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Abstract: The Koper model is a vector field in which the differential equations describe the electro-
chemical oscillations appearing in diffusion processes. This work focuses on the understanding of
the slow dynamics of a stochastic Koper model perturbed by stable Lévy noise. We establish the
slow manifold for a stochastic Koper model with stable Lévy noise and verify exponential track-
ing properties. We also present two practical examples to demonstrate the analytical results with
numerical simulations.
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1. Introduction

The Koper model [1] is an idealized model of the chemical reaction described in [2].
Invariant manifolds are useful in investigating the dynamical behavior of the multiscale
systems [3,4]. Invariant manifolds for investigating the dynamical behavior of deterministic
systems without being influenced by stochastic forces are discussed in [5–7], while invariant
manifolds for deterministic systems influenced by stochastic forces are constructed in [8–10].
An invariant manifold for a fast-slow stochastic system in which fast mode is indicated by
the slow mode tends to slow the manifold when the scale parameter goes to zero. Moreover,
the slow manifold converges to a critical manifold as the scale parameter approaches zero.

A slow manifold for a stochastic system driven by Brownian motion is demonstrated
in [11–13], and its numerical simulations are presented in [14,15]. Lévy motions arise from
the models for fluctuations, and they have independent, stationary increments and discon-
tinuous paths. For example, Lévy processes affect the evolution of the state variables in
the turbulent flow of fluids [16]. Some models about stochastic systems processed by Lévy
noise are explained in [17–19]. The slow manifolds under Lévy noise are constructed in [20].
The existence of a slow manifold for nonlocal fast-slow stochastic evolutionary equations
is proved in [21,22]. An invariant manifold of variable stability in the Koper model is
established in [2]. It continues to be an active topic on the characterization of a stochastic
Koper model driven by the Lévy process for both theoretical reasons and applications.

The goal of this article is to construct a three-dimensional stochastic Koper model in
Euclidean space R3 and establish the existence of a slow manifold for a stochastic Koper
model processed by α-stable Lévy noise with α ∈ (1, 2). Namely, we consider the stochastic
Koper system in the following version: ẋ = 1

ε [ky− x3 + 3x− λ(z)] + σε−
1
α L̇α

t ,
ẏ = x− 2y + z,
ż = ε̂(y− z),

(1)
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where k and λ(z) are the main bifurcation parameters. Here, ε̂ = 1, but ε represents a small
parameter with the property 0 < ε� 1, and it indicates the ratio of two times scales such
that stochastic fast-slow system (1) has one fast variable x, and two slow variables y and z.
The dot stands for the differentiation with respect to time t. The noise Lα

t is a two-sided
symmetric α-stable Lévy process taking real values, with the stability index α ∈ (1, 2) and
the intensity σ > 0; see the references [6,23].

We start from a random transformation such that a solution of a stochastic Koper
model (1) can be expressed as a transformed solution of some random system. The estab-
lishment of a slow manifold for a defined random system is proved by the utilization of the
Lyapunov–Perron method [9,24].

The article is organized as follows: In Section 2, some concepts about random dynami-
cal systems, and stochastic differential equations processed by Lévy motion are discussed.
In Section 3, the stability of the stochastic Koper system (1) is proved and a random trans-
formation is defined, which converts stochastic Koper system (1) into a random system. In
Section 4, a short review about random invariant manifolds and the existence of an expo-
nential tracking slow manifold for random systems is provided. In Section 5, we present
numerical results using two examples from electrochemical oscillations to corroborate
our analytical results. Finally, Section 6 summarizes our findings as well as directions for
future study.

2. Preliminaries

In this section, some concepts about the random dynamical system are given.

Definition 1. Let (Ω,F ,P) be a probability space and θ = {θt}t∈R be a flow on Ω satisfying the
conditions

• θ0 = IdΩ;
• θt1 θt2 = θt1+t2 , where t1, t2 ∈ R;

and the mapping θ : R×Ω → Ω can be defined by (t, ω) 7→ θtω, which is B(R) ⊗ F − F
measurable. Here, we consider that the probability measure P is invariant with respect to the flow
{θt}t∈R, i.e., θtP = P for all t ∈ R. Then, Θ = (Ω,F ,P, θ) is said to be a metric dynamical
system [20].

