of the characteristics of multiwavelets, and of the reasons we believe this is the well-
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known problem of shift-variance[34-37] which could lead to sub-optimal results when motion 

estimation is performed in the wavelet domain and reduce compression performance.  We also 

believe that a two-dimensional video model could not fully exploit the advantages of multiple 

scaling functions and multiwavelet wavelets as well as three-dimensional model.  So despite 

Tham’s work in multiwavelet-based video compression, there is still a question of performance 

comparison between multiwavelet and single wavelet in terms of 3D video compression which 

this dissertation will answer. 

This thesis is organized as follows.  First, a brief review of multiwavelets and related 

background is given in Chapter 2.  Chapter 3 presents the work on three-dimensional 

multiwavelet-based video coding.  Chapter 4 presents the study of three-dimensional 

multiwavelet-based coarse-motion-trajectory residuals video coding and compares 

experimentally its performance to that of the standard two-dimensional single-wavelet and 

multiwavelet motion-trajectory-residuals video coding. In Chapter 5, multiwavelet packets and 

the shuffling of subbands are considered in three-dimensional video coding.  Chapter 6 

summarizes the major contributions of this research and suggests topics for future research. 
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2.0 MULTIWAVELET SYSTEM 
 
 
 
 
Multiwavelets as basis functions possess several desirable properties which are not possible to 

have simultaneously in a single wavelet system, such as orthogonality, symmetry/antisymmetry, 

compact support and high vanishing moment/approximate order.  These properties are explained 

in the following: 

• Orthogonality 

Signals can be efficiently represented in terms of orthogonal basis functions that 

introduce no redundant information and are also energy preserving, they give support to 

efficient data analysis. 

• Symmetry/Antisymmetry 

Symmetry of the basis functions leads to symmetry of filters giving the property of linear 

phase.  This is important in data encoders, such as SPIHT, that use a predefined hierarchical 

structure incorporating correlations between the data in the children nodes and those in the 

parent node, so that the data in the parent node can be used to predict the data in the children 

nodes.   

• High Approximation Order/Vanishing Moment 

The smoothness of a wavelet representation is commensurate with the highest order at 

which the wavelet’s moment vanishes.  Wavelet representation with high degree of 
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smoothness minimizes distortions in the approximation and will likely lead to a 

representation with only a few coefficients. 

• Compact Support 

Compactly supported scaling functions and the associated wavelets lead to filters whose 

coefficients are zeros outside of a finite support range.  So, a filter with a shorter support is 

computationally less expensive than a filter with a longer support. 

In this chapter we will briefly review the concept of multiwavelets and the associated 

background 

2.1 DEFINITIONS 

Let us consider the multiresolution analysis (MRA) in L2(IR) given by a sequence of scaling 

subspaces {Vj} J∈ZZ, 

{0} ⊂ … ⊂ V-1 ⊂ V0 ⊂ V1 ⊂ … ⊂ L2(IR) 

where the subscript j denotes the scale index, and larger j means finer scale.  V0 is generated by a 

scaling function φ(x), whose integer translates are orthogonal, and Vj is spanned by {φj,k(x)}, 

where 

φj,k(x):=2j/2φ(2jx-k),  ∀x∈IR 
 

Corresponding to φ(x) there is a wavelet ψ(x).  φ(x) and ψ(x) satisfy the 2-scale dilation 

equations:   

φ(x)= 2∑
n

N1

hnφ(2x-n) 

ψ(x)=2∑
n

N2

gnφ(2x-n) 

Let us consider a subspace Wj spanned by {ψ j,k(x)}where  
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ψ j,k(x):=2j/2 ψ (2jx-k),  ∀x∈IR 
 

such that Vj+1 = Vj⊕Wj, where ⊕ denotes the direct sum.  So Wj complements Vj in Vj+1 and  

Wj I Wl = {0}  ∀ j≠l 

One may find a set of multiple scaling functions φ1, φ2
,…, φr and their associated multiple 

wavelets ψ1, ψ2
,…, ψr, where r denotes the multiplicity of the multiwavelets, such that Vj is a 

closure of the linear span of {φmj,k }1≤m≤r, k∈ZZ in L2(IR) ,  

φmj,k (x) :=2j/2φm(2jx-k),  ∀x∈IR 

and Wj is a closure of the linear span of { ψmj,k }1≤m≤r,k∈ZZ in L2(IR) , 

ψmj,k (x) :=2j/2ψm(2jx-k),  ∀x∈IR 

Now let the multi-scaling functions and associated multiwavelets be expressed in the form of 

vectors:  

φ (x) := 

⎝
⎜
⎛

⎠
⎟
⎞φ1(x)

φ2(x)
:
:

φr(x)

 ∀ x∈ IR 

and 

ψ (x) := 

⎝
⎜
⎛

⎠
⎟
⎞ψ1(x)

ψ2(x)
:
:

ψr(x)

 ∀ x∈IR 

φj,k(x) := 2j/2φ (2jx-k),   ∀ x∈IR 

ψj,k(x) := 2j/2ψ (2jx-k),  ∀ x∈IR 

Because φm ∈ V0, ψ m ∈ W0, 1≤m≤r, and V0,W0 ⊂ V1 is generated by  
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{φm
1,k (x) = 2j/2φm(2x-k)}1≤m≤r,k∈ZZ , 

there exist two matrix sequences {Hn}n∈ZZ and {Gn}n∈ZZ  such that the matrix two-scale dilation 

equations holds for the multi-scaling functions Φ and multiwavelets Ψ: 

φ (x) = 2 ∑
n=0

N

Hnφ(2x-n),  ∀ x∈IR 

ψ(x) = 2 ∑
n=0

N

Gnψ(2x-n),  ∀ x∈IR 

where Hn and Gn are r x r matrices.  The support of the multiscaling functions φ(x) is defined as 

support(φ) = U support(φm),  1≤m≤r, 

which is bounded by [0,N], then n ranges from 0 to N. 

H={Hn} is the low-pass multifilter, and G={Gn} is the high-pass multifilter used in the analysis. 

Since φ(2x-k) are in V1 and V1=V0⊕W0, there exists matrix sequences { ~Hn}n∈ZZ  and { ~Gn}n∈ZZ 

such that  

φ(2x-k) = ∑
n∈ZZ

[ ~HTk-2nφ(x-n)+ ~GTk-2nψ(x-n)], ∀ k∈ZZ 

which gives the synthesis relation between φ(2x) and φ(x) and ψ(x) [25]; in the orthogonal 

multiwavelet system, ~Hn = Hn and ~Gn = Gn. 

2.2 MULTIWAVELET DECOMPOSITION 

The multiwavelet decomposition and reconstruction of a 1-D signal can be derived from the two-

scale equations and the decomposition relationship, just as in the single wavelet case, where    

{cj-1,k}j,k∈ZZ and {dj-1,k}j,k∈ZZ are two coefficient vectors sequences, respectively.  Let vj-1(x) ∈ Vj-1 

and wj-1(x) ∈ Wj-1 be the scaling component and wavelet component of the signal at the scale 

level (j-1) respectively, 
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vj-1(x) :=  and w∑
Ζ∈

−
− −

n

jT
nj nxc )2( 1

,1 φ j-1(x) :=  ∑
Ζ∈

−
− −

n

jT
nj nxd )2( 1

,1 ψ

For the sake of simplicity, the 2j/2 factor is incorporated into the coefficient sequences rather than 

explicitly shown.  By the relationship Vj :=Vj-1⊕Wj-1, we have 

vj(x) = vj-1(x) + wj-1(x) =  +  ∑
Ζ∈

−
− −

n

jT
nj nxc )2( 1

,1 φ ∑
Ζ∈

−
− −

n

jT
nj nxd )2( 1

,1 ψ

However, by using the synthesis relation, we have: 

vj(x) =  ∑
Ζ∈

−
k

jT
kj kxc )2(, φ

        = ∑
k∈ZZ

cT
j,k  (∑

n∈ZZ
[ ~HTk-2nφ(2j-1x-n)+ ~GTk-2nψ(2j-1x -n)]) 

        = ∑
n∈ZZ

[∑
k∈ZZ

cT
j,k

~HTk-2n](φ(2j-1x-n)+ ∑
n∈ZZ

[∑
k∈ZZ

dT
j,k

~GTk-2n]ψ(2j-1x -n)] 

 

Thus, we have the recursive decomposition formulas for 1-D signals: 

knj
k

kkj
k

nknj cHcHc −−−− ∑∑ == 2,,2,1  ~ ~  

knj
k

kkj
k

nknj cGdGd −−−− ∑∑ == 2,,2,1  ~ ~  

If an original input vector sequence is c0, we can decompose it into c-1 and d-1 sequences, and if 

so desired, decomposed c-1 to further coarser scale levels. 

To reconstruct the signal from its decomposition, we have 

vj(x) = vj-1(x) + wj-1(x) =  +  ∑
Ζ∈

−
− −

n

jT
nj nxc )2( 1

,1 φ ∑
Ζ∈

−
− −

n

jT
nj nxd )2( 1

,1 ψ

        =  +  ∑ ∑
Ζ∈

− −−
n

j

m
m

T
nj mnxHc )22(2,1 φ ∑ ∑

Ζ∈
− −−

n

j

m
m

T
nj mnxGd )22(2,1 φ

Let k=2n+m, then 

vj(x) =  =  ∑ ∑∑ −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+ −−−−

k

j

n
nk

T
njnk

n

T
nj kxGdHc )2(2 2,12,1 φ ∑ −

k

jT
kj kxc )2(, φ

9 



 

Hence, we have the recursive formula for reconstruction: 

cj,k=2∑
n

(HT
k-2ncj-1,n + GT

k-2ndj-1,n) 

For biorthogonal multiwavelet system, the decomposition and reconstruction filters must satisfy 

the following equations: 

(i) 2∑
n∈ZZ

Hn
~HT

n-2k =  δIr

(ii) 2∑
n∈ZZ

Hn
~HT

n-2k =  0 

(iii) 2∑
n∈ZZ

Hn
~GT

n-2k = 0, and 

(iv) 2∑
n∈ZZ

Gn
~GT

n-2k = δIr

In terms of the Z-transform of the filter matrices, 

H(Z) ~H (Z)+H(-Z) ~H*(-Z)=Ir

G(Z) ~H*(Z)+G(-Z) ~H*(Z)=0 

H(Z) ~G (Z)+H(-Z) ~G*(-Z)=Ir

G(Z) ~G*(Z)+G(-Z) ~G*(-Z)=Ir

In case of orthogonal multiwavelet systems, ~H(Z) = H(Z), ~Hn=Hn, ~G(Z)=G(Z) and ~Gn=Gn

2.3 TWO ORTHOGONAL MULTIWAVET SYSTEMS 

Two well-known orthogonal multiwavelet systems (for r=2) are the Geronimo-Hardin-

Massopust[32] and the Chui-Lian[33] families of multiwavelets.  The filter coefficients of {Hn, 

Gn} of the Geronimo-Hardin-Massopust (GHM) multiwavelet are  
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The Geronimo-Hardin-Massopust multiwavelet possesses the following properties: 

• The scaling functions φ1(x) and φ2(x) have very short supports of [0,1] and [0,2], 

respectively. 

• Both scaling functions are symmetric while the wavelet functions form a 

symmetric/antisymmetric pair as shown in Figure 1. 

• They are orthonormal. 

• They provide the second order approximation. 

The filter coefficients {Hn, Gn} of the Chui-Lian (CL) multiwavelet are 

H0  = 
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣
−−

8
7

8
7

44 ⎥
⎤

⎢
⎡ 11

,   H1 =
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ 4
10

2
⎤⎡ 01

,   H2 = 

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣
−−

8
7

8
7

44 ⎥
⎤

⎢
⎡ −
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and 

G0 = 
⎥
⎥

⎦
⎢
⎢

⎣ 8
1

8
1

⎥
⎤

⎢
⎡ −−

4
1
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,   G1 =

⎥
⎥
⎥
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⎢
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⎦
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⎢

⎣
−

8
1

8
1

⎥
⎤

⎢
⎡−

4
1

4
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The Chui-Lian multiwavelet possesses the following properties: 

• Both scaling functions have very short support of [0,2]. 
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• Both scaling functions and wavelet functions are symmetric/antisymmetric pairs, as 

shown in Figure 2. 

• They are orthonormal. 

• They provide the second order approximation. 

For the purpose of comparison, Figure 3 shows the scaling function φ and wavelet ψ of the 4-

tapped Daubechies DB4 orthonormal wavelet system, both are supported in [0,4] and have filter 

coefficients of length 4 as given by: 

{hn} = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−++
8

31
8

33
8

33
8

31  

and 

{gn} = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−++−−
8

31
8

33
8

33
8

31  

It also has the second order approximation property, but the scaling function of DB4 is neither 

symmetric nor antisymmetric.  As noted earlier, the single wavelet system can not possess all 

these desirable properties simultaneously. 

12 



 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

GHM scaling function #1

0 0.5 1 1.5 2 2.5 3 3.5

-0.5

0

0.5

1

1.5

2

GHM scaling function #2

 

0 0.5 1 1.5 2 2.5 3 3.5

-0.5

0

0.5

1

1.5

2

GHM Wavelet Function #1

0 0.5 1 1.5 2 2.5 3 3.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

GHM Wavelet Function #2

 
Figure 1  Geronimo, Hardin and Massopust Multiwavelet 
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Figure 2  Chui-Lian Multiwavelet 
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Figure 3  Daubechies 4-coefficients orthogonal wavelet 

 

2.4 MULTIWAVELET INITIALIZATION 

When using multiwavelet basis functions for signal decomposition, one must deal with the 

problem of how to adapt a discrete-time signal to matrix filters [23-30].  We will review briefly 

some methods of preconditioning an input signal into a vector format for the matrix filters.  A 1-

D signal must be converted into two input rows for the multiwavelet system (r=2).  This is called 

the preconditioning or initialization problem.  One obvious way is to send the signal to each row 

(channel) as shown in Figure 4; this would be useful for feature extraction in data analysis, but 

would not be useful for data compression as it introduces additional redundancy. 

 

Figure 4  Repeated-row Prefiltering for r=2 

 
We would like to generate multiple (2) rows of data from the input by sampling, and 

distribute the original data amongst the rows, so the resultant number of data points is the same 

as in the original input.  This is termed the critically-sampled scheme.  The idea is to find a set of 
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preprocessing filters Q(z) that will sample and process the input to provide a vector-format data 

as the input for multiwavelet decomposition, and a set of post processing filters P(z) such that 

P(z)Q(z)=z-lI,  l∈ZZ, to guarantee the perfect reconstruction.  Two critically-sampled schemes 

are described below. 

