100 research outputs found

    Analysis of a predator-prey model with Lévy jumps

    Get PDF

    Ergodicity breaking and lack of a typical waiting time in area-restricted search of avian predators

    Full text link
    Movement tracks of wild animals frequently fit models of anomalous rather than simple diffusion, mostly reported as ergodic superdiffusive motion combining area-restricted search within a local patch and larger-scale commuting between patches, as highlighted by the L\'evy walk paradigm. Since L\'evy walks are scale invariant, superdiffusive motion is also expected within patches, yet investigation of such local movements has been precluded by the lack of accurate high-resolution data at this scale. Here, using rich high-resolution movement datasets (> ⁣7×107>\! 7 \times 10^7 localizations) from 70 individuals and continuous-time random walk modeling, we found subdiffusive behavior and ergodicity breaking in the localized movement of three species of avian predators. Small-scale, within-patch movement was qualitatively different, not inferrable and separated from large-scale inter-patch movement via a clear phase transition. Local search is characterized by long power-law-distributed waiting times with diverging mean, giving rise to ergodicity breaking in the form of considerable variability uniquely observed at this scale. This implies that wild animal movement is scale specific rather than scale free, with no typical waiting time at the local scale. Placing these findings in the context of the static-ambush to mobile-cruise foraging continuum, we verify predictions based on the hunting behavior of the study species and the constraints imposed by their prey.Comment: 27 pages, 8 figure

    Analysis of a stochastic delay competition system driven by Lévy noise under regime switching

    Get PDF
    This paper is concerned with a stochastic delay competition system driven by Lévy noise under regime switching. Both the existence and uniqueness of the global positive solution are examined. By comparison theorem, sufficient conditions for extinction and non-persistence in the mean are obtained. Some discussions are made to demonstrate that the different environment factors have significant impacts on extinction. Furthermore, we show that the global positive solution is stochastically ultimate boundedness under some conditions, and an important asymptotic property of system is given. In the end, numerical simulations are carried out to illustrate our main results

    First passage time moments of asymmetric L\'evy flights

    Get PDF
    We investigate the first-passage dynamics of symmetric and asymmetric L\'evy flights in a semi-infinite and bounded intervals. By solving the space-fractional diffusion equation, we analyse the fractional-order moments of the first-passage time probability density function for different values of the index of stability and the skewness parameter. A comparison with results using the Langevin approach to L\'evy flights is presented. For the semi-infinite domain, in certain special cases analytic results are derived explicitly, and in bounded intervals a general analytical expression for the mean first-passage time of L\'evy flights with arbitrary skewness is presented. These results are complemented with extensive numerical analyses.Comment: 47 pages, 13 figures, IOP LaTe

    Slow manifolds for stochastic koper models with stable Lévy noises

    Get PDF
    The Koper model is a vector field in which the differential equations describe the electrochemical oscillations appearing in diffusion processes. This work focuses on the understanding of the slow dynamics of a stochastic Koper model perturbed by stable Lévy noise. We establish the slow manifold for a stochastic Koper model with stable Lévy noise and verify exponential tracking properties. We also present two practical examples to demonstrate the analytical results with numerical simulations

    Intermittent search strategies

    Full text link
    This review examines intermittent target search strategies, which combine phases of slow motion, allowing the searcher to detect the target, and phases of fast motion during which targets cannot be detected. We first show that intermittent search strategies are actually widely observed at various scales. At the macroscopic scale, this is for example the case of animals looking for food ; at the microscopic scale, intermittent transport patterns are involved in reaction pathway of DNA binding proteins as well as in intracellular transport. Second, we introduce generic stochastic models, which show that intermittent strategies are efficient strategies, which enable to minimize the search time. This suggests that the intrinsic efficiency of intermittent search strategies could justify their frequent observation in nature. Last, beyond these modeling aspects, we propose that intermittent strategies could be used also in a broader context to design and accelerate search processes.Comment: 72 pages, review articl

    Biological control of the chestnut gall wasp with \emph{T. sinensis}: a mathematical model

    Full text link
    The Asian chestnut gall wasp \emph{Dryocosmus kuriphilus}, native of China, has become a pest when it appeared in Japan, Korea, and the United States. In Europe it was first found in Italy, in 2002. In 1982 the host-specific parasitoid \emph{Torymus sinensis} was introduced in Japan, in an attempt to achieve a biological control of the pest. After an apparent initial success, the two species seem to have locked in predator-prey cycles of decadal length. We have developed a spatially explicit mathematical model that describes the seasonal time evolution of the adult insect populations, and the competition for finding egg deposition sites. In a spatially homogeneous situation the model reduces to an iterated map for the egg density of the two species. While the map would suggest, for realistic parameters, that both species should become locally extinct (somewhat corroborating the hypothesis of biological control), the full model, for the same parameters, shows that the introduction of \emph{T. sinensis} sparks a traveling wave of the parasitoid population that destroys the pest on its passage. Depending on the value of the diffusion coefficients of the two species, the pest can later be able to re-colonize the empty area left behind the wave. When this occurs the two populations do not seem to attain a state of spatial homogeneity, but produce an ever-changing pattern of traveling waves

    Statistical-thermodynamical foundations of anomalous diffusion

    Full text link
    It is shown that Tsallis' generalized statistics provides a natural frame for the statistical-thermodynamical description of anomalous diffusion. Within this generalized theory, a maximum-entropy formalism makes it possible to derive a mathematical formulation for the mechanisms that underly Levy-like superdiffusion, and for solving the nonlinear Fokker-Planck equation.Comment: 13 pages, 8 figures; to appear in special issue of Braz. J. Phys. as invited revie
    corecore