Throughtout this article, we use a scalar Lévy process. Take Lα
t , α ∈ (1, 2) as a

symmetric two-sided α-stable Lévy process with values in R. Consider a canonical sample
space for it. Let Ω = D(R,R) be the space of càdlàg functions having zero value at
t = 0, i.e.,

D(R,R) =
{

ω : for ∀ t ∈ R, lim
s↑t

ω(s) = ω(t−), lim
s↓t

ω(s) = ω(t) exist and ω(0) = 0
}

.

If we use a standard usual open-compact metric, then the space D(R,R) may not be
separable and complete. However, the space D(R,R) of real-valued càdlàg functions can
be extended by introducing another metric d0 since it can be made into the complete and
separable space on a unit interval or on R [25]. For functions ω1, ω2 ∈ D(R,R), d0(ω1, ω2)
is defined by

d0(ω1, ω2) = inf
{

ε > 0 : |ω1(t)−ω2(λt)| ≤ ε,
∣∣ ln

arctan(λt)− arctan(λs)
arctan(t)− arctan(s)

∣∣ ≤ ε,

for every t, s ∈ R and some λ ∈ ΛR
}

,

where

ΛR = {λ : R→ R; λ is injective increasing, lim
t→−∞

λ(t) = −∞, lim
t→∞

λ(t) = ∞}.
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By Theorem 3.2 in [26], the space D(R,R) equipped with Skorokhod’s J1-topology gener-
ated by the metric d0 is a complete and separable space, i.e., Polish space. On this Polish
space, we consider a measurable flow θ = {θt}t∈R defined by mapping

θ : R× D(R,R)→ D(R,R), such that, θtω(·) = ω(·+ t)−ω(t),

where ω ∈ D(R,R).
The sample paths of the Lévy process are in D(R,R). Assume that P is the probability

measure on F = B(D(R,R)) introduced by the distribution of a symmetric two-sided
α-stable Lévy process. We consider the restriction of P on F , but still it is indicated by P.
Observe that P is ergodic with respect to the shift {θt}t∈R. Thus, (D(R,R),F ,P, {θt}t∈R)
is a metric dynamical system. It is worth pointing out that we can take a subset Ω1 =
D0(R,R) ⊂ Ω = D(R,R) with a P-measure instead of D(R,R). Here, D0(R,R) is {θt}t∈R-
invariant, which means that θtΩ1 = Ω1 for t ∈ R.

Definition 2. A cocycle φ satisfies

φ(0, ω, u) = u;

φ(t1 + t2, ω, u) = φ(t2, θt1 ω, φ(t1, ω, u)).

It is B(R)⊗F ⊗B(R3)−F measurable and defined by map:

φ : R×Ω×R3 → R3,

for u ∈ R3, ω ∈ Ω, and t1, t2 ∈ R. Metric dynamical system (Ω,F ,P, θ) with the cocycle φ
generates a random dynamical system [27].

The above cocycle property indicates that random dynamical system φ arrives at the
same destinaton whether we consider the position φ(t1 + t2, ω, u) of the path starting in u
at time t1 + t2 or the position φ(t2, θt1 ω, φ(t1, ω, u)) of the path with random initial state
φ(t1, ω, u) at time t2. It is important to note that the path moves from u to φ(t1, ω, u), and
the underlying ω may potentially change as well over time t1. Instead of ω, we need to use
θt1 ω for the new movement with the starting point φ(t1, ω, u), where θt1 indicates the new
development of the underlying probability space over time t1.

If u 7→ φ(t, ω, u) is continuous or differentiable for t ∈ R and ω ∈ Ω, then random dy-
namical system (Ω,F ,P, θ, φ) is also continuous or differentiable. The family of nonempty
closed sets M = {M(ω) ⊂ R3 : ω ∈ Ω} is said to be a random set if, for all u′ ∈ R3,
the map:

ω 7→ inf
u∈M(ω)

|u− u′|,

is a random variable.