Strela [9] introduced this scheme based on the approximation properties of the continuous-

time multiwavelets, and has applied it successfully in 2-D compression of synthetic images and 

denoising applications.  Figure 5 illustrate the block layout of the approximation-based 

preprocessing for the case of r=2.  The problem of obtaining approximation-based preprocessing 

filters is formulated as follows: 

2

2

z-1
α0

α1

z-1

 

Figure 5  Approximation Prefiltering for r=2 

 
Let the continuous-time function f(t) ∈ V0 be generated by translates of the scaling 

functions so that it is formulated by two sets of linear combination of the translates.   

f(t) = ∑
n

q1,nφ1(t-n)+ ∑
n

q2,nφ2(t-n)

To obtain q1,n and q2,n, let us suppose that the input F[n] contains samples of f(t) at half-integers 

so that F[2n]=f(n) and F[2n+1]=f(n+1
2

).  For a multiwavelet such as GHM family where φ1(t) 

vanishes at all integer points, and φ2(t) also vanishes at integer points except at integer 1, then 

sampling f(t) at integers and half-integers gives 

F[2n]= φ2(1)q2,n-1, G[2n+1]= φ2(3
2
)q2,n-1+φ1(1

2
)q1,n+φ2(1

2
)q2,n
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then 

q1,n = 
)

2
1()1(

])2[)
2
3(]22[)(

2
1(]12[)1(

12

222

φφ

φφφ nFnFnF ++−+
, and q2,n = 

)1(

]22[
2φ

+nF  

If φ2(t) is furthermore symmetric, then 

q1,n = 
)

2
1()1(

])2[]22[)(
2
1(]12[)1(

12

22

φφ

φφ nFnFnF ++−+
, and q2,n = 

)1(

]22[
2φ

+nF  

which naturally yields a critically sampled, preprocessing to generate two more balanced rows of 

data from a single row.  Note that the above algorithm for r=2 can be easily generalized to r≥2. 

Similar to the approximation preprocessing described above, the interpolation-based 

preprocessing introduced by Kim and Li[25,26] seeks to reduce undesirable artifacts introduced 

in data subsampling by formulating the problem of prefiltering as an interpolation problem: 

Let a continuous signal f0(t) := ∑
k

cT
0,k φ(t-k) interpolate the original discrete signal f[n].  For r 

scaling functions, f0(t) is sampled at the interval of 1
r
, so that 

f0(nr
) = ∑

k∈ZZ
cT

0,k φ( n
r
 - k)= ∑

k∈ZZ
φT(n

r
 - k)c0,k  

with the condition that f0(nr
)=f[n].  Let vectors f0[n] and f[n] be constructed from f0(nr

) and f[n], 

respectively, such that 

f0[n] := 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤f0(n)

f0(n+1
r
)

:
:

f0(n+r-1
r

)

   and  f[n] := 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤f[nr]

f[nr+1]
:
:

f[nr+r-1]

 

16 



 

By applying the condition f0(nr
)=f[n], we have 

f0[n] = f[n] = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ +

:

:
).......*(....... 0

T
kck

r
mnrφ  = ∑

k∈ZZ
Pn-kc0[k] = ∑

k∈ZZ
Pkc0[n-k],  

where Pn := 

⎣⎢
⎢
⎢⎡

⎦⎥
⎥
⎥⎤

φT(n)

φT(n+1
r
)

:
:

φT(n+r-1
r

)

 

which is the interpolation postfilter that maps multiscaling coefficients c0[n-k] back to the space 

of sampled signals.  Then the prefilter Q(z) can be obtained via P(z)Q(z)=z-lI=Ir, by letting l=0.  

It should be noted that stable interpolation prefilters can not be obtained for all kinds of 

multiwavelets. 
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3.0 COLOR VIDEO COMPRESSION USING 3-D MULTIWAVELETS 
 
 
 
 
In this chapter, we introduce the application of spatio-temporal three-dimensional multiwavelet 

transform to color video compression by developing a multi-wavelet based 3-D compression 

model.  This model is then tested on a set of color video sequences at various low compression 

ratios. 

3.1 3-D WAVELET VIDEO COMPRESSION 

Wavelet-based compression is similar, in one part of the basic operations, to wavelet-based 

denoising.  In wavelet-based denoising, a noisy image is first transformed into the wavelet 

domain with scaling coefficients and wavelet coefficients.  Based on the statistics of the 

coefficients in each wavelet subband, a threshold is computed for each subband.  The 

thresholded wavelet coefficients together with the original scaling coefficients are then used in 

the inverse transform to reconstruct an image that approximates the original image but with 

significant reduction in noise.  This process is termed wavelet shrinkage.  There are two different 

ways to perform thresholding:  hard threshold and soft threshold.  In hard thresholding, wavelet 

coefficients that are above the threshold value remain unchanged, while those coefficients below 

the threshold are set to zero.  Strela [9] performed hard thresholding on multiwavelet coefficients 

and obtained better denoised results when measured against those obtained by using single 

wavelet.  His results were especially striking when the Chui-Lian multiwavelet was used on 

synthetic images.  In soft thresholding, wavelet coefficients above the threshold are altered by 
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reducing the coefficient values by the amount of the threshold.  In this way, the soft thresholding 

avoids drastic discontinuies in wavelet coefficients used in reconstruction of a denoised image, 

thus avoiding undesirable artifacts introduced by the discontinuities.  Recent studies on 

multiwavelets shrinkage using soft thresholding [14,16] showed that the operation approximates 

a bit-plane based compression of wavelet coefficients, thus the results obtained by Strela [9] on 

noisy images may be translated to 3-D video compression. 

In video coding, high levels of correlation naturally exist between video frames generated 

from the same source. One method to remove the redundancy between video frames is to 

applying the 2-D discrete wavelet transform to each frame, compute motion prediction across the 

frames to remove the temporal redundancy, and finally encode the prediction errors as illustrated 

in Figure 6. [48,51,52]  This method can yield high level of compression but suffers from some 

inherent problems: 
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Figure 6  Motion Estimation in the 2-D Wavelet Domain of a Group-of-Pictures 

 
1. Wavelet coefficients describing the same moving object may not be invariant from frame 

to frame, thus causing inaccuracy in motion estimation.  [34,35] 

2. Block-based motion estimation often produces blocky artifacts in the video and is 

computationally expensive [35]. 
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3. Since the quality of each decoded frame is dependent on the quality of its reference 

frame, any corruption in the data will be propagated to successive frames and get 

enlarged. 

The second method is to partition the video into successive segments of video frames, 

each segment is considered as a spatio-temporal 3-D data block and the 3-D wavelet transform is 

applied to the data block as illustrated in Figure 7, so redundancies in both spatial and temporal 

domains are projected into the scaling space and wavelet space making it easier to be prioritized 

for removal.  The standard 3-D wavelet decomposition can be computed by the 3-dimensional 

tensor product as a direct extension of the 2-D discrete wavelet transform by tensor product.  

Note that the tensor product of two 1-D discrete wavelet transforms must be at the same scale 

level. This is called the symmetric decomposition as employed in Figure 8 in 3-D. 
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Figure 7  Symmetric 3-D Wavelet Decomposition of a Group-of-Pictures 

 
Since the data supports along the time axis and along the spatial axes may be very 

different, one may wish to decompose to different levels, along the temporal direction and along 

the spatial directions.  Hence, another way of computing the 3-D discrete wavelet decomposition 

is to perform decomposition along the spatial directions to one scale level, say J, and then 

continue the composition along the temporal direction to a scale level, Q, which may be different 

from J.  This is illustrated in Figure 9.  This decomposition, which is called the decoupled 
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decomposition, may give wavelet coefficients which are partly regular wavelet coefficients and 

partly wavelet packet coefficients – a different data structure than the symmetric decomposition.  
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x 

t 

Figure 8  The Symmetric 3-D Wavelet Decomposition to the Scale Level 2 
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Figure 9  Decoupled 3-D Wavelet Decomposition at Spatial Scale Level 2 and Temporal Scale 
Level 2 
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3.2 COLOR VIDEO PROCESSING 

In color video processing, there are several ways to represent the video signal in color space.  

The standard format is to represent the data by three primary colors of red, green and blue, but it 

is not the most efficient way to represent the data for visual purpose.  The human visual system 

has a much smaller dynamic range for spatial variation in color (chrominance) than for 

brightness (luminance), so an efficient way to encode the data is to use more bits in encoding the 

luminance data than in encoding the chrominance data.  Thus, the luminance channel would be 

given higher bandwidth than the chrominance channels.  Several formats have been defined that 

use this type of representation of color information, all of them use sets of three values to 

represent luminance and chrominance components.  We will use a popular format, the YUV 

representation, where the Y-channel contains the luminance information dominated by green, 

and the (U,V)-channels contain chrominance information which are luminance-subtracted blue 

and red components, respectively.  The latter do not require as many bits to represent as the 

luminance data.  In order to reduce bits assigned to chrominance data, the YUV format in color 

videos employs different spatial resolution subsamplings.  Three such examples, among others, 

are:  

• 4:4:4 – for every 2x2 pixels of luminance, 4 pixels are used to represent each 

chrominance channel. i.e. no subsampling. 

• 4:2:2 – for every 2x2 pixels of luminance, 2 pixels are used to represent each 

chrominance channel.  i.e. subsampling by ½ horizontally. 

• 4:1:1 – for every 2x2 pixels of luminance, 1 pixel is used to represent each chrominance 

channel.  i.e. subsampling by ½ both horizontally and vertically. 

The transformation from RGB to YUV is: 
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Y =  0.229R+0.587G+0.11B; 

U = -0.147R-0.289G+0.437B; 

V = 0.615R-0.515G-0.1B; 

Even though luminance is visually more important to the human eyes, data loss in chrominance 

may also result in the loss of important visual clues as illustrated below in Figure 10.  A single 

video frame without data loss is compared with the same video frame with data loss in either 

chrominance U or V domains.  In this instance, the video frame with data loss in the 

chrominance U domain exhibits unpleasant yellowish tint, while the video frame with data loss 

in the chrominance V domain has lost some important information since the dates on the 

calendar are no longer as distinct as those in the original video frame.  So it is important to 

minimize data loss in both luminance and chrominance domains, even under low bandwidth 

requirement. 

 
(a) 

  
(b)       (c) 

Figure 10  (a) A single frame from Mobile video sequence,  (b) the same frame with data loss in 
chrominance U, and (c) the same frame with data loss in chrominance V  
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In general, there are two methods to encode wavelet-based color videos.  One method is 

to encode luminance and chrominance wavelet coefficients separately and then insert the 

encoded data into predetermined locations in the output bitstream independently [61,62].  This 

method regards the luminance and chrominance data as completely independent, and does not 

take any advantage of any correlation between them; but it is simple to implement and lends 

itself easily to parallel processing.  The other method is to regard the luminance and chrominance 

as not completely uncorrelated, and combine their wavelet coefficients into a single 

representation before encoding [59,64-66]; so this method may take advantage of any correlation 

between luminance and chrominance, but its complexity is greater than the separate coding 

method.  A particular wavelet used in a wavelet-based video coder should provide good 

performances in both luminance and chrominance domains.  Multiwavelet, having multiple 

useful features , may provide the flexibility in attaining this requirement. 

3.3 3-D MULTIWAVELET DECOMPOSITION IN COLOR VIDEO SEQUENCES 

The separable 3-D discrete wavelet transform is formed by the tensor product of three 1-

D discrete wavelet transforms, one applied in each dimension separately, in all three color 

domains.  For symmetric wavelet decomposition, the 3-D data block is decomposed to the same 

scale level along all three dimensions.  For decoupled decomposition, the scale level of 

decomposition along the temporal dimension may be independent from the scale level of 

decomposition along the spatial dimensions.  A one-level 3-D wavelet decomposition of a group 

of eight frames is illustrated in Figures 11 through Figure 14.  The chrominance decomposition 

coefficients are shown in color to be distinguished from the luminance coefficients. These eight 

frames are extracted from the video sequence Coastguard which shows a speedboat accelerating 

toward a coastguard ship as shown in Figure 11.  Figures 12 and 13 show the grouping of the 
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luminance component of the eight frames into one 3-D data block which is then decomposed 

using the 3-D wavelet transform. Figure 14 shows the 3-D wavelet decomposition for the 

luminance as well as the chrominance components of the same video segment.  (Note that the 

video frames are flipped along the Y axis for display purpose only.) 

 

Figure 11  A single frame from the Coastguard video sequence 

 

 

 

Figure 12  Eight sequential luminance frames from Coastguard grouped into a 3-D block 
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Figure 13   A block of 3-D Wavelet Transform (1-level) of the Luminance Portions from 8 
Coastguard Frames 
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Figure 14    Expanded 3-D Wavelet Blocks of 8 Coastguard Frames in All Three Color Domains 
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The multiwavelet decomposition of either luminance or chrominance component of color videos 

is shown in Figure 15 where the three color domains can be considered independent of each 

other. 
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Figure 15  One-level Symmetric Three-Dimensional Multiwavelet (r=2) Decomposition along 3 
Directions 

 

The prefiltering of the input data, which is required for multiwavelets in general, can be 

considered outside the decomposition blocks to simplify the mathematical expressions.  For the 

purpose of flexibility, let us first develop the expressions for the case of decoupled 

decomposition. 

