
  

Abstract— In this paper we proposed the implementation of 
3D Set Partitioning In Hierarchical Trees (SPIHT) algorithm to 
a multi-lead ECG signal compression. The implementation of 
3D SPIHT decorrelates three types of redundancy that 
commonly found on a multi-lead electrocardiogram (ECG) 
signal i.e. intra-beat, inter-beat, and inter-lead redundancies. 
To optimize overall compression performance we also proposed 
beat reordering and residual calculation technique. Beat 
reordering rearranges beat order in 2D ECG array based on 
the similarity between adjacent beats. This rearrangement 
reduces variances between adjacent beats so that the 2D ECG 
array contains less high frequency component. Residual 
calculation optimizes required storage usage further by 
minimizing amplitude variance of 2D ECG array. The 
experiments on selected records from St Petersburg INCART 
12-lead Arrhythmia Database show that proposed method gives 
relatively low distortion at compression rate 8 and 16. 

I. INTRODUCTION 

Electrocardiogram is a test for the electrical activity of the 
cardiac muscles of the heart. The pattern in the ECG signal 
identifies specific order of electrical activities on every 
heartbeat; therefore ECG is very important for cardiac 
monitoring. Some of cardiac disorders can be visually 
identified from the pattern on the ECG signal, particularly on 
improper electric conduction of damaged cardiac muscles. A 
qualified professional can determine the location of the 
damaged cardiac region from the abnormal patterns in ECG 
signal. Each lead of ECG signal is acquired from an electrode 
at specific location on the body. Since every ECG lead gives 
specific point of view of the heart, different ECG leads are 
required to cover different areas of the heart. Current 
standard of ECG equipment consists of 12-leads 
configuration. 

24 hours recording of 12-leads ECG with 256 Hz 
sampling rate, 11bit/sample data resolution requires about 
396 Mbytes of storage. Recent advances in sensor technology 
allow ECG recorded at higher sampling rate and data 
resolution. As the sampling rate, data resolution, and 
observation time increase, the amount of storage requirement 
also increases. The amount of transmission time and 
bandwidth also increase when the ECG signal needs to be 
transmitted. Therefore, ECG signal compression becomes an 
important issue in biomedical engineering and signal 
processing research area. 
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The Set Partitioning in Hierarchical Trees (SPIHT) is a 
generalization of Embedded Zerotrees Wavelet transform 
(EZW) proposed by Said and Pearlman [1]. SPIHT uses 
partitioning trees to keep significant and insignificant wavelet 
coefficients. The partitioning step provides very efficient 
significance map encoding such that arithmetic coding of this 
map provides very little gain. SPIHT algorithm sends the 
binary representation the integer value of the wavelet 
coefficients. Significance map encoding is followed by 
refinement step, which refines the representation of the 
significant coefficients.  

Several ECG signal compression methods based on 
SPIHT and its modification has been presented recently, Lu 
et al. who proposed 1D SPIHT coding for single ECG signal 
compression [3]. Pooyan et al. divided single lead ECG 
signal into non-overlapped frames and applied 1D SPIHT 
coding on each frame of ECG signal [4]. Goudarzi et al. 
proposed SPIHT coding on multiwavelet transformed 2D 
ECG array of single lead ECG signal [5]. Rezazadeh et al. 
applied similar technique to Goudarzi to construct 2D ECG 
array with the implementation of sub-band energy 
compression before SPIHT coding [6]. Tai et al. also used 
similar technique to construct 2D ECG array of single lead 
ECG Signal and proposed modified SPIHT coding that 
divided wavelet transformed image into three partitions [7]. 
Sharifahmadian presented enhanced SPIHT coding that limits 
redundant evaluation in the sorting pass of SPIHT for single 
and two leads ECG signal compression [2]. Shahraeian and 
Fatemizadeh applied vector quantization on residual image 
obtained from SPIHT coding [8]. Nayebi et al. proposed run 
length coding on SPIHT. Nayebi used similar 2D ECG array 
to Goudarzi, as an input for SPIHT coding [9]. Wang et al. 
applied lifting wavelet transform and adopted different 
threshold value for high frequency subband in SPIHT coding 
[10]. Sharifahmadian [2] used the enhanced SPIHT coding 
that limits redundant evaluation in the sorting pass of SPIHT. 
Among all described methods, only Sharifahmadian who 
proposed SPIHT-based compression method for multi-lead 
ECG signal.  

