39,383 research outputs found

    Fuzzy-Logic Based Call Admission Control in 5G Cloud Radio Access Networks with Pre-emption

    Get PDF
    YesFifth generation (5G) cellular networks will be comprised of millions of connected devices like wearable devices, Androids, iPhones, tablets and the Internet of Things (IoT) with a plethora of applications generating requests to the network. The 5G cellular networks need to cope with such sky-rocketing tra c requests from these devices to avoid network congestion. As such, cloud radio access networks (C-RAN) has been considered as a paradigm shift for 5G in which requests from mobile devices are processed in the cloud with shared baseband processing. Despite call admission control (CAC) being one of radio resource management techniques to avoid the network congestion, it has recently been overlooked by the community. The CAC technique in 5G C-RAN has a direct impact on the quality of service (QoS) for individual connections and overall system e ciency. In this paper, a novel Fuzzy-Logic based CAC scheme with pre-emption in C-RAN is proposed. In this scheme, cloud bursting technique is proposed to be used during congestion, where some delay tolerant low-priority connections are pre-empted and outsourced to a public cloud with a penalty charge. Simulation results show that the proposed scheme has low blocking probability below 5%, high throughput, low energy consumption and up to 95% of return on revenue

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    A DTN routing scheme for quasi-deterministic networks with application to LEO satellites topology

    Get PDF
    We propose a novel DTN routing algorithm, called DQN, specifically designed for quasi-deterministic networks with an application to satellite constellations. We demonstrate that our proposal efficiently forwards the information over a satellite network derived from the Orbcomm topology while keeping a low replication overhead. We compare our algorithm against other well-known DTN routing schemes and show that we obtain the lowest replication ratio without the knowledge of the topology and with a delivery ratio of the same order of magnitude than a reference theoretical optimal routing

    Predictable Disruption Tolerant Networks and Delivery Guarantees

    Full text link
    This article studies disruption tolerant networks (DTNs) where each node knows the probabilistic distribution of contacts with other nodes. It proposes a framework that allows one to formalize the behaviour of such a network. It generalizes extreme cases that have been studied before where (a) either nodes only know their contact frequency with each other or (b) they have a perfect knowledge of who meets who and when. This paper then gives an example of how this framework can be used; it shows how one can find a packet forwarding algorithm optimized to meet the 'delay/bandwidth consumption' trade-off: packets are duplicated so as to (statistically) guarantee a given delay or delivery probability, but not too much so as to reduce the bandwidth, energy, and memory consumption.Comment: 9 page
    corecore