Let {cj;l(n,m;k)}j,l∈ZZ denote the scaling coefficient matrix at the scale level j of the spatial 

domain and scale level l of the temporal domain, where n,m and k are spatial and temporal 

indices, respectively.  Similarly, {d1,j;l(n,m;k)}, {d2,j;l(n,m;k)},  and {d3,j;l(n,m;k)} denote, 

respectively, the three wavelet coefficient matrices at the spatial scale j and the temporal scale 
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level l.  We will be mainly concerned with the case of r=2, φ(x)= 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤φ1(x)

φ2(x)
 ψ(x)= 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ψ1

 ψ2
.  In the 

two-diimensional spatial domain, there is one 2-D scaling function φ(x,y) but three 2-D wavelets 

ψ1(x,y), ψ2(x,y), and ψ3(x,y) for decompositions of the data along horizontal, vertical and 

diagonal directions,  

φ(x,y) = φ(x) ○ φ(y) 

ψ1(x,y) = φ(y) ○ ψ(x) 

ψ2(x,y) = ψ(y) ○ φ(x), and 

ψ3(x,y) = ψ(y) ○  ψ(x) 

where ○ denotes the tensor product.  The corresponding decomposition filter matrices are: 

~Hxy, (n,m)= ~Hx(n) ~Hy(m), 

~G1,xy, (n,m)= ~Gx(n) ~Hy(m), 

~G2,xy(n,m)= ~Hx(n) ~Gy(m), 

~G3,xy.  (n,m)= ~Gx(n) ~Gy(m) 

Then, the 2-D spatial decomposition from scale level (j+1) to scale level j, at a fixed temporal 
scale l+1, is given by 
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∀ k∈ZZ 

The decomposition along the temporal dimension, at the fixed spatial scale j is given by 

⎯→c j;l(n,m;k)= ∑ ~H
ρ

t(ρ-2k)cj;l+1(n,m;ρ),  ∀ k∈ZZ 

and 

⎯→d j;l(n,m;k)= ∑ ~G
ρ

t(ρ-2k)cj;l+1(n,m;ρ),  ∀ k∈ZZ 

For the symmetric 3-D decomposition, the same decomposition at level j is used in spatial and 

temporal domains, 
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These 3-D multiwavelet decompositions are initiated by applying them first to the 

prefiltered luminance and prefiltered chrominance data separately.  The decompositions can then 

29 



 

be carried out from one scale level to the next.  The SPIHT algorithm originally developed by 

Said and Pearlman[60] for encoding 2-D images can be extended to encode such 3-D scaling 

coefficients and wavelet coefficients. 

3.4 3-D SPIHT IN SPATIO-TEMPORAL 3-D WAVELET DOMAIN 

Said and Pearlman developed a method of encoding data with built-in hierarchy which they 

called Set-Partitioning-In-Hierarchical-Tree (SPIHT).  The key feature of SPIHT is that it 

automatically generates efficient embedded bitstreams without the additional use of arithmetic 

coders.  In the embedded bitstreams, the information is automatically organized in bits such that 

the most important bits are sent first so that the bitstream can be cutoff at any point and the best 

possible data can still be reconstructed from the lossy data.    

The basic principle of the SPIHT is briefly reviewed below:  Given a set of data with an 

integrated hierarchy, define a spatial orientation tree structure with parent-children relationship 

within the data using its hierarchy.  The simplest notion of an hierarchical relationship between a 

parent and its children is that if the value of a parent is significant according to some threshold, 

then at least one of its children should also be significant relative to the same threshold.  The 

parent-children relation for 2-D data with two levels of hierarchy is shown in Figure 16, and as 

illustrated, each parent node either have three children if it in the coarsest subband,  four children 

if it is in one of the intermediate subbands, or no child at all. 

30 



 

 

Figure 16  2-D SPIHT Tree Structure with Dashed Lines indicating Parent-Children 
Relationships 

 

The wavelet decomposition coefficients are scanned in multiple passes and selectively encoded, 

and under such a tree structure the maximum number of passes required is determined by the 

number of bits needed to represent the largest coefficient.  Let us assume that this number is n, so 

the threshold used to determine significance during the first pass is set at 2n-1, and this threshold 

is decremented in each successive pass by a power of 2.  In order to track the significance of 

each coefficient, SPIHT partitions the coefficients and the linking trees into three categories:   

significant pixels/coefficients, insignificant sets and insignificant pixels/coefficients; anytime a 

coefficient is moved into the significant category from the others, a bit representing its sign is 

sent.  In each pass two operations take place:  a sorting phase and a refinement phase; the bit 

value of each significant pixel/coefficient at the location just above the current threshold is sent 

in the sorting phase, and then each set and pixel/coefficient in the insignificant category is 

examined against the threshold to see if any data point can be moved into the category of 

significant pixels/coefficients in the refinement phase.  This process repeats itself until all the 
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available bits are sent.  In this algorithm, the main saving is that only a single bit is required to 

represent the case that all the descendents of a node are insignificant at a given threshold value.  

The SPIHT encoder is a very efficient encoder if the relative significance of parent-children 

relationships holds true for every node in the tree. 

The basic algorithm is given as follows below [60]: 

0. Initialize three linked lists:  

 LIP:  List of Insignificant Pixels (or coefficient) 

LIS:  List of Insignificant Sets  

(The insignificant set associated with an insignificant pixel or coefficient in LIP is a 

sub-tree originating from the significant pixel.  A tree may be of type D which 

include all children and all generations below or it could be of type L which 

includes all grandchildren and below but not the immediate children) 

 LSP:  List of Significant Pixels (pixels above the current testing threshold) 

1.  Send the number of bits required to code the absolute value of the largest coefficient as ‘n’ 

2.  Extract the pixels (coefficients) from the root node (LL) and insert them in LIP.  Insert the 

trees associated with the root node pixels into LIS as type D.  Set LSP to be an empty set. 

3.  Set the threshold as 2n-1-1 so that all the coefficients whose absolute values require n binary 

bits to represent will be above the threshold and be significant, then start the sorting pass. 

4.  Sorting pass:  

I. Check all the LIP elements against the threshold, and move all the significant elements 

from LIP to LSP after sending a ‘1’ and its sign bit.  A ‘0’ is sent for each insignificant 

element in the LIP. 

II. Check all the LIS elements for significance.  
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• For a ‘D’ type tree, send a ‘1’ if one of the children or grandchildren and below is 

significant, then check each child against the threshold.  If a child is significant, 

output a ‘1’ plus its sign and move it to LSP set, but if a child is not significant, 

output a ‘0’ and move it to the LIP.  If grandchildren exist, move this tree to the 

end of LIS as type L, otherwise remove it from LIS.  A ‘0’ is sent if the entire D 

tree is insignificant.   

• For an ‘L’ type tree, send a ‘1’ if one of the grandchildren and below is 

significant, remove the originating node from LIS and add its children to the end 

of LIS as type ‘D’, otherwise send a ‘0’. 

5. Refinement pass: 

• Check each of the original elements in the LSP, which are elements that existed in LSP 

before the sorting pass, against the threshold and output a ‘1’ if significant, and a ‘0’ if 

otherwise. 

6. Reduce the testing threshold, ‘n’, by 1 bit, and if n>0, then repeat from step 3. 

Several versions of 3-D SPIHT, with different parent-children such as those shown in 

Figures 17 and 18, have been explored [57-66] with varying degrees of success depending on the 

input sequence.  Once a specific parent-children relationship that can be extended to 3-D SPIHT 

structure is defined, the above algorithm for the 2-D SPIHT can be extended to 3-D SPIHT by 

initializing the LIP and LIS using the coefficients in the LLL subband as defined in Figures 8 

and 9, respectively.  The tree structure for the symmetric decomposition, shown in Figure 17, 

was used in this study. 
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Figure 17  Symmetric 3-D SPIHT Tree Structure with Curved Lines indicating Parent-Children 
Relationships 
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Figure 18 Decoupled 3-D SPIHT Tree Structure with curved lines indicating Parent-Children 
Relationships 
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3.5 EXPERIMENTS AND RESULTS 

This section describes the experiments set up to test the three-dimensional multiwavelet 

transform based against the three-dimensional single wavelet  for video compression.  Because 

the framework of the experiments is for video compression, the prefiltering scheme chosen for 

the experiments is the “critically-sampled approximation” scheme so as to economize 

preprocessing.  The type of 3-D wavelet decomposition chosen was the symmetric 

decomposition, and the level of (multi)wavelet decomposition was mostly limited to be two.  The 

latter was due to the use of relatively short video segments in order to reduce the inclusion of 

frames containing zooming, panning and rotation. 

To make sure that the performance evaluation is valid across a wide spectrum of different 

video types, 64 video frames were extracted from each of nine different QCIF-sized (144x176 

pixels) color video sequences in 4:1:1 YUV format: “Claire”, “Miss America”, “Foreman”, 

“Silent”, “Coastguard”, “Mobile”, “Salesman”, “Stefan”, and “Table Tennis”, one frame each is 

shown in Figure 19.  These video sequences, with different contents and motions, represent a 

wide spectrum of possible video sources such as videoconference, surveillance, advertisement, 

educational programming, sports event, etc.   
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(a)     (b)    (c) 

   
(d)     (e)    (f) 

   
(g)     (h)    (i) 

Figure 19  Video frames from (a) Claire, (b) Miss America, (c) Foreman, (d) Silent, (e) 
Coastguard, (f) Mobile, (g) Salesman, (h) Stefan, and (i) Table Tennis sequences. 

 
Two multiwavelets and a single wavelet with similar properties were chosen in the 

experiment.  They are the GHM multiwavelet, Chui-Lian multiwavelet and the Daubechies 4-

tapped single wavelet.  For prefiltering the data for multiwavelet decomposition, the 

approximation prefiltering coefficients for GHM and Chui-Lian were computed using the 

algorithm described by Strela [9].  The approximation prefilter Q(n) and post-filter P(n) 

coefficients for GHM multiwavelet are: 
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and the approximation prefilter coefficients and post-filter coefficients for Chui-Lian 
multiwavelet are: 
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The performance comparison was done using by using a symmetric three-dimensional SPIHT as 

the encoder.   Four low bitrates were tested for the initial experiments: 0.1 bit-per-pixel, 0.25 bit-

per-pixel, 0.33 bit-per-pixel and 0.5 bit-per-pixel, in order to examine how high levels of 

quantization affect the performance of multiwavelet-based 3-D compression.  

Given the color video sequences listed above, each frame within a sequence is 

decomposed into its Y,U, and V color components initially. Then sixteen frames of data from 

each component are grouped together into a 3-D data block and then decomposed using 

symmetric multiwavelet decomposition to level 2.  The resulting coefficients are converted to an 

embedded bitstream using the Symmetric 3-D SPIHT at the bit-rates specified above.  Each 

resultant bitstream is then decoded and reconstructed back into the spatial domain in order to 

obtain lossy versions of the original video frames in YUV format.  For objective measurements 

of the qualities of these frames against the original video frames, the PSNR measurement is used 

for each color component of each video frame.  Figure 20 illustrates the entire process. 

37 



 

Round
to

Nearest
Integers

DecodeU

Combine Y, U, V 
components into 

Video Frames

UV

Separate into Y, 
U, and V 

components
Symmetric 3-D
(Multi)Wavelet
Decomposition

for Chrominance

Symmetric 3-D
(Multi)Wavelet
Decomposition
for Luminance

Round
to

Nearest
Integers

Symmetric
3-D

SPIHT

Symmetric
3-D

SPIHT
Decode

Symmetric 3-D
(Multi)Wavelet
Reconstruction

for Chrominance

Symmetric 3-D
(Multi)Wavelet
Reconstruction
for Luminance

V

Original Video 
Sequence

 
Figure 20  Experimental Setup of 3D (Multi)Wavelet-based Color Video Compression 

 
Due to the nature of the rounding operator as a quantizer, the possibility exists that the 

SPIHT-encoded result may be appropriate in the sense that rounding operator in combination 

with the SPIHT quantizer will result in bitstreams shorter than the target bitrate; i.e.  the length 

of the bitstream required to code perfectly the input to the 3-D SPIHT encoder is less than the 

target bitrate multiplied by the total number of pixels.  In the experiment, any result that matched 

with this condition was consider invalid and were not be included in the results for discussion. 

From the results of this experiment, some advantages of applying multiwavelets to three-

dimensional color video compression have been observed.  At the very low bit-rate of 0.1 bit-

per-pixel, the PSNR measurements of almost all of the videos encoded using 3-D multiwavelets, 

(the Chui-Lian multiwavelet), visibly exceeded the PSNR measurements of the same videos 

encoded using 3-D single wavelet (DB4) by a considerable amount in all three color domains.  

This is illustrated in Figure 21 for the Coastguard video sequence shown below.  (See Appendix 

for detail results.) 

    
Y    U     V 

Figure 21  Spatio-Temporal 3-D Video Compression: PSNR Measure of Coastguard Video 
Sequence at at 0.1 bpp  
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Since the high compression ratio of 0.1 bit-per-pixel in SPIHT encoder implies that only 

the most significant scaling coefficients were used in the reconstruction, the observation of better 

performance of multiwavelets gives weight to the proposition that multi-scaling functions can 

provide a better approximation of the video than a single scaling function.  In the very low-bit-

rate of 0.1 bit-per-pixel, multiwavelets offer obvious advantages in vast majority of the video 

sequences tested regardless of lighting conditions, motions of the objects in the video or motions 

of the cameras.  It is observed that these factors do affect the results when bit-rates are more 

moderate; the results of 0.33 bit-per-pixel compression of the luminance portions of Stefan and 

Mobile video, shown below in Figure 22, do not show as obvious advantage for using 

multiwavelet over single wavelet.  These two video sequences contain both panning and 

zooming motions which implies that video frames within each group are not well correlated with 

each other.  But when the zooming and panning motions paused in the second group of frames of 

the Stefan video sequence, the advantages of using multiwavelets were revealed again.  The 

results of 3-D compression of the Salesman video at 0.33 bit-per-pixel is shown in Figure 23, 

offers a good illustration.  This video sequence contains only simple motions within the chosen 

groups of frames.  Based on these observations, it is concluded that, under moderate bit-rates, the 

multi-scaling functions of 3-D multiwavelet systems can better approximate video frames that 

are more correlated with each other than the scaling function in single wavelet system. 
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(a)       (b) 

Figure 22  Spatio-Temporal 3-D Compression using CL multiwavelet and DB4 PSNR at 0.33 
bpp for luminance portions of (a) Stefan, and (b) Mobile  

    
Luminance: CL vs. DB4   Luminance: CL vs. GHM 

   
Chrominance U: CL, GHM, and DB4        Chrominance V: CL, GHM, and DB4 

Figure 23  Spatio-Temporal 3-D Compression using CL, GHM Multiwavelets and DB-4, PSNR 
at 0.33 bpp for Salesman 

40 



 

From these observations derived from the results of one experiment under 2-level 

symmetric 3-D multiwavelet decompositions, we reached the conclusion that the Chui-Lian 

multiwavelet is better suited to three-dimensional wavelet coding than the comparable single 

wavelets, especially under the demands of high compression.  Although the advantages of 

multiwavelets are not as obvious in all cases when the compression ratios are more moderate, 

most of the results do show that the Chui-Lian multiwavelet exhibits obvious advantages.   