In this paper we proposed a wavelet-based 12 leads ECG 
signal compression method using 3D SPIHT optimized with 
beat reordering and residual calculation. Unlike the previous 
SPIHT based methods that mostly worked on single or two 
leads ECG signal, we compressed 8 leads from multi-lead 
ECG signal. 3D SPIHT used to reduce the intra-beat, inter-
beat, and inter-lead redundancies on multi-lead ECG signal. 
To apply this coding algorithm, a multi-lead ECG signal 
needs to be represented as three-dimensional data. First, each 
lead of multi-lead ECG signal is converted into ‘ECG image’ 
or 2D ECG array. Each 2D ECG array then stacked into to 
3D ECG array that represents three-
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Figure 1.  Schematic diagram of the proposed method 

dimensional version of multi-lead ECG signal. Beat 
reordering applied to reduce the variance among adjacent 
beats by rearranging the order of each beat cycle in 2D ECG 
array based on their similarities. The arrangement will 
improve overall compression efficiency since wavelet based 
method works very efficient on signal with minimum 
variance [11]. Residual calculation optimizes required 
storage usage further by minimizing amplitude variance of 
2D ECG array. 

This paper is organized as follows: beat detection and 
normalization, 2D ECG array construction, beat reordering, 
residual calculation, short introduction to the SPIHT coding, 
and 3D SPIHT are presented in section II. The evaluation of 
the proposed method using the selected records from St 
Petersburg INCART 12-lead Arrhythmia Database are 
explained in section III. Finally, the conclusion will be given 
in section IV. 

II. METHODOLOGY 

Fig 1. shows the schematic diagram of the proposed 
method. The first step through the fifth step of the 
compression stage applied independently to each lead of 
multi-lead ECG signal. First, QRS complexes from each 
heartbeat are detected. The duration of each beat cycle then 
calculated from the RR interval of detected QRS complexes. 
Next, we apply the modification of period and amplitude 
normalization (PAN) method to normalize each heartbeat 
duration [12]. After all heartbeat durations are equal, several 
heartbeat cycles reorganized into 2D array form. To reduce 
the variation among adjacent beats, we apply beat reordering 
step. Residual calculation will optimizes required storage 
further by minimizing amplitude variance of 2D ECG array. 
2D Wavelet transform then applied to the output of residual 
calculation. This transformation step will decorrelate the 
residual data. The result of transformation from each step 
then arranged as 3D data structure. The final step is 3D 
SPIHT coding which employs wavelet coefficients from 
previous step as an input. Detail explanation of each step will 
be covered in the next part of this paper. 

A. Beat Detection and Normalization 
The first step of the compression stage is beat detection. 

In this study we applied the QRS detection algorithm from 
Pan and Tompkins [13]. There are six stages in this algorithm 
i.e. band pass filter, high pass filter, derivative, squaring, 
integration and search procedure. Band pass filter reduces the 
noises caused by power line interference, baseline wander, 
and T-wave interference. The slope information of each beat 
cycle candidate then computed using derivative calculation. 
The squaring stage converts signal amplitudes into positive 
value. To obtain shape information of each beat cycle 
candidate, the output from previous stage is used as an input 
to moving integration process. The last stage of this 
algorithm is searching for QRS complex locations using 
adaptive threshold approach. 

To construct 2D ECG array, all heartbeat duration need to 
be normalized into a constant value. For this purpose, we 
used the modification of PAN method to normalize each 
heartbeat duration without amplitude normalization step since 
this step does not give a substantial contribution to optimize 
overall compression stage. Since all heartbeat duration should 

be restored to the original duration, we saved this information 
for ECG signal reconstruction purpose. 