 Another interesting observation should be noted here concerning color videos:  that the 

color domains of the same video sequence may responded in terms of compression.  Specifically, 

in the Miss America video sequence coded at 0.25 bit-per-pixel as shown in Figure 24, the PSNR 

measurements for the first three groups of frames displays obvious advantage for the Chui-Lian 

multiwavelet in all domains by varying amount.  In the fourth group of pictures, however, when 

the subject in the video suddenly shifted her position, the PSNR measurements in the case of the 

Chui-Lian multiwavelet dropped sharply such that it even had a slight loss when compared to the 

measurements obtained in the single wavelet case in the luminance domain.  But no sharp drop 

in PSNR was observed in both chrominance domains.  This suggests that if the luminance and 

chrominance coefficients are encoded together, then the qualitative loss in one domain may be 

compensated by the improvement gained in other domains such that the available bits may be 

allocated in such a way so as to improve the overall quality. 
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 Luminance: CL vs. DB4   Luminance: CL vs. GHM 
 

 
     Chrominance U: CL, GHM, and DB4         Chrominance V: CL, GHM, and DB4 
 

 Figure 24  Spatio-Temporal 3-D Compression using Multiwavelets (Cl and GHM) and DB4, 
PSNR at 0.25 bpp for Miss America 

 

3.6 SUMMARY 

We conclude that the Spatio-Temporal 3-D multiwavelet video coder performed better than the 

3-D single wavelet video coder at low bit-rates between 0.1bpp (compression ratio 1/80) and 

0.25bpp (compression ratio 1/32).  Under the 2-level symmetric decomposition, the multiwavelet 

CL, on the average, outperformed the single wavelet DB4 by more than 1dB in the luminance 
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domain, by 4.5 dB in the chrominance U domain and by 5dB in the chrominance V domain at 

0.1bpp.  At the bit-rate of 0.25bpp, multiwavelet CL showed a gain in the range of 0 to 2dB in 

the luminance domain, -0.5dB to 2dB in the chrominance U domain and 0.5dB to 4dB in the 

chrominance V domain.  The gain decreases, however, as the compression ratio increases.   
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4.0 3-D MULTIWAVELET-BASED COARSE TRAJECTORY RESIDUALS VIDEO 

CODING 
 
 
 
 
In standard video coding it is generally assumed that the intensity of an object point p, I(p), does 

not change significantly along the trajectory of its movements within a given short time interval.  

Given this assumption, we calculate the trajectory of an object’s movement from the current 

frame in which it is occupying to the next frame in time by matching the intensity value of all 

possible locations in the next frame against the object’s current intensity value as illustrated in 

Figure 25.  If there exists no exact match but the closest match in intensity is picked, the 

difference between these two intensity values is called the motion compensation residual, rj+1(p) 

=| Ij(p)-Ij+1(p)|.  Encoding motion vectors and small residuals leads to coding efficiency as desire. 

jj+1

time

p

(xj,yj)

(xj+1,yj+1)

 
Figure 25  Object P Travels in Successive Video Frames 

 
In the previous chapter, we employ 3D multiwavelets to encode intensity values of pixels 

of a group of video frames.  In this chapter, we consider the use of 3D multiwavelet to the coding 
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of residuals over time.  Temporal redundancy would be removed twice, once through the motion 

estimation/motion compensation, and second time, through the wavelet decomposition of the 

spatio-temporal residual function. 

4.1 COARSE MOTION RESIDUALS VIDEO CODING 

In the-dimensional video coding, only a single frame called a key frame within a video segment 

is coded using its original intensity values, and all subsequent frames in the segment are coded 

using the motion vectors and prediction errors (residuals) with reference to the key frame.  The 

three-dimensional multiwavelet coding can also be applied to the residual r(p,t) as a function of 

(x,y,t).  But in lossy coding, video frames coded using this approach will lose information over 

time.  For example, the residuals for the standard lossless video compression model of any point 

p can are defined as: 

ri(p)= Ii(p)-Ii-1(p), for i-1>0 

at time i.  However, in the case of lossy coding, the process of coefficients quantization will 

degrade the intensity value of original video frame, so errors will be introduced to the motional 

compensation residuals:  

 r’i(p)= Ii(p)-Ii-1(p)+ei,i-1(p), for i-1>0 

and the new residual value r’i(p) is not just ri(p), but ri(p) plus errors introduced by the process of 

quantization.  Without corrections by additional information, these quantization errors will 

propagate and accumulate over time.  Although the model for the new residuals will grow in 

complexity over a large number of frames but if we limit the total number of frames, n, to be a 

small value, then we can approximately model the residuals from lossy compression as: 

r’i(p) = Ii(p)-Ii-1(p)+ei,i-1(p)+ei-1,i-2(p)+…+ei-n+1,i-n(p) ≈ ri(p)+ ei,i-n(p) 

45 



 

Let us call the smallest number of frame which the residual model above holds true for any given 

video sequence X as nX.   

From the above residual model, we know that errors will propagate from frame to frame.  

One method most two-dimensional video coders used to reduce the propagation of errors is the 

introduction of a feedback loop of each frame after quantization, so that the motion trajectories 

are re-evaluated from the quantized video frame rather than from original video frames which is 

illustrated in Figure 26.  However, because the residuals are evaluated from quantized video 

frames, the model above for the residuals for lossy compression holds true for this model. 
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Figure 26  The Block Diagram of Two-dimensional Wavelet-based Lossy Video Compression 

 
Because 3D video coding can not provide a frame-by-frame feedback loop within a given 

group of frames that are coded together, there exists no common point for a direct comparison of 

3D models with the above 2D model.  In order to facilitate comparison an intermediary model is 

introduced that contains aspects of both two-dimensional and three-dimensional video coding but 

only codes only nX frames of any given video sequence X.  In this intermediary model, like the 

two-dimensional video model, nearest-neighbor motion trajectory estimation is performed on 

each frame successive to the key frame but without the use of a frame-by-frame feedback loop.  
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The residuals are then accumulated in order to form a 3D block for three-dimensional 

multiwavelet decomposition.  The encoding process of this intermediary model is as shown in 

the figure below: 
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Figure 27  Intermediary Model for Lossy Coding of Multiwavelet-based 3-D Video 
Compression 

 

The decoding process for the intermediary is the reverse of the encoding process:  where the 

three-dimensional coefficient block is reconstructed to the original time domain then added back 

to the motion reconstructed frames.  However, since the original frames are no longer available, 

it is assumed that each reconstructed frame approximates its corresponding original frame and 

uses it to reconstruct the successive frame.  This process is illustrated in Figure 28 below: 
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Figure 28  Intermediary Model for Lossy Decoding 3-D Multiwavelet-based Video 

 

The intermediary model is not suitable for video compression; however, it can be useful as a tool 

of comparison between two-dimensional and three-dimensional models of lossy compression.  
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For the purpose of simplifying the comparison, we assume that 2D multiwavelet compression is 

equally effective as 3D multiwavelet compression for these nX frames so that we do not need to 

factor in their relative performance into consideration now. 

By comparing the residuals that will be coded by both models for nX frames, it can be 

noted that the residuals for the intermediary three-dimensional model are smaller since it does 

not need to carry the burden of coding the extra errors, ei,i-n(p), that the two-dimensional model 

needs to handle; so the performance of the intermediary model should be superior to two-

dimensional video coding for nX frames.  It is our objective in this chapter to develop a third 

model that would have performance approaching the intermediary model for frames nearest to 

the key frame yet maintains an average performance above the 2D model for a large number of 

frames. 

There are several proposed models in the literature which combines two-dimensional 

motion estimation and three-dimensional single wavelet video coding [71, 72, 73 75], but since 

these methods code the frames using their original intensity values rather than the residuals, so it 

is difficult to compare them directly with the two-dimensional motion residual coding on an 

equal platform except by the end results of compression.  An example of such a method is the 

block-based motion threading 3D wavelet transform proposed by Xu, et.al [71], where the non-

overlapping motion trajectories are evaluated for each pixel which are used to align them in all 

the frames temporally in order to increase the efficiency of 3D wavelet transform by applying the 

transform in the third dimension along the “motion threads” rather than along the dimension of 

time, as shown in the figure below.   

48 



 

1

2

 

Figure 29  Threads Describing Motion Trajectories of pixels within a Block in a Video Sequence 

 

One of the drawbacks of computing motion threads is that the third dimension of three-

dimensional transform is uneven; note in the Figure 29 above, thread 1 threaded through the 

entire 8 frames, while thread 2 threaded only 3 frames.  This drawback implies both that the 

motion threads must be tracked at pixel-level due to the non-overlapping motion requirement 

which lacks the flexibility of many-to-one mapping, and that the level of wavelet decomposition 

in the third dimension for each thread will be different for each thread because each string (pixels 

sharing the same thread) must be transformed separately from other strings before encoding.  

The pixel-level motion tracking of motion threads requires greater computational complexity 

than block-based motion tracking, and different levels of decomposition along the third 

dimension will introduce visible boundary effects at low bitrates.  Luo, et.al [72] sought to 

reduce some effect by using a complex multilayered lifting-scheme based motion threading, but 

problems still persist at low bitrates. 
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Since our target operation is at low bitrates, we propose the common reference model, 

which is the idea that instead of each frame referenced to its nearest frame and built up the 

temporal dependence described above; the frames within the same block all refer to the same key 

frame, chosen from amongst them, in the calculation of motion trajectory residuals.  In 

comparison to the intermediary model, the motion trajectory of each point calculated from the 

common reference model can be considered as equivalent to the motion trajectory calculated 

from successive frames. In Figure 30, the dashed lines indicate trajectories evaluated by the 

intermediary model and the solid lines indicate coarse motion trajectory to the key frame.  It can 

be seen that these two sets of motion information is equivalent since one set of vectors can be 

obtained from the other set. 
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Figure 30  Intermediary Motion Vectors (Dashed Line) and Coarse Motion Vectors (Solid Line) 

 
The common reference approach to obtain motion displacements has advantages over the 

2-D motion estimation from quantized frames.  Since the displacements were obtained using the 

original video frames, there is no distortion to the motion trajectories obtained using 2-D method.  

This implies that the displacements contain the actual motions of every point within the video, 

which is very useful information.  In addition to this, the residuals are evaluated using the 
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original video intensities so the residuals near the key frame should approximate the 

intermediary model for nX frames and have better performance than the 2-D model.  The motion 

information obtained has the advantages over the “motion threads” model described above in 

that there is that the motion trajectory evaluation allows many-to-one matching rather than non-

overlapping pixel-based matching, and boundary effects should also be reduced since the number 

of frames in the temporal dimension is the same for all the pixels. 

Ideally, all the displacements obtained using this method are exact, but in practice, the 

displacement of any point p at time t’ is very likely to increase in magnitude if t’ is far away 

from the key frame.  However, there is a constraint, that for the purpose of compression the total 

magnitude of all the displacement can not be no larger than those of the motion trajectories in the 

2-D case.  Because of this constraint, the displacements obtained for the frames not in the 

neighborhood of the key frame tend to be only the coarse approximation of the real 

displacements.  By this, we will call this common reference motion estimation method the 

“Coarse Motion Estimation”.  The residuals of each point at time i associated with this method of 

motion computation can be described as difference in the intensity values of the point p in the 

key frame and every other non-key frame, that there is a one-to-one correspondence of each 

residual with the original intensity values.  This implies that the coarse motion compensated 

residual  

rcr(p) = Ii(p)-Ikey(p), for i≠key 

for any block of frames can be considered as as 3-D information, rcr(x,y,t), on which we can 

apply the 3-D multiwavelet decomposition: 

);,()2;2,2(~);,()2,2(~)2(~);,(
,,,

01;1 ρµρµρµµρ
ρµµρ

vrkkkvHvckkvHkHlmnc cr

v
xyz

v
xyz

rvv
∑∑∑ −−−=−−−= , 

 

51 



 

);,()2;2,2(~);,()2,2(~)2(~);,(
,,

,0
,

01;1,0 ρµρµρµµρ
ρµµρ

vrkkkvGvckkvHkGlmnd cr

v
xyz

v
xyz

rvr
∑∑∑ −−−=−−−= , 

 
);,()2;2,2(~);,()2,2(~)2(~);,(

,,
,1

,
0,11;1,1 ρµρµρµµρ

ρµµρ
vrkkkvGvckkvGkHlmnd cr

v
xyz

v
xyz

rvr
∑∑∑ −−−=−−−= , 

 
);,()2;2,2(~);,()2,2(~)2(~);,(

,,
,2

,
0,11;1,2 ρµρµρµµρ

ρµµρ
vrkkkvGvckkvGkGlmnd cr

v
xyz

v
xyz

rvr
∑∑∑ −−−=−−−= , 

 
);,()2;2,2(~);,()2,2(~)2(~);,(

,,
,3

,
0,21;1,3 ρµρµρµµρ

ρµµρ
vrkkkvGvckkvGkHlmnd cr

v
xyz

v
xyz

rvr
∑∑∑ −−−=−−−= , 

 
);,()2;2,2(~);,()2,2(~)2(~);,(

,,
,4

,
0,21;1,4 ρµρµρµµρ

ρµµρ
vrkkkvGvckkvGkGlmnd cr

v
xyz

v
xyz

rvr
∑∑∑ −−−=−−−= , 

 
);,()2;2,2(~);,()2,2(~)2(~);,(

,,
,5

,
0,31;1,5 ρµρµρµµρ

ρµµρ
vrkkkvGvckkvGkHlmnd cr

v
xyz

v
xyz

rvr
∑∑∑ −−−=−−−= , 

 
);,()2;2,2(~);,()2,2(~)2(~);,(

,,
,6

,
0,31;1,6 ρµρµρµµρ

ρµµρ
vrkkkvGvckkvGkGlmnd cr

v
xyz

v
xyz

rvr
∑∑∑ −−−=−−−=  

The residuals obtained using the common reference method may be large, so there is a 

need to reduce the total coarse motion residuals by considering a key frame selection strategy.  

The purpose is to locate a key frame within a 3-D block of video frames that has a high degree of 

correlation with most of the other frames so as to reduce the total coarse motion residuals.  

Because all the video frames in the segment are all available, the selection of a key frame in 3-D 

coding does not have temporal constraints.  A simple key frame selection strategy based on this 

fact will be described in the next section. 

4.2 KEY FRAME SELECTION STRATEGY FOR 3-D VIDEO CODING 

Our general assumption in evaluating coarse motion trajectories is that motion estimation for 

points in a video frame gets coarser as it is further from the key frame, so it would seem to be 

natural to pick the middle frame for any given block of frames as the key frame.  However, in 
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most cases, the motion of any given point p across time may not be evenly balanced across the 

middle frame; it may have larger motions across certain frames than in others so the key frame 

should be selected to be closer to these frames in order to reduce the magnitude of the residuals.  

So the objective to find a key frame that produces the minimum of totals absolute residuals by 

evaluating every possible coarse motion trajectory from every non-key frame to the key frame.  

This is not realistic, so a simplified procedure is used that evaluates the sum of absolute 

differences in intensity values for all the points in each video frame relative to a candidate key 

frame, and a key frame selected as that yields the minimum sum: 

)),(),(|),(|(
),( ),(

∑ ∑ ∑
≠

−=
yx yx keyi

keyikeykey yxIyxIyxDMin  

where (x,y) denotes the pixel coordinates in a video frame.  This procedure assumes the sum of 

the absolute residuals produced by a motion trajectory across two frames is proportional to the 

absolute intensity differences between these two frames.  Under this assumption, the magnitude 

of motion estimation errors, or the difference in residuals, can then be translated into magnitude 

of the variations in intensity across time at the same position (x,y).  It then reduces the problem 

of find a key frame by evaluating all possible motion trajectories of all the points to the problem 

of locating the one frame which has the smallest total absolute difference with respect to all the 

other frames in the same 3-D block.  However, to calculate this value for all possible frames is 

time consuming and unrealistic, so a logarithmic search strategy is adopted: 

1. Choose frames ¼, ½ and ¾ of the way between the first and the last frame of a given 

block of frames, and compute the total of the absolute difference of each of them with 

respect to each frame.  This is equivalent to setting the middle frame as the search 

starting point and setting the stepsize of the search to ±¼ of the total number of frames 

around the starting point.   
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2. Choose the frame with the lowest total of absolute difference computed in step 1, set it as 

the new search starting point, and reduce the stepsize of the search to ½ of the previous 

stepsize, and compute the total difference energy with respect to frames that are one 

stepsize away on both sides of the new starting point.  Repeat this step until the stepsize 

is less than one. 

3. Choose the frame with the lowest total energy from the last iteration of step 2, and set it 

as the key frame. 

This greedy algorithm will only yield a key frame with a local minimum of sum of absolute 

differences and may not give a very small residual for encoding. However, we will demonstrate 

in experiments that the 3-D multiwavelet coding will compensate for it and yield good 

compression results even if the selected key frame is not the best possible key frame. 

4.3 TWO ADDITIONAL MULTIWAVELET SYSTEMS 

In addition to the two well-known multiwavelet systems considered in the last chapter, GHM and 

Chui-Lian, we used two additional orthogonal multiwavelet systems of multiplicity of 2, SA4 

and Cardbal2, with properties similar to those of the GHM and Chui-Lian multiwavelets to 

investigate experimentally whether the performances of multiwavelets in low bitrate 3D video 

compression are better than that of comparable single wavelet. 

4.3.1 Four-tapped Symmetric-Antisymmetric Orthogonal Multiwavelet (SA4) 

Tham, et al [74,75] observed that it is possible to replace any given multiwavelets filter with a 

set of equivalent single wavelet-like filters based on its input-output characteristics, and 

proposed a framework of analyzing a multiwavelets filter by how well the filter pair in the 

equivalent set behave as low-pass and high-pass filters.  Based on this, they [74,75] then 

introduced the 4-tapped SA4 multiwavelet which belongs to the class of symmetric-
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antisymmetric multiwavelets similar to the Chui-Lian multiwavelet, but has approximation order 

of only 1.  The following figure shows in pairs of the scaling functions and wavelets, (φ1(x), 

φ2(x)) and (ψ1(x), ψ2(x)), of the SA4 multiwavelet. 
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Figure 31  Scaling Functions (solid) and Wavelets (dashed) of the Symmetric-Antisymmetric 
Orthogonal Multiwavelet SA4 on the support [0,4] 
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The filter coefficients of {Hn, Gn} of the SA4 multiwavelet filters are: 
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The coefficients of the approximation-based prefilter and post-filter of Strela [9] for the SA4 

multiwavelet are: 

Q = 1
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The following plots show the frequency responses of the SA4 and Chui-Lian multiwavelets.  We 

expect the these two filters will have similar performance in terms of compression due to the 
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properties and frequency response characteristics, such as the switching of role between H and G 

filters in the h22, g22, h21, g21 plot, that they both share. 
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(a) Frequency Responses of h11, g11, h12, g12 and h22, g22, h21, g21 of SA4 Multiwavelet 
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(b) Frequency Responses of h11, g11, h12, g12 and h22, g22, h21, g21 of Chui-Lian Multiwavelet 

Figure 32  Frequency Responses Plots of SA4 and Chui-Lian Filter Pairs (H-Blue, G-Red) 

 

Note that hij(w) and gij(w) do not always exhibit the characteristics of low-pass and high-

pass filters, respectively, instead they may be or band-limiting and band-pass nature in some 

cases, and there is a switching of roles between g12(w) and h21(w) or h22(w).  This reflects 

unbalances of the two scaling bases.  Otherwise, the characteristics of these two symmetric-

antisymmetric multiwavelets are similar.  This leads us to expect that the performances of SA4 

and Chui-Lian multiwavelets will be similar in terms of compressions. 
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4.3.2 Two-Balanced Cardinal Orthogonal Multiwavelet (Cardbal2) 

If the two scaling bases have similar frequency characteristics, the multiwavelets are 

called balanced multiwavelets.  The balanced multiwavelet bases carry over their zero moment 

properties to their corresponding discrete filters.  As mentioned in Chapter 2, one of the 

functions of the approximation-based prefiltering is to generate a more balanced 2-row (r=2) 

vector from a 1-dimensional signal of balanced multiwavelets,  this balancing property is already 

there and hence no prefiltering is required.  A scaling function φ(t) is an interpolatory or cardinal 

function if φ(n) satisfies 

φ(n) = δ(n) = ,  
⎩
⎨
⎧

±±=
=

2,...1,nfor  0,
           0nfor   ,1

where φ(x)= ∑
n

 φ(n)sinc(x-n),  sinc(x)= sin(πx)
πx

 

A multiwavelet with interpolatory scaling functions φ(x) is called a cardinal multiwavelet.  

Selesnick [76,77.78] used the requirements (constraints) of orthogonality, cardinal scaling 

functions and compact support to generate a set of orthogonal balanced cardinal multiwavelets of 

various approximation orders.  We considered the two-balanced cardinal multiwavelet that 

possesses the approximation order of two, same as the GHM and Chui-Lian multiwavelets, 

although it has a longer support [0,5] and filter length of 6.  Figure 33 shows the scaling and 

wavelet functions of the two-balanced cardinal multiwavelet, hereto referred as “Cardbal2”.  

Selesnick generated Cardbal2 in such a way that its second scaling function φ2(x) is a shifted (by 

½) version of its first scaling function φ1(x), so the two scaling bases are balanced and the 1-D 

input signal can be converted to a vector input of two components by simply taking even-
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indexed samples and odd-indexed samples in the original signal, respectively.  The 2-scale 

matrix dilation is given by  
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The elements of {h0(k)} and {h1(k)} are filter coefficients two filters for the two scaling bases.  

Similar, {g0(k)} and {g1(k)} filter coefficients two filters for the two wavelets. 
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Figure 33  Two-Balanced Cardinal Multiwavelet Cardbal2 on the support [0,5]; Scaling 
Functions are shown in Blue/Solid Line, and Wavelets shown in Red/Dashed Line 
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The filter coefficients Hn, and Gn (for n=0,1,2,..5) of the Cardbal2 multiwavelet are given by: 

H(0) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 0
32

154

0
32
1

,   H(1) =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ +

0
16
15

1
32

154

,   H(2) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 1
16

158

0
16
15

, 

H(3) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

0
16
15

0
16

815

,   H(4) =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−− 0
32

154

0
16
15

,   H(5) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

0
32
1

0
32

415

 

and 

G(0) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

0
32

415

0
32
1

,   G(1) =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−

0
16
15

1
32

154

,   G(2) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

1
16

815

0
16
15

, 

G(3) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

0
16
15

0
16

158

,   G(4) =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−

0
32

154

0
16
15

,   G(5) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

0
32
1

0
32

154

 

The frequency responses of {hij(w)} and {gij(w)} of the matrix filter components are shown in 

Figure 34(a), and the frequency responses of H0(w), H1(w), G0(w), and G1(w),are shown in 

Figure 34(b), the latter conforms to the characteristics of low-pass and high-pass filters, 

respectively. 
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(a) Frequency Responses of h11, g11, h12, g12 and h22, g22, h21, g21 Filters 
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(b) Frequency Responses of h0, g0 and h1, g1 Filters(H-solid, G-dashed) 

Figure 34  Frequency Responses Plots of Cardbal2 Filters 

 

Although the Cardbal2 multiwavelet has longer support and filter length in comparison to 

the GHM and Chui-Lian multiwavelets, its balancing properties makes it a better multiwavelet 

for some applications.  Cardbal2 is currently the balanced cardinal multiwavelet with the shortest 

support and filter length.  It does not require prefiltering to obtain balanced input rows, which 

may be obtained by simply splitting the input into a row of even-indexed samples and another 

row of odd-indexed samples. 
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4.4 MODIFIED 3-D SPIHT ENCODER FOR COARSE MOTION RESIDUALS 

One characteristic of coarse motion residuals is that the maximum bit required to code each 

frame vary temporally; the maximum bit required to code the wavelet coefficients of those 

frames near the key frame should be lower than that of those frames farther away from the key 

frame.  This is not a problem for the 2D SPIHT, where the maximum bit for each frame can be 

different from each other, however, in the 3D SPIHT, the initial lists of LIP and LIS must 

contain all the coefficients in the LLL subband and be tested at the same threshold even if the 

maximum bit for every frame is different, thus resulting in wasted bits in the case like coarse 

motion residuals. 

The modified 3D SPIHT algorithm is as follows: 

0. Initialize three linked lists:  

 LIP:  List of Insignificant Pixels (wavelet coefficients) 

LIS:  List of Insignificant Sets  

(The insignificant set associated with an insignificant pixel or coefficient in LIP is a 

sub-tree originating from the significant pixel.  A tree may be of type D which 

include all children and all generations below or it could be of type L which 

includes all grandchildren and below but not the immediate children) 

 LSP:  List of Significant Pixels (pixels above current testing threshold) 

1.  Determine the maximum bit required to code the absolute value of all coefficients in each 

temporal frame (and all of its children, grandchildren and below) in the coarsest subband and 

send them. Set ‘n’ as the number of bits required representing the coefficient with the largest 

absolute value in binary form. 
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2.  Extract the pixels (coefficients) from the each frame in root node (LLL) that require n bits to 

code and insert them in LIP and insert the trees associated with them into LIS as type D.  Set 

LSP to empty set.  Do not insert frames requiring fewer than n bits to code. 

3.  Set the threshold as 2n-1-1 so that all the coefficients whose absolute values require n binary 

bits to represent will be above the threshold and be significant. 

4.  Sorting pass:  

III. Check all LIP elements against the threshold, and move all the significant elements from 

LIP to LSP after sending a ‘1’ and its sign bit.  A ‘0’ is sent for each insignificant element 

in the LIP. 

IV. Check all LIS elements for significance.  

• For a ‘D’ type tree, send a ‘1’ if one of the children or grandchildren and below is 

significant, then check each child against the threshold.  If a child is significant, 

output a ‘1’ plus its sign and move it to LSP set; but if a child is not significant, 

output a ‘0’ and move it to the LIP.  If grandchildren exist, move this tree to the 

end of LIS as type L, otherwise remove it from LIS.  A ‘0’ is sent if the entire D 

tree is insignificant.   

• For an ‘L’ type tree, send a ‘1’ if one of the grandchildren and below is 

significant, remove the parent from LIS add each child to the end of LIS as type 

‘D’, otherwise send a ‘0’. 

5. Refinement pass: 

• Check each of the original elements in the LSP, which are elements in LSP before the 

sorting pass, against the threshold and output a ‘1’ if significant, and a ‘0’ if otherwise. 
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6. Reduce the testing threshold, ‘n’, by 1 bit, and if n>0, then extract the pixels (coefficients) 

from each frame in the root node (LLL) that require n bits to code, insert them in the beginning 

of LIP and insert the trees associated with them into the beginning of LIS as type D.  Do not 

insert frames requiring less than n bits to code.  Repeat step 3, etc. 

This modified SPIHT algorithm is designed to save some ‘0’ bits by not testing 

coefficients in frames that are known to be below the threshold.  This will increase the efficiency 

of coding the coarse motion residuals.  This design can be translated to 2-D SPIHT in the cases 

where the large coefficients in each frame are concentrated in certain spatial regions or more bits 

are required for foveated areas in each frame. 

4.5 EXPERIMENTS AND RESULTS 

This experiment was designed to test the performance of 3D multiwavelet-based coarse 

motion residuals coding system, with and without the modified SPIHT coder using segments of 

medical endoscopy video sequences as input. 

There were two reasons for using the endoscopy video sequences; (1) Some chromatic 

information are almost the same through each video sequence, we reduced the experimental 

parameters by performing experiments in the luminance domain only and then translating the 

result into color domain, (2) the frames were acquired through a traversal in a contiguous 3-D 

environment that lends itself naturally to the paragidm of the 3-D based video coding. 

The three endoscopy video sequences (with frame size 240x352) were titled M,P, and R.  

From M, P and R, total of nineteen video segments of thirty three frames each were extracted at 

random to be used as test data.  Eleven segments (M01 to M11) were from sequence M which is 

the longest, and four each from sequence P (P01 to P04) and sequence R (R01 to R04).  
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Snapshots of these videos are shown in Figure 35.  In each segment, one frame was chosen as 

key frame. 

  
(a) Snapshots from the M endoscopy video sequence 

  
(b) Snapshots from the P endoscopy video sequence 

  
(c) Snapshots from the R endoscopy video sequence 

Figure 35  Snapshots from Three Neurosurgical Endoscopy Video Sequences 
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For calculating motion trajectories, the full-search block-based motion estimation was 

used, where the residuals for pixels in the same rectangular block were evaluated with every 

trajectory up to ±p in both x and y directions, as indicated in Figure 36.. 