B. 2D ECG Array Construction 
An optimal ECG signal compression needs to decorrelate 

both intra-beat and inter-beat correlations to achieve high 
compression rate at low distortion. Those correlations can be 
obtained by arranging several heartbeat cycles (128 in this 
study) into two-dimensional form or 2D ECG array. The 
intra-beat correlation can be seen on each column, while the 
inter-beat correlation can be shown on each row of 2D ECG 
array. Instead of choosing one cardiac cycle of ECG signal 
(P-Q-R-S-T), we use two adjacent R wave peaks as the 
beginning and end of each cycle. Each cycle consists of 
second half of R wave signal, S, T, P, Q, and first half of next 
R wave signal. 128 ECG cycles arranged into 2D ECG array 
so that each row of the array represents one ECG cycle. Fig. 
2 shows 2D and 3D view of 2D ECG array. Since the input 
signal could be longer than 128 heartbeats, there will be more 
than one 2D ECG array on each lead of multi-lead ECG 
signal.  

C. Beat Reordering 
The ECG signal has pseudo-periodic characteristic, but 

there are also probability that the certain heartbeats has very 
different shape than others. Beat reordering will increase the 
regularity and predictability of the signal by rearranging the 
order of each cycle in 2D ECG array based on their 
similarities. In this research, beat reordering implemented in 
two phases: 

1. Cluster each row of 2D ECG array using Fuzzy C-
Means Clustering. 

2. Reorder row position on each cluster based on their 
distance to the centroid. The distance measure used 
in this research is Euclidean distance. 

Similar heartbeat cycles will be grouped on the clustering 
step so that each cluster contains similar heartbeats only. 
Since reordering step rearranges the location of each 
heartbeat based on their similarities, the variation among 
adjacent beat cycles will be minimum. As a result, the 
rearrangement adds a regularity and predictability to the 2D 
ECG array. The position of each cluster on the 2D ECG array 
does not affect beat reordering efficiency since the frequency 
distribution of the array is only affected by the order of 
heartbeats inside each cluster. Therefore, it is not necessary to 
sort the position of each cluster on the 2D ECG array. The 
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Figure 3.  3D (left) and 2D (right) view of 2D ECG matrix  

after beat reordering applied 

 
Figure 4.  The illustration of residual calculation step 

 

 
Figure 2.  3D (left) and 2D (right) view of 2D ECG matrix 

position of each heartbeat cycle will be restored in the 
decoding stage, so that this information should be saved. 

Fig. 3 shows a 2D ECG matrix after beat reordering 
applied. Light colored pixels on 2D view denote the samples 
with high amplitude such as the peak of P, R, and T wave, 
while dark colored pixels denote the samples with low 
amplitude such as Q and S wave. As can be seen on the 
figure, beat-reordered 2D ECG array is smoother than those 
on Fig. 2. 2D view of 2D ECG matrix on Fig. 3 shows that 
the positions of the peaks are already grouped. Beat 
reordering step reduces the variances among the adjacent 
heartbeats. Wavelet-based data compression method such as 
SPIHT works very efficient on low variance data [11]. 

D. Residual Calculation 
The main objective of residual calculation is to reduce the 

amplitude variation of the ordered 2D ECG array. The 
centroid of a cluster is the average point in multi-dimensional 
defined by the data dimension. The differences between each 
data inside a cluster and their centroids will be smaller than 
the original data. In residual calculation step, each row of 2D 
ECG array subtracted from its centroid. Since we need the 
centroid to reconstruct the original data, we should keep the 
centroid information in memory for the decompression stage. 
In this study, we proposed wavelet approach to minimize 
required storage for the centroid. Each centroid is 
decomposed using wavelet transform and afterwards 
reconstructed using 20 most significant coefficients only. 
Instead of saving 128 data samples for centroid vector, we 
only need to save 20 wavelet coefficients to model the 
centroid. This approach contributes significant required 
storage reduction for saving centroid vector.  

Fig. 4 shows the illustration of residual calculation step. 
First, C1, C2, …, Cn which denotes the centroid vector of 
cluster 1, 2, …, n decomposed (up to 4 levels) using discrete 
wavelet transform (DWT) into W1, W2, …, Wn. Inverse 
discrete wavelet transform (IDWT) then applied to the 20 
most significant coefficients. Inverse transform reconstructs 
each centroid vector as M1, M2, …, Mn. Residual 2D array 
obtained from the subtraction of each beat cycle on each 
cluster from their reconstructed centroid vector i.e. M1, M2, 
…, Mn. Reversed step of residual calculation applied to the 
decompression stage i.e. substitute the subtraction with the 
addition. The process of residual calculation is lossless since 
there is no information loss during the process. 