+p+(N/2)

-p-(N/2)
N

N

-p-(N/2)

+p+(N/2)

 
Figure 36  Search for the Best Match of the NxN Block within a Larger Block 

 
The full-search block-based motion estimation algorithm was based on the six-level computation 

for Minimum Absolute Difference (MAD) as stated below. 
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Do h=1 to Nh 

Do v=1 to Nv 

Dmin(h, v)= ∞ 
MV(h, v)=(0,0) 
Do m=-p to p 
Do n=-p to p 

MAD(m, n)=0 
Do j=1 to N 
Do i=1 to N 

MAD(m, n)=MAD(m, n) +(1/N2)X((h-1)N+i, (v-1)N+j ) – Y((h-1)N+i+m, (v-1)N+j+n) | 

End Do i, j 
If ( MAD(m, n) < Dmin(h, v) 

Dmin(h, v) = MAD(m, n) 
MV(h, v) = (m, n) 

End If 
End Do n,m,h,v 
h, v – horizontal and vertical coordinates of a block 
i, j –coordinates of a pixel within a block 
m, n – horizontal and vertical coordinates of a vector 
MV – motion vector , p – search range, N – block size in horizontal and vertical direction 

Figure 37  The Six-loop Full-Search Block Matching Algorithm 

 

As can be seen from the algorithm, the MAD values were computed by comparing the residuals 

generated by matching any given block of size NxN in frame X with blocks in reference frame Y 

within the range of (2p+1)x(2p+1) in order to determine the most like displacement of the block 

in X to Y.  In the experiment, both N and p were set to be 16 (4 bits), i.e. the size of each block 

was 16x16 and the maximum possible displacement was ±16.  Three multiwavelets were used in 

the experiment:  the Chui-Lian multiwavelet, the SA4 multiwavelet and the Cardbal2 

multiwavelet.  Approximation prefiltering was put forth for the the Chui-Lian multiwavelet and 

also for the SA4 multiwavelet.  The Cardbal2 multiwavelet, being a balanced interpolative 

multiwavelet requires no prefiltering and 2-channel input in each dimension was obtained by 

splitting the data into the even-indexed and odd-indexed samples (for r=2).  For comparison 
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purpose, DB4 was chosen.  Only 2-levels of decomposition was used in all cases.  Experiments 

were carried out for the 3-D coarse motion residual coding using unmodified and modified 3D 

SPIHT coders as well as 2D multiwavelet and single wavelet coder for comparison purposes.  In 

term of coding, the 3D multiwavelet coefficients are coded using the unmodified 3D symmetric 

SPIHT while the 2D multiwavelet and single-wavelet coefficients are coded using regular 2D 

SPIHT.  The setting for the SPIHT quantizer in both 2D and 3D cases is 0.2bpp or 1/40 

compression ratio.  In the experiments, the following parameters and results are taken or 

measured:  the key frame selected for each test video sequence, total sum of residuals, and the 

averaged PSNR measurements of reconstructed frames. 

Table 1 lists the averaged PSNR over 32 frames for the 19 endoscopy segments.  It is 

noted that 3D multiwavelet coarse motion residuals video coding outperforms the 2D cases in all 

19 cases.  We underscored the best averaged PSNR value for each segment, and noted that no 2D 

system, using either the multiwavelet Chui-Lian or the single wavelet DB4 had gain over the 3D 

systems even once; i.e. the averaged PSNR for every 3D multiwavelet coding is higher than the 

2D methods.  For example, the 3D Chui-Lian had gains over the 2D Chui-Lian, from ~0.4dB 

(M10) to ~5dB (P04), while the 2D single wavelet has the worst performance in most cases.  The 

winner for each segment is almost evenly distributed among the three multiwavelets with no 

clear overall winner as the differences in their performances are small.  This may be due to the 

fact that the level of decomposition was limited to only two, and the contributions from different 

bases could not be clearly distinguished.  As expected, the SA4 multiwavelet, though only 

provides the approximation order of 1, has performance similar to Chui-Lian.  This shows that 

the characteristics of the filters are at least as significant as approximation order in the 

performance of low bitrate 3D wavelet-based compression using multiwavelets.  It is noted that 
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the best sequence for the multiwavelet Chui-Lian is different in 3-D case (M03) than that of 2-D 

(R01), it may imply that the results of 3-D multiwavelet-based compression can not be directly 

inferred from those of 2-D even if the same multiwavelet is used, but the sample space is too 

small to state this conclusively. 
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Table 1  Average PSNR over 32 Endoscopy Video Frames at 0.2bpp 

Sequence 3D Cardbal2 3D SA4 3D Chui-Lian 2D DB4 2D Chui-Lian 

M01 35.75(best) 35.44 35.62 33.97 34.77 

M02 36.96 37.38(best) 36.50 33.53 34.31 

M03 37.54 37.72 (best) 37.02  33.70 34.55 

M04 28.68 29.87(best) 28.74 27.23 27.63 

M05 30.27(best) 29.69 30.19 28.54 28.61 

M06 30.27(best) 29.69 30.19 28.49 28.96 

M07 35.06 35.49 35.62(best) 31.72 32.73 

M08 26.93 27.57(best) 27.31 26.3 26.53 

M09 27.75 27.76 27.92(best) 27.03 27.56 

M10 26.91 26.92 27.07(best) 26.22 26.77 

M11 27.74(best) 27.69 27.15 26.46 26.82 

R01 38.00 (best) 37.61 36.66 34.63  35.11 

R02 37.20 37.40(best) 36.92 34.51 35.01 

R03 32.94 33.42(best) 33.11 30.64 30.81 

R04 32.40(best) 32.27 31.44 30.19 30.11 

P01 34.20 34.42(best) 34.16 32.38 33.06 

P02 32.09 32.27(best) 32.11 29.99 30.46 

P03 36.16 36.95(best) 36.58 33.09 33.65 

P04 36.20(best) 35.77 35.96 30.93 31.08 

 

 

72 



 

The plots in Figures 38, 39 and 40 represent the PSNR measurements of sequences M03, 

R02, and R03, respectively.  The ‘+’ symbols are the results of 3-D multiwavelet (CL), the solid 

line is the result of 2-D multiwavelet (CL) and the dashed line is the result of 2-D single wavelet 

(DB4).  These are the cases where 3D CL had clear advantages over the 2D cases in terms of 

averaged PSNR.  As expected, those frames nearest to the key frame have better performance in 

all cases.  Even in the cases where the averaged performance improvement was not as 

significant, such as M05 shown in Figure 41, the stability of 3D coding over 2D coding is 

evident because the 2D coding showed sharp drop in PSNR values when two consecutive frames 

had low correlation, while the 3D coding result maintains its shape.  

It should be noted that in rare cases, such as M08 shown in Figure 42, the 3D Chui-Lian 

has lower performance in 1/3 of the frames even though it still maintained a higher averaged 

PSNR.  However, this is a difference that the modified SPIHT can help overcome, as discussed 

below. 
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Figure 38  PSNR Measure of 32 Video Frames of Endoscopy sequence M03 
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Figure 39  PSNR Measure of 32 Video Frames of Endoscopy sequence R02 
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Figure 40  PSNR Measure of 32 Video Frames of Endoscopy sequence R03 
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Figure 41  PSNR Measures of Endoscopy sequence M05 
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Figure 42  PSNR Measures of Endoscopy sequence M08 

 

 

In a second experiment designed to test the efficacy of the modified 3-D SPIHT coder, 

we repeated the experiment above for the 3D video coder with just the Chui-Lian multiwavelet, 

but replaced the regular 3D SPIHT coder with the modified version.  Four out of the nineteen 

neurosurgical segments whose performance in the first experiment needed improvement, M08, 

M09, M10 and M11, they were chosen as the testing sequences here.  For the purpose of 

performance comparison, the results of the 3-D multiwavelet-based compression of the same 

frames using their original intensity values were also presented, and Table 2 shows the results.  

As it can be seen, the unmodified SPIHT helped in improving the PSNR in all four cases by as 

much as 1dB at the low bitrate of 0.2bpp.  The results of using the 3D multiwavelet coding 

described in Chapter 3 on the original intensity values using the unmodified SPIHT is given in 
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the first column of Table 2 for comparison purposes.  The 3D coarse motion residuals plus the 

modified 3D SPIHT encoder showed performance gains over the direct 3D multiwavelet coding 

by as much as 3.5dB. 

Table 2  Average PSNR over 32 Endoscopy Video Frames at 0.2bpp

Sequence Regular 3D 
Multiwavelet coding 

using regular 3D SPIHT 

3D Coarse Motion 
Residuals coding using 

regular 3D SPIHT 

3D Coarse Motion 
Residuals coding using 

modified 3D SPIHT  
M08 24.31 27.31 27.87 

M09 25.20 27.92 28.44 

M10 24.94 27.07 27.50 

M11 24.49 27.15 28.17 

 

4.6 SUMMARY 

It was postulated at the beginning that the compression performance of multiwavelet-based 3-D 

video coding would be superior to the performance of 2-D wavelet coding using comparable 

wavelets, but it was difficult to evaluate and compare these two different methods on an even 

platform.  We have developed the “coarse-motion-residual” approach for 3D video coding as a 

platform for the comparison.  The “coarse-motion-residual” approach utilizes a common 

reference frame extracted from a video segment as a key frame.  A key frame selection strategy 

was developed, with the goal of reducing total residuals, based on the concept that the larger the 

motions are, the greater the residuals will be which are computed by the difference between the 

intensity values of two frames.  A modified version of 3-D SPIHT is also developed, which is 

more efficient by taking advantage of the spatio-temporal relationship of the “coarse-motion-

residuals”.    
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 Three orthogonal multiwavelets, Chui-Lian’s CL, Tham’s SA4 and Selesnick’s Cardbal2, 

were used in the experiment which was performed for comparing the multiwavelet-based 3-D 

coarse–motion-residuals coding against 2-D motion residuals coding using single wavelet and 

multiwavelet.  The key frame selection strategy reduces the average of total prediction error from 

a possible 29.604x106 per frame to a value of 16.848x106 using multiwavelet CL, which is more 

comparable to the average of 13.825x106 obtained by the 2-D video coding using wavelet DB4.  

But even with the high average residual per frame to code, the 3-D multiwavelet “coarse-motion-

residuals” coding outperformed the 2-D motion residuals video coding in the experiment by 

0.3dB to 4.88dB(multiwavelet CL), 0.2dB to 4.69dB(multiwavelet SA4), and 0.19dB to 5.12dB 

(multiwavelet Cardbal2), even at the low bit-rate of 0.2bpp.  The simulation results showed that 

the best sequence for Cardbal2, whose matrix filters’ frequency response exhibits characteristics 

of low-pass and high-pass filters, is the same sequence for the 2-D cases; yet the best sequence 

Chui-Lian, whose matrix filters’ frequency response do not resemble that of 2-D, is different in 

the case of 3-D than 2-D.  The direct interpretation is that 3-D multiwavelet may be better at 

exploiting the differences between the contributions from different basis functions than 2-D 

multiwavelet in compression, but the sample space is too small to state this conclusively.  The 

use of the modified SPIHT with multiwavelet CL in four sequences (that are more difficult to 

compress) enhanced the performance by 0.5dB to 1.0dB at 0.2bpp.  This experiment not only 

demonstrated the general superiority of 3-D multiwavelet over the standard wavelet video 

coding, but has also revealed the advantage of 3-D multiwavelet coding over 2-D multiwavelet 

even having to deal with more residuals without using the modified SPIHT coder.  The same 

experiment showed that the incorporation of motion information into the 3-D multiwavelet coder 

can improve compression performance by 2 to 3dB using the four sequences. 
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Although we expected the key frame selection strategy to have good performance, the 

results shown in Table 3 implies that a better strategy may be desired.  Several points are noted 

from the Table 3:  First three columns in the table, it is seen that the key frames selected by the 

proposed algorithm are generally closer to the global minimum in terms of total residuals, shown 

in the “Best Key” and “Worst Key” columns, respectively; the “Worst Key” refers to the case 

that resulted in global maximum total residuals.  These numbers were obtained by exhaustively 

searching through all possible key frame using displacements of each frame with respect to them.  

In some cases, such as M07, P02, P03 and P04, the key frame selection algorithm actually found 

the global minima.  It is also noted that although in a number of cases the total residuals of the 

coarse motion estimation resulted from the greedy key frame selection algorithm were higher 

than those obtained by the nearest-neighbor motion estimation, they were actually smaller in 

some instances; e.g. R01, P03 and P04.  An improved algorithm may be required.  In the next 

chapter, we will explore the effects of using multiwavelet packets in 3D video coding. 
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Table 3  Totalotal Residuals summed over 32 Endoscopy Video Frames 

Total Sum of Block Motion Residuals of 32 Video Frames (pre-quantized) x106

3D  Coarse Motion Residuals (Chui-Lian) 2D (Nearest-Neighbor) 

Sequence Best Key Worst Key Selected Key DB4 Chui-Lian 

M01 9.8069 13.175 9.9955 7.7977 7.4534 

M02 8.8156 11.276 9.0202 8.1574 7.8897 

M03 7.8626 11.276 8.0167 8.1200 7.5883 

M04 51.175 213.51 52.458 36.611 35.741 

M05 16.396 21.217 17.287 15.043 14.922 

M06 20.454 15.532 17.436 15.096 14.853 

M07 9.8154 14.521 9.8154 10.232 9.5958 

M08 29.216 40.272 29.578 21.549 21.134 

M09 26.253 40.441 26.461 20.142 19.179 

M10 30.258 40.923 31.446 22.189 21.174 

M11 28.842 37.471 29.498 21.695 20.739 

R01 6.6513 9.5675 6.6519 6.9875 6.8259 

R02 6.9125 11.885 6.9550 7.0954 6.8788 

R03 11.989 20.411 12.405 10.765 10.441 

R04 11.897 17.900 15.975 11.473 11.460 

P01 9.0247 13.283 9.4586 9.0778 8.6685 

P02 12.661 17.515 12.661 12.130 11.619 

P03 7.3502 10.851 7.3502 8.3740 7.9062 

P04 7.4143 11.254 7.4143 10.108 9.9391 

 

80 



 

 
 
 
 
5.0 MULTIWAVELET PACKETS IN 3-D COARSE MOTION RESIDUALS CODING 
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Figure 43  Standard 1-D Multiwavelet (r=2) Packet Decomoposition for Two Levels 

 

The wavelet packet transform is similar to the wavelet transform except that not only the scaling 

coefficients at each scale are decomposed, the wavelet coefficients are also decomposed; the 

decomposition follows a balanced binary decomposition tree, as shown in Figure 43 for a 1-D 

multiwavelet (r=2) decomposition for two scale levels.  As indicated in Figure 43, c0,k is the 

prefiltered 2-channel (r=2) input vector sequence that is decomposed into the scaling component 

c-1,k and the wavelet component d-1,k,  both components can be further decomposed following a 

balanced decomposition tree.  At a decomposition level J, there will be 2J packets, and the basis 

function (vector function) ψ(q)(x) in the qth packet, (q=0,1,…, 2J-1), are derivated from the scaling 

function φ and  wavelet ψ; 
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ψ(0)(x) = φ(x),  ψ(1)(x) =ψ(x) 

∑ −Ψ=Ψ
k

(n)(2n) )2((k)H~2  kx  

∑ −Ψ=Ψ +

k

(n)1)(2n )2((k)G~2  kx  

The multiwavelet packet decomposition is then given by: 
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These equations of decompositions are more complex than they appear.  Let us first examine the 

frequency content of cj-1,k and d-1,k in Figure 44.  
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The frequency function of these filters, { H~ ij(w)} and {G~ ij(w)}, are shown in Figure 43, where 

filtering of ( 11
~H , 21

~H , 11
~G , 21

~G ), is induced by the first basis function and that of ( 12
~H , 22

~H , 

12
~G , 12

~G ) by the second basis function. 

82 



 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency

Chui-Lian H11,G11,H21,and G21 Frequency Plots

H11
G11
H21
G21

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency

Chui-Lian H22,G22,H12,and G12 Frequency Plots

H22
G22
H12
G12

 

Figure 44  Frequency Responses of the Chui-Lian Multiwavelet Filters { H~ ij(w)} and {G~  ij(w)} 

 

Indeed, the )(~
11 ωH  and )(~

11 ωG  functions behave like low-pass and high-pass filters 

respectively while )(~
21 ωH , and )(~

21 ωG  behave like overlapping band-pass filters in the domain 

of the first basis function.  It is interesting to note that )(~
22 ωG  and )(~

22 ωH  behave differently 

and their frequency characteristics appear to be reversed.  For the four packets at the level 2, the 

Chui-Lian (CL) packet basis functions (ψ1
(k)(x), ψ2

(k)(x)), (k=0, 1, 2, 3), are shown in Figure 45, 

their respective frequency spectra (ψ1
(k)(ω), ψ2

(k)( ω)) are shown in Figure 46.  It shows that the 

frequency coverages of these four packets are in the increasing order as they appear naturally, in 

the Chui-Lian multiwavelet, without any switching as with wavelet packets in the single wavelet 

system. 
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Figure 45  (ψ1(k)(x), ψ2(k)(x)), (k=0,1,2,3) of Chui-Lian Multiwavelet Packets at Scale Level 2 
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Figure 46  The Frequency Spectra of the ψ(k)(ω) (k=0,1,2,3) of the Chui-Lian Multiwavelet 
 

It is speculated that (multi)wavelet packet transform would not have as much contribution at 

higher compression ratios than at low ratios because many natural images contain significantly 

more low frequency than high frequency information.  However, in the case of coarse motion 

residuals, there is as much information of interest at higher frequencies as at lower frequencies 

that leads to the motivation to explore whether complete-tree multiwavelet packet decomposition 
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can be may to improve the multiwavelet-based 3-D coarse motion residuals coding under low 

bit-rate situations. 

5.1 WAVELET PACKETS SPIHT STRUCTURE 

Since the wavelet packet decomposition decomposes the data to packets at a given scale, there is 

no longer a clear parent-children relationship which exists across scales in the SPIHT for the 

regular wavelet decomposition.  When we attempt to use SPIHT structure as the platform of 

encoding packet coefficients, the parent-children relationships need to be redefined or modified 

to suit the wavelet packet decomposition; in this case, the packets would appear to be siblings 

which different closeness in relationships.  Since all the packets subbands in a complete-tree 

decomposition are equal in size, a natural way to adapt the SPIHT structure for wavelet packets 

is to assign each parent pixel only one “child” pixel in each of the “close” packets, but each 

parent node will still retain the same number of children nodes (now cousin nodes) as in the 

regular SPIHT structure so it will not change the basic SPIHT algorithm.  The new relationships 

are shown below in Figure 47 for the case of 2-D: 

 

Figure 47  A Modified “Parent-Children” Relationship for SPIHT in Wavelet Packet 
Decomposition at Level 2 
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It is noted that since the complete-tree wavelet packet decomposition decomposes a given 

signal into equal-sized subbands, the plausibility of shuffling or re-ordering the subbands based 

on certain criterion may exist.  So in additional to the regular 3-D multiwavelet packet, we will 

also explore the effect of shuffling based on two different criteria on video compression. 

5.2 PACKET ORDERING BY FREQUENCY 

In multiwavelet packet transform, there are r basis functions in each wavelet packet (ψ(k)(x) = 

(ψ1
(k)(x), …, ψr

(k)(x)).  We will examine the frequency coverage of each packet as contributed by 

the spectra of r basis functions.  Let us consider, in particular, the Chui-Lian multiwavelet CL 

(r=2) and its four wavelet packets at scale level 2, where the low-pass and high pass filter 

matrices H(k)=[hij(k)] and G(k)=[gij(k)] are given by 

{h11(k)} = 
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Without the loss of generality, let us use the frequency responses of 11
~H  and 11

~G  filters of 

multiwavelet CL to demonstrate this phenomenon. 
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Figure 48  Frequency Coverages of G11(ω), H11(ω) and G11(2ω), H11(2ω) in the Situation of One 

Wavelet Basis Function 

 
Let us consider the first basis function alone, ψ1

(1)(x), which is equivalent to considering 

a single wavelet case, and the associated filter functions, 11
~H  and 11

~G .  Where decomposed a 

signal for two levels using wavelet packet decomposition, the first and second packets are 

generated by the low-pass filter 11
~H  in the first level decomposition followed, after down-

sampling, by 11
~H  and 11

~G  filters in the second level, respectively.  The third and fourth packets 
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are generated by the high-pass filter 11
~G  in the first level followed, after down-sampling, by the 

11
~H  and 11

~G  filters.  The first two packets would contain the frequencies determined by 

)(~
11 ωH )2(~

11 ωH  and )(~
11 ωH )2(~

11 ωG , and have the frequency orders of 1 and 2 respectively.  

The third packet contains the frequencies determined by )(~
11 ωG )2(~

11 ωH  that be in a higher 

frequency range, as shown in the bottom plot of Figure 48, than )(~
11 ωG )2(~

11 ωG  that determines 

the frequency coverage of the fourth packet; so the frequency order of the 3rd and 4th packets are 

actually 4 and 3, respectively.  But this is based on the argument of one wavelet only. 

Base on this observation, a simple method can be used to generate the frequency order for 

wavelet packets for any number of decomposition levels by the use of the ‘binary labeling 

method’: 

1. For decomposition level 1:  label the packet generated by the H filter as ‘0’ and the packet 

generated by the G filter as ‘1’. 

2. For any subsequent level, the label of each packet inherits its parent’s binary label and is 

appended by either a ‘0’ or ‘1’ depending on the type of its parent.  If the parent of this packet 

is generated by using G filter, and if this packet is generated by using H filter, then a ‘1’ is 

appended to the end of its label, otherwise a ‘0’ is appended.  Or, if the parent of this packet is 

generated by using H filter, and this packet is also generated by using H filter, then a ‘0’ is 

appended to its label, otherwise a ‘1’.   

3. Convert the binary label of any packet to its decimal equivalence which is the frequency order 

of that packet at the given decomposition level. 

This ordering process for three levels of wavelet packet decomposition of 1-D signals is 

illustrated in Figure 49.  It naturally provides a switching of frequency order as necessary. 
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Figure 49  Frequency Ordering of 1D Wavelet Packets for up to Three Levels of Decomposition 
in the Single Wavelet System 

 

Thus, for single wavelet systems, this method of determining frequency order of any 

packet can be easily translated to 2D and 3D by considering each dimension separately.  For two 

level decomposition of a 2D image, the vertical packets will each receive a ‘0’ as its vertical 

label if H filter is used in the vertical decomposition, and a ‘1’ if G filter is used; vice versa for 

the horizontal packets.   Let us use the notation “(vertical label, horizontal label)” to represent the 

frequency order of each packet, then the LL packet would have (0,0) as its label, the HH packet 

would have (1,1) as its label, and HL and LH will have (0,1) and (1,0) as their labels, 

respectively. The rule for binary labeling in either horizontal or vertical direction should be 

applied separately for each successive level of decomposition along either direction, as shown in 

Figure 50.  For 3-D wavelet packets, an extra binary label will be used to form a triplet 

representation.  Note that this frequency ordering does not require extra overhead cost in wavelet 

packet-based video compression, since both sender and receiver can determine the frequency 

order of each packet independently without the need for extra information. 
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Figure 50  Frequency Ordering of 2D Wavelet Packets for up to Two Levels of Decomposition 
in the Single Wavelet System 
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This is illustrated by the frequency response of the 2D filters for the first basis function of 

the CL multiwavelet.  Figures 51, 52 and 53 respectively show the frequency responses of the 

filters )(~)(~
1111 xy HH ωω , )(~)(~

1111 xy GG ωω , and )(~)(~
1111 xy HG ωω  with )(~)(~

1111 xy GH ωω . 

 

Figure 51  Frequency Response of H11(ωy)H11(ωx) for Chui-Lian Multiwavelet 
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Figure 52  Frequency Response of G11(ωy)G11(ωx) for Chui-Lian Multiwavelet 
 

 
Figure 53  Frequency Responses of G11(ωy)H11(ωx) and H11(ωy)G11(ωx) for Chui-Lian 

Multiwavelet 
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Now, consider the question of the LLHH and HHH packets, designated in Figure 50.  

Again, when only the first basis function is considered, the ‘binary label’ method will suggest 

that the frequency ordering of the LLHH packet and HHHH packet would be reversed both 

horizontally and vertically, resulting in HHHH packet having a lower frequency coverage than 

LLHH packet alone both dimensions, as illustrated in Figures 54 and 55, respectively.  This 

appears to be opposite to what we have analyzed based on the frequency coverage of the packet 

basis functions ψ1
(k)(ω).  The coupling between the two basis functions in each packet supplies 

high frequency content in these two packets such that no switching of frequency order is needed.  

We have examined this frequency ordering problem for other multiwavelets under consideration.  

The Cardinal Two-Balanced (Cardbal2) multiwavelet, the frequency spectra (ψ1
(k)(ω), ψ2

(k)( ω)), 

(k=0, 1, 2, 3) are shown in Figure 56, which shows that the switching of frequency ordering of 

multiwavelet packet is needed, this is true for the multiwavelet GHM also, but not true for the 

SA4 multiwavelet, the frequency spectra  (ψ1
(k)(ω), ψ2

(k)( ω)), (k=0, 1, 2, 3) are shown in Figure 

57. 
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Figure 54  Frequency Response H11(ωy)H11(2ω y)G11(ωx)G11(2ωx) of CL Multiwavelet Filters for 

LLHH Packet 
 

 
Figure 55  Frequency Response G11(ωy)G11(2ω y)G11(ωx)G11(2ωx) of CL Multiwavelet Filters for 

HHHH Packet 
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Figure 56  The Frequency Spectra of ψ(k)(ω) (k=0,1,2,3) of the Cardbal2 Multiwavelet 
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Figure 57  The Frequency Spectra of the ψ(k)(ω) (k=0,1,2,3) of the SA4 Multiwavelet 
 

5.3 ORDER BY ENERGY 

The second criteria of packet sorting by energy will allow the shuffling of packets between 

cousins or the modified parent-children relations as denoted in Figure 47.  Since the SPIHT 

algorithm tests the significance of wavelet coefficients in each tree/set in the order of traversal, 
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so if we allow packets with higher energy to be switched with packets of lower energy, it is 

possible that the use of SPIHT in coding of wavelet packet coefficients can be made more 

efficient.  We set the criterion for sorting the energy in each packet which is defined here as the 

summation of the absolute value of every coefficient, instead of its square, in that packet; i.e. the 

energy in a packet determines its distance from the root node.  In order to minimize the number 

of comparisons in sorting, only the packets in the same modified parent-children subtree/set can 

be swapped, and the coarsest packet corresponding to ψ(0)(x) or LL in the 2-D case will not be 

tested since it generally contains most of the energy in a signal or image.  There is an overhead 

cost associated with this type of sorting since the receiver can not reorganize the packets without 

any additional information from the server.  To reduce this overhead, the server may first send a 

single bit to indicate whether there is any swapping of packets occurred, and then send the 

information on change of position of each packet.  This criterion is also implemented in the 

experimental studies. 

5.4 EXPERIMENT AND RESULTS 

This experiment was designed to explore the effectiveness of multiwavelet packet on low bit-rate 

3-D video compression and whether the shuffling of packets may contribute any performance 

advantage in coding coarse motion residuals.  We compared the performance of multiwavelet 

packets, with and without shuffling; using the four medical endoscopy sequences (M08, M09, 

M10, and M11) used in the experiments reported in Chapter 4 with the same test parameters 

(two-level symmetric decomposition and a compression ratio of 1/40).  Three multiwavelets 

were used, they were Chui-Lian multiwavelet (CL), the symmetric-asymmetric multiwavelet 

SA4, and cardinal balanced multiwavelet Cardbal2.  In all the cases where multiwavelet packet 
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was used in the experiment, a complete-tree decomposition structure and its associated SPIHT 

structure which was presented earlier in this chapter were employed.   

In frequency ordering portion of the experiment, we shuffled the packets according to 

their frequency order.  For example, in the case of 2-D wavelet packet with two levels of 

decomposition, the packets LLHH and HHHH would be swapped during the encoding process 

because HHHH has a lower frequency order than LLHH.  The result is that the distance of each 

packet from the root node would be determined by its frequency order and not by the 

decomposition order.  The packets are re-shuffled back to their decomposition order during the 

decoding and reconstruction process.  In the ordering based on packet energg, shuffling occurs 

only if the order of the energy of each packet is different from its decomposition order.  Also the 

overhead cost of energy-based shuffling were ignored in this experiment.  The following tables 

show the experimental results. 