E. SPIHT Overview 
Set partitioning in hierarchical trees is one of the “state of 

the art” wavelet-based coding techniques, which orders the 
transformed coefficients using a set-partitioning algorithm 
based on the sub-band pyramid. The information required to 
reconstruct signal is very compact since SPIHT sends only 
the most important ordered coefficients information in each 
iteration. SPIHT is also one of the codecs that provides user-
selectable bitrate and progressive transmission of encoded bit 
stream. Encoding process can be terminated at any point, 
allowing a bitrate or distortion parameter to be met exactly. 
Embedded coding is comparable to binary finite precision 
representation of a real number. A string of binary digits can 
represent any real number. For each digit added to the right 
of binary digits, the precision of the real number becomes 
higher. Encoding can stop at any time and provide the best 
representation of the real number achievable within the 
framework of the binary digit representation. SPIHT encoder 
also can be terminated at any time and provide the best 
representation of the signal achievable within the framework 
[1]. 

SPIHT coding adopts a hierarchical quad-tree data 
structure on a wavelet-transformed signal. The energy of a 
wavelet-transformed signal is centered on the low frequency 
coefficients. Those coefficients are hierarchical ordered and 
have a parent-child relationship through subbands. SPIHT 
utilizes this relationship to save many bits from representing 
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Figure 6.  The illustration of 3D residual array construction 

 
Figure 5.  Spatial Orientation Tree of 3D SPIHT 

 

insignificant coefficients. Brief SPIHT algorithm described 
as follows: 

1. Initialization: Set the list of significant points (LSP) 
as empty. Set the roots of similarity trees in the list of 
insignificant points (LIP) and the list of the in- 
significant sets (LIS). Set the threshold T0 = 2n with n 
= ⎣log2(|c(i,j)|)⎦, where c(i,j) denotes the coefficient 
at position (i,j). 

2. Sorting pass in LIP: Each coefficient in the LIP is 
checked and the significant coefficients are moved to 
the LSP. The sign bits of the significant coefficients 
are encoded. 

3. Sorting pass in LIS: If an entry in the LIS is 
significant, a one is sent and then its two offspring 
are checked like an entry in the LIP. If an entry in the 
LIS is insignificant, a zero is sent. 

4. Refinement pass: Each old entry of LSP is checked. 
If it is significant under current threshold, a one is 
sent and its magnitude reduced by the current 
threshold. If it is insignificant, a zero is sent. 

F. 3D SPIHT 
There have been improvements in recent imaging 

procedures, starting with the X-rays; a whole host of imaging 
procedures has been developed. CT, MRI/MRA, ultrasound, 
angiography and nuclear medicine are the most popular 
examples. In the past, almost all images were represented in 
2D such as X-rays, CT slices or ultrasounds. There has been 
shift to the three dimensional reproduction of human organs. 
To deal with 3 dimensional data, standard SPIHT algorithm, 
which works only on 2 dimensional data, should be extended 
to 3D SPIHT. The main principle of standard SPIHT 
algorithm can be easily modified into 3 dimension version, 
the main difference is on the spatial orientation tree concept. 
On standard SPIHT algorithm each node of wavelet 
coefficient has 4 offspring, while on 3D SPIHT each node 
has 8 offspring. Fig. 5 shows the concept of 3 dimensional 
spatial orientation trees. 

In this study, 3 dimensional form of multi-lead ECG 
signal constructed by combining multiple 2D residual arrays 
from each lead into 3D residual array. Each axis of this 
volumetric structure defines the samples, heartbeat cycles, 
and ECG leads, respectively. The result of 3D wavelet 
transform of 3D residual array then used as input to 3D 
SPIHT coding step. 3D SPIHT decorrelates intra-beat, inter-
beat, and inter-lead redundancies. Fig. 6 shows the 
illustration of 3D residual array construction step. 