Table 4  Average PSNR of 3-D Multiwavelet Coarse Motion Residuals Coding with 3D SPIHT 
Structures (CL) 

Sequence Multiwavelet  
Multiwavelet 

Packet without 
Sorting 

Multiwavelet Packet 
with Sorting by 

Frequency Order 

Multiwavelet 
Packet with Sorting 

by Energy Sum 
M08 27.31 27.03 (N/A) 27.03 

M09 27.92 27.66 (N/A) 27.66 

M10 27.07 26.89 (N/A) 26.89 

M11 27.15 27.04 (N/A) 27.04 
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Table 5  Totalotal Residuals summed over 32 Endoscopy Video Framverage PSNR of 3-D 
Multiwavelet Coarse Motion Residuals Coding with 3D SPIHT Structures (SA4) 

Sequence Multiwavelet  
Multiwavelet 

Packet without 
Sorting  

Multiwavelet Packet 
with Sorting by 

Frequency Order 

Multiwavelet 
Packet with Sorting 

by Energy Sum 
M08 27.57 27.49 (N/A) 27.49 

M09 27.76 27.72 (N/A) 27.72 

M10 26.92 26.87 (N/A) 26.87 

M11 27.69 27.62 (N/A) 27.62 

 

Table 6  Average PSNR of 3-D Multiwavelet Coarse Motion Residuals Coding with 3D SPIHT 
Structures (Cardbal2) 

Sequence Multiwavelet  
Multiwavelet 

Packet without 
Sorting 

Multiwavelet Packet 
with Sorting by 

Frequency Order 

Multiwavelet 
Packet with Sorting 

by Energy Sum 
M08 26.93 27.21 27.21 27.21 

M09 27.75 27.94 27.94 27.94 

M10 26.91 27.09 27.09 27.09 

M11 27.74 27.91 27.91 27.91 

 

The results given in Tables 4,5 and 6 showed that the performances of Chui-Lian and 

SA4 3-D multiwavelet packets coding using SPIHT are slightly below that of the 3-D 

multiwavelet with SPIHT in these four sequences.  However, the performance of the Carbal2 

multiwavelet in wavelet packets coding actually improved on the 3-D multiwavelet by about 

0.2dB on each sequence.  A reasonable interpretation of the observation is that Cardbal2, having 

a longer filter length, has narrower frequency bands with smaller overlap between bands; this 

implies that significant coefficients are likely compactly distributed in packets at a certain 
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decomposition level thus requiring less bits to represent.  However, such performance 

improvement in wavelet packet coding ma be lost at a higher decomposition level where more 

packets may be involved in the spatial orientation trees.  This interpretation is similar to the 

observation made by Martin and Bell that there exists an incompatibility between the SPIHT and 

wavelet packets coding in their study of multiwavelet packet on image compression [4]. 

 The results given in the three tables also do not give support the desirability of shuffling 

packets.  Any shuffling, if occurred at all, did not contribute to the overall performance at the 

current set of experimental parameters (2 levels of decomposition).  It is yet to be seen whether 

the effects of shuffling packets may be observable if the number of levels of decomposition is 

increased. 

In our experimental study of 3-D multiwavelet video coding, the level of decomposition 

was limited to 2 due the small number of frames included in each video segment for reducing the 

effects of frames containing zooming, panning and rotation.   In the next experiment, we studied 

the use of 2-D multiwavelets and increased the number of decomposition levels to 3, 4 and 5 in 

the spatial domain.  We used the coarse motion residual frame with the largest total energy from 

each of the four sequences used in the last experiment, and tested the effect of 2-D multiwavelet 

packet coding when more decomposition levels are used, but still at the compression ratio of 

1/40.  Tables 7,8, and 9 show the results of this experiment.  Although these results of the 2-D 

multiwavelet coding of a single residual frame may not be directly translatable to the coding of a 

3D block of frames, they may be taken as a suggestion.  It is noted that multiwavelets with 

regular SPIHT obtained gains in PSNR as the number of level of decomposition increased, but 

the same was not true in the cases of multiwavelet packet coding.  The performances of all three 

multiwavelet packets compared favorably with multiwavelet up to the decomposition level 4, but 
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a drop was observed at decomposition level 5 for all three multiwavelet packets.  This 

performance drop fits the interpretation given earlier in the 3-D multiwavelet packets coding.  It 

was also noted in the results that packet shuffling yielded neither gain nor loss at decomposition 

level 3.  But at higher decomposition levels, it was observed that frequency sorting did not 

improve compression results at low bitrate of 0.2bpp regardless of the level of decomposition, 

but sorting by energy did improve slightly the results of multiwavelet packet, but these 

improvements did not take into account the overhead cost of having to send the sorted order of 

packets to the receiver. 
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Table 7  PSNR of 2-D Multiwavelet Coarse Motion Residuals Coding with 2D SPIHT (Chui-
Lian) at 0.2bpp 

Decomposition Level 
Source Sequence 

of Frame 
Method 

3 4 5 

Multiwavelet 25.25 26.17 26.58 

Multiwavelet 
Packet 

25.24 26.46 26.33 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M08 

Packet with 
Energy Sort 

25.25 26.47 26.35 

Multiwavelet 25.56 27.31 27.84 

Multiwavelet 
Packet 

25.63 27.59 27.26 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M09 

Packet with 
Energy Sort 

25.63 27.61 27.25 

Multiwavelet 25.31 26.25 26.86 

Multiwavelet 
Packet 

25..31 26.51 26.50 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M10 

Packet with 
Energy Sort 

25.31 26.52 26.51 

Multiwavelet 24.39 25.73 25.97 

Multiwavelet 
Packet 

24.39 25.90 25.89 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M11 

Packet with 
Energy Sort 

24.39 26.00 25.89 
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Table 8  PSNR of 2-D Multiwavelet Coarse Motion Residuals Coding with 2D SPIHT (SA4) at 
0.2bpp 

Decomposition Level 
Source Sequence 

of Frame 
Method 

3 4 5 

Multiwavelet 25.50 27.08 27.37 

Multiwavelet 
Packet 

25.63 27.08 27.09 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M08 

Packet with 
Energy Sort 

25.63 27.12 27.12 

Multiwavelet 25.98 28.00 28.30 

Multiwavelet 
Packet 

26.03 28.18 27.87 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M09 

Packet with 
Energy Sort 

26.03 28.20 27.87 

Multiwavelet 25.58 26.99 27.32 

Multiwavelet 
Packet 

25.66 27.22 27.15 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M10 

Packet with 
Energy Sort 

25.66 27.22 27.18 

Multiwavelet 24.75 26.33 26.82 

Multiwavelet 
Packet 

24.78 26.58 26.51 

Packet with 
Frequency Sort 

(N/A) (N/A) (N/A) 
M11 

Packet with 
Energy Sort 

24.78 26.60 26.49 
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Table 9  PSNR of 2-D MultiwaveletCoarse Motion Residuals Coding with 2D SPIHT 
(Cardbal2) at 0.2bpp 

Decomposition Level 
Source Sequence 

of Frame 
Method 

3 4 5 

Multiwavelet 25.30 26.83 26.91 

Multiwavelet 
Packet 

25.53 27.13 27.06 

Packet with 
Frequency Sort 

25.53 27.11 27.04 
M08 

Packet with 
Energy Sort 

25.59 27.13 27.05 

Multiwavelet 26.28 27.70 27.91 

Multiwavelet 
Packet 

26.65 28.15 28.06 

Packet with 
Frequency Sort 

26.65 28.13 28.04 
M09 

Packet with 
Energy Sort 

26.69 28.15 28.05 

Multiwavelet 25.46 26.79 27.02 

Multiwavelet 
Packet 

25.64 27.18 27.30 

Packet with 
Frequency Sort 

25.64 27.16 27.27 
M10 

Packet with 
Energy Sort 

25.66 27.20 27.32 

Multiwavelet 25.20 25.99 26.53 

Multiwavelet 
Packet 

25.26 26.67 26.65 

Packet with 
Frequency Sort 

25.26 26.66 26.62 
M11 

Packet with 
Energy Sort 

25.27 26.68 26.67 
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5.5 SUMMARY 

We have examined the results of applying 3-D multiwavelet packets and using 3-D SPIHT on 

wavelet packets in video coding.  The results of 3-D multiwavelet packets coding using 

multiwavelet Cardbal2 gained an average improvement of 0.2dB over the regular wavelet 

coding, while CL and SA4 both suffered slight loss (0.2dB for CL, and 0.06dB for SA4).  In the 

results of 2-D coarse-motion-residual compression using multiwavelet packets, all three 

multiwavelets packets gained some improvements over the regular multiwavelet coding at 

decomposition levels 3 and 4, especially Cardbal2, but their performance started to deteriorate 

beyond decomposition level 4.  Our interpretation of is that is due to narrower frequency bands 

of the Carbal2 filter so that the energy of significant coefficients are more compactly represented 

rather than disbursed over several packets.  Our experiment in 2-D wavelet packet coding 

revealed that there is a limit to the improvement by Cardbal2 when the decomposition level 

increased beyond 4.  We found no significant contribution with multiwavelet packets subband 

shuffling in the results. 
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6.0 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
 
 
 
 
In this dissertation research, we investigated the application of three-dimensional multiwavelet to 

color video compression which can simultaneously provide scalability and flexibility of 

quantization in both spatial and temporal domains.  Two major contributions are summarized in 

the following paragraphs. 

The first contribution is the development of a video coder using orthogonal 3-D 

multiwavelet and 3-D SPIHT for coding video and medical sequences.  This is approach has not 

been done before, and we have shown, by simulation, that 3-D compression using multiple 

scaling functions and multiple wavelets has better performance at low bit-rates than comparable 

single wavelet.  We have also shown, by the same simulation, that performance 3D compression 

in the luminance domain may not be directly translated to the chrominance domain as behavior 

in some cases, as their rate of distortion in their respective entropies varies differently against the 

same quantizing step.  The Geronimo-Hardin-Massopust (GHM) multiwavelet and the Chui-Lian 

(CL) multiwavelet, both having the approximation order of two, were used in the simulation in 

which video segments with 64 frames each were extracted from nine video sequences.  It was 

found that at the low bit-rate of 0.1bpp, that is, compression ratio of 1/80, the 3-D multiwavelet 

CL outperformed the 3-D single wavelet DB4 by 1dB in the luminance domain and more than 

4.5 dB in the chrominance domains; but that gain decreases as the bit-rate increases. 

The second contribution is the development of the “coarse-motion-residual” 3-D 

multiwavelet video coder based on the coder discussed above by incorporating multiwavelet 
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transform of the errors of predicted motion trajectories as an unbiased platform to evaluate the 

performance of 3-D against 2-D in wavelet-based video compression.  The performance 

measurements of 3-D vs. 2-D in the literatures are mostly based on codec specifically designed 

for each respective method.  However, the “coarse-motion-residual” model was developed by 

incorporating 2-D coding methods into a 3-D framework, which allows an “apple-to-apple” 

comparison between 2-D and 3-D wavelet-based video coding.  We utilize a key frame extracted 

from the video segment as the common reference for evaluating motion trajectory information of 

every other frame with respect to the key frame, and compute the change in intensity values 

(residuals).  The residuals are then coded using the 3-D multiwavelet coder discussed above.  A 

modified version of 3-D SPIHT was developed by taking advantage of the spatio-temporal 

relationship of the “coarse-motion-residuals”.  A key frame selection procedure was also 

developed with the goal of reducing total residuals.  Our experimental study based on 

multiwavelet CL revealed that the key frame selection procedure reduced total residuals, on the 

average, from 29.6x106 per frame to 16.8x106 per frame which is more comparable to the 

average of 13.8x106 obtained by 2-D wavelet-based coder using DB4.  Two more orthogonal 

multiwavelets, Tham’s SA4 and Selesnick’s Cardbal2, were also used in the experiment.  In spite 

of higher average residuals, the 3-D multiwavelet “coarse-motion-residuals” video coding 

outperformed the 2-D motion residuals coding in every case by 0.3dB to 4.88dB(with 

multiwavelet CL), 0.2dB to 4.69dB(with multiwavelet SA4), and 0.19dB to 5.12dB (with 

multiwavelet Cardbal2), even at the low bit-rate of 0.2bpp.  The use of the modified SPIHT 

further enhanced the advantage of 3-D “coarse-motion-residuals” video coder.  A lesser 

contribution from the simulations is that performances 3-D multiwavelets in compression can not 

be inferred from those of 2-D multiwavelets. 
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Lastly, we have explored the plausibility of using multiwavelet packets and subband 

shuffling in 3-D and 2-D in order to improve “coarse-motion-residuals” coding.  By examining 

the frequency content of the (ψ1
(k)(x), ψ2

(k)(x)), (k=0,1,2,3) of each multiwavelet under 

consideration, we found that some multiwavelets do not require packet switching in the ordering 

of frequency; this observation was taken into consideration in the experimental studies.  The 

performance improvement of 3-D multiwavelet packet over regular multiwavelet was observed 

only when balanced multiwavelet Cardbal2 was used, that has a longer filter length.  We 

interpreted it as due to its narrower frequency bands thus keeping more energy compaction of 

significant coefficients.  But this performance improvement is limited to a small number of 

decomposition levels. 

6.1 SUGGESTIONS FOR FUTURE RESEARCH 

The following problems are suggested for future research:  

1 Optimize bit allocation across color domains:  We have demonstrated in experiments that 

allocating the same number of bits per pixel for each color domain resulted in different 

PSNR values.  This suggests an optimization problem for bit allocation across the color 

domains. 

2 Develop an optimal coding strategy for multiwavelet packet in 3-D video compression:  We 

have observed in the experiments that the SPIHT coder is not well-suited to multiwavelet 

packet coding, so a new scheme should be developed for wavelet packet-based compression 

and incorporate analysis functions as part of the scheme.  

3 Building interactivity into 3-D wavelet coder:  In a true 3D environment, users may wish to 

examine certain portions of video (or medical) sequences in detail.  The 3D video coder can 
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be designed to efficiently send coefficients in regions determined by users.   Furthermore, 

separate coding of video foreground and background can improve interactivity. 
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APPENDIX 
 
 
 

RESULTS OF 0.1 BIT-PER-PIXEL VS. 0.25 BIT-PER-PIXEL 3D COMPRESSION 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 58  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Claire 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 59  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Coastguard 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 60  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Foreman 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 61  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Miss America 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 62  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Mobile 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 63  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Salesman 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 64  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Silent 

118 



 

  
Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance V: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 

 
Figure 65  CL, GHM multiwavelets, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Stefan 
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Luminance: CL vs. DB4 (0.1 bpp)     CL vs. DB4 (0.25 bpp) 

 
Luminance:  CL vs. GHM (0.1 bpp)    CL vs. GHM (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)    CL, GHM, and DB4 (0.25 bpp) 

 
Chrominance U: CL, GHM, and DB4 (0.1 bpp)          CL, GHM, and DB4 (0.25 bpp) 
Figure 66  CL, GHM, and DB4 PSNR at 0.1 bpp and 0.25 bpp for Table Tennis 
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