III. EXPERIMENTAL RESULT AND DISCUSSION 

To measure the performance of the proposed method, 16 
records from St. Petersburg INCART 12-lead arrhythmia 
database was chosen as input dataset i.e. record I01, I08, I09, 
I12, I13, I14, I18, I19, I22, I27, I33, I34, I36, I39, I42, and 
I43 [14]. This database consists of 75 annotated recordings 
extracted from 32 Holter records. Each record is 30 minutes 
long and contains 12 standard leads, each sampled at 257 Hz. 
The original records were collected from patients undergoing 
tests for coronary artery disease (17 men and 15 women, 
aged 18-80; mean age: 58). In our experiment we used the 

first 3 minutes of each record in the dataset. Since lead III, 
aVR, aVF, and aVR could be obtained from lead I and II, we 
only used 8 lead in our experiments. 

Each record in the dataset compressed using the proposed 
method at 4, 8, 12, 16, 20, and 24 compression rates. The 
bitstream of the compression stage then used as an input for 
the decompression stage. To measure the quality of 
reconstructed multi-lead ECG signal, we used mean of PRD 
(percentage of root mean square difference): 

 
PRD =

x( j)− x̂( j)[ ]2
j=1

n

∑

x( j)2
j=1

m

∑

 (1) 

 Mean PRD =
1
m

PRDleadi
i=1

m

∑  (2) 

TABLE I.  PRD AND CORRESPONDING QUALITY CLASS [15] 

PRD Reconstructed Signal Quality 

0 ~ 2% 
2 ~ 9% 
> 9% 

“Very good” quality 
“Very good” or “good” quality 
Not possible to determine the quality group 

 

Although PRD does not exactly correspond to the result 
of a clinical subjective test, it is easy to calculate and 
compare, so is widely used in the ECG data compression 
literature. Table I shows PRD value and corresponding 
quality class [15]. 
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The experiment conducted on three different scenarios i.e. 
1:N, neither beat reordering nor residual calculation step 
applied; 2:O only beat reordering step applied; 3:OR, beat 
reordering and residual calculation step applied. 

A.  The Effect of Beat Reordering and Residual Calculation 
Table II shows the mean of PRD of all records 

compressed using three different scenarios, i.e. 1:N, 2:O, and 
3:OR. As can be seen on the table, the combination of beat 
reordering and residual calculation step minimizes the 
distortion of reconstructed signal on all compression rates. 
But the performance improvements from the implementation 
of residual calculation step are less significant compared to 
the beat reordering step. Overall, beat reordering and residual 
calculation steps decreases the mean of PRD significantly i.e. 
from 2.12 to 1.3 or 38.8%. According to the reconstructed 
signal quality class as shown on Table II, all experiments 
show “good” or “very good” quality. 

Fig. 7 shows plot of the first 5 seconds lead II of the 
original signal (record I12) and its reconstructed signal at 8, 
16, and 24 compression rates using the 3:OR scenario. To 
help the visualization of the distortion of reconstructed signal 
compared to the original one, Fig. 8 shows plot of the 
residual signal. According to the Fig 7, the reconstructed 
signal retains the characteristics of the original signal at 8 and 
16 compression rates. Plot of the reconstructed signal almost 
indistinguishable from the original signal. The characteristics 
of original signal starts to distorted at compression rate = 24, 
clearly visible on 110th, 130th, 270th, 540th, and 1270th 
samples. The residual signal of reconstructed signal at 
compression rate = 8 almost similar to a straight line. The 
perfect reconstructed signal will demonstrate perfect straight-
line signal. Start from compression rate = 16, the distortion of 
reconstructed signal became more visible. The effect of beat 
reordering and residual calculation were more significant as 
the compression rate higher. 

TABLE II.  MEAN PRD OF THREE DIFFERENT SCENARIOS 

Scenario 
Compression Rate 

Mean 
4 8 12 16 20 24 

1:N 1.03 1.40 1.86 2.55 2.76 3.10 2.12 
2:O 0.79 0.96 1.15 1.48 1.79 1.86 1.34 

3:OR 0.82 1.05 1.14 1.43 1.61 1.77 1.30 
 

B. Per Lead Evaluation 
To analyze the quality of each lead of the reconstructed 

ECG signal, we compressed single record in the dataset i.e. 
I01 at two different compression rates i.e. 8 and 16 using 1:N 
and 3:OR scenarios. Table III shows the PRD of each lead on 
each scenario at two different compression rates. The effect 
of beat reordering and residual calculation is not the same to 
all leads. For example, on lead I those optimization steps 
reduce the distortion by 27% and 9.5% at CR = 8 and 16, 
respectively. While on lead II, the distortion increased by 
19.7% at CR = 8 after those optimization steps applied. But, 
at CR = 16 the distortion decreased by 21.4%. As can be seen 
on the table, in scenario 1:N the mean PRD at 8 and 16 
compression rate are 2.51 and 7.87, respectively. After beat 
reordering and residual calculation applied, the mean PRD 
reduced to 2.24 and 6.02. Overall, the beat reordering and 

residual calculation steps improved the compression 
performance of proposed method. 

 

 
Original 

 
CR = 8 

 
CR = 16 

 
CR = 24 

Figure 7.  Plot of original and reconstructed of lead II record I12 
at three different compression rates 

 
CR = 8 

 
CR = 16 

 
CR = 24 

Figure 8.  Plot of residual signal of lead II record I12 
at three different compression rates 

C. Performance Comparison with Other Methods 
It would be unfair to compare the compression 

performance of various methods when each experiment is 
conducted under different condition such as different ECG 
database, different lead number, or different input records. 
Table IV shows performance comparison of various multi-
lead ECG compression methods using different approaches 
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such as vector quantization [16], DCT [17][18],  template 
based, Huffman, ADPCM [19], MPEG4-ALS [20], JPEG 
2000 [21], or simultaneous matching pursuit [22]. According 
to Table IV, only the experiment by Martini [21] that has 
similar setup with ours. Therefore, we could only compare 
the proposed method with Martini [21]. Compared to Martini, 
the proposed method gives less distortion at higher 
compression rate. The PRD of the proposed method At CR = 
14 is 4.58 versus ~6.60 at CR = 13.5. 

TABLE III.  PRD OF EACH LEAD OF I01 RECORD 

         CR 

 Lead 

Scenario 1:N Scenario 3:OR 

8 16 8 16 

I 4.56 10.14 3.30 9.17 
II 1.27 4.58 1.52 3.60 

V1 3.33 6.03 3.79 5.89 
V2 3.11 11.59 2.65 8.33 
V3 1.96 10.56 1.93 6.60 
V4 2.56 5.59 1.74 5.69 
V5 1.74 9.42 1.63 4.30 
V6 1.54 5.06 1.39 4.60 

Mean 2.51 7.87 2.24 6.02 
 

TABLE IV.  PRD AT MAXIMUM COMPRESSION RATE OF VARIOUS 
MULTI-LEAD ECG COMPRESSION METHODS 

Author Database 
Lead 
num 

Max 
CR 

PRD 

Miaou [16] 
Prieto [17] 
Alesanco [19] 
Sharifahmadian [2] 
Sgouros [20] 
 
Lukin [18] 
Martini [21] 
Qin Tan [22] 
Proposed 

MIT-BIH Arrhythmia 
CSE Multi-lead db 
MIT-BIH Arrhythmia 
MIT-BIH Arrhythmia 
MIT-BIH PTB 
Diagnostic db 
XAI Medica 
INCART Arrhythmia* 
INCART Arrhythmia** 
INCART Arrhythmia 

2 
8 
2 
2 
8 
 

8 
8 
6 
8 

8.6 
14 

46.8 
24 

11.5 
 

26 
13.5 
6.5 
14 

24.5 
- 

6.60 
6.47 
4.00 

 
5.00 

~6.60 
<5.00 
4.58 

Note: *only record I01 tested, **only V1..V6 used as input 

IV. CONCLUSION 

In this paper we proposed a multi-lead ECG signal 
compression method based on three-dimensional wavelet 
transform which employs 3D SPIHT coding optimized with 
the beat reordering and residual calculation techniques. The 
performance of the proposed method was tested on the 
dataset from St Petersburg INCART 12-lead Arrhythmia 
database. The experimental result shows that the 
reconstructed signal demonstrates the smallest distortion at 8 
and 16 compression rates. At compression rate = 24, the 
distortion became more visible, but still acceptable. Beat 
reordering and residual techniques minimize the error of 
reconstructed signal significantly, and became more effective 
at higher compression rates. Further improvement would be 
the implementation of adaptive wavelet packet 
decomposition approach on 3D SPIHT algorithm to get 
optimal decomposition for specific type of input signal. 
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