Definition 3. If random variable u(ω), taking values in R3, satisfies

φ(t, ω, u(ω)) = u(θtω), a.s.

for all t ∈ R. Then, random variable u(ω) is known as a stationary orbit or a random fixed
point [28].

Definition 4. A random set M = {M(ω) ⊂ R3 : ω ∈ Ω} is called a random positively
invariant set [11] for random dynamical system φ, if

φ(t, ω,M(ω)) ⊂M(θtω),

for all ω ∈ Ω and t ≥ 0.
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Definition 5. Introduce a map
l : R2 ×Ω→ R,

such that v 7→ l(v, ω) is Lipschitz continuous for all ω ∈ Ω. Consider

M(ω) = {(l(v, ω), v) : v ∈ R2},

such that random positively invariant setM = {M(ω) ⊂ R3 : ω ∈ Ω} can be expressed as
a graph of Lipschitz continuous map l; then, M is known as a Lipschitz continuous invariant
manifold [20].

Moreover,M possesses the exponential tracking property, if there exists an u′ ∈ M(ω)
for all u ∈ R3 satisfying

|φ(t, ω, u)− φ(t, ω, u′)| ≤ c1(u, u′, ω)ec2t|u− u′|,

for all ω ∈ Ω. Here, c1 is a positive random variable, and c2 is a negative constant.

3. Stability Analysis

A stochastic Koper system (1) consists of one fast mode and two slow modes. The
state space for the fast mode is R, and the state space for the slow modes is R2. For
the construction of a slow manifold, we assume the following hypotheses for the Koper
system (1).

(H1) (Lipschitz continuity) With regard to nonlinear parts of (1), there are positive
constants L1, L2, L3 > 0 such that, for all (xi, yi, zi)

T in R3 and for all (xj, yj, zj)
T in R3,

|g1(xi, yi, zi)− g1(xj, yj, zj)|+ |g2(xi, yi, zi)− g2(xj, yj, zj)|+ |g3(xi, yi, zi)− g3(xj, yj, zj)|
≤ L1(|xi − xj|+ |yi − yj|+ |zi − zj|),

where T is the transpose of the vector, and gm : R3 → R, m = 1, 2, 3 are defined by
g1(x, y, z) = ky− x3 + 3x− λ(z), g2(x, y, z) = x− 2y + z, and g3(x, y, z) = y− z.

(H2) (Growth) For all (x, y, z) ∈ R3, there exists a positive constant L such that

|g1(x, y, z)|2 + |g2(x, y, z)|2 + |g3(x, y, z)|2 ≤ L(1 + |x|2 + |y|2 + |z|2).

(H3) (Monotonocity) For all x1, x2 ∈ R, there exists a positive constant L such that

(x2 − x1)(g1(x2)− g1(x1)) ≤ −L(|x2 − x1|2).

Now, let Θ1 = (Ω1,F1,P1, θ1
t ), Θ2 = (Ω2,F2,P2, θ2

t ) and Θ3 = (Ω3,F3,P3, θ3
t ) be

three independent driving (metric) dynamical systems as mentioned in Section 2. Define

Θ = Θ1 ×Θ2 ×Θ3 = (Ω1 ×Ω2 ×Ω3,F1 ⊗F2 ⊗F3,P1 × P2 × P3, (θ1
t , θ2

t , θ3
t )

T),

and

θtω := (θ1
t ω1, θ2

t ω2, θ3
t ω3)

T , for ω := (ω1, ω2, ω3)
T ∈ Ω := Ω1 ×Ω2 ×Ω3.

Let Lα
t , α ∈ (1, 2) be a two-sided symmetric α-stable Lévy process in R with a gen-

erating triplet (a,Q, v). We will prove the existence and uniqueness of solution for the
stochastic Koper system (1).

Lemma 1 ([29]). Under Lipschitz condition (H1), the equation

dδ(t) = g1(δ(t))dt + σdLα
t , δ(0) = δ0, (2)
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has the unique càdlàg solution

δ(t) = δ0 +
∫ t

0
g1(δ(s))ds + σLα

t .

According to the Lévy-Itô decomposition, Lα
t can be expressed as

Lα
t =

∫
|w|<1

wÑ(t, dw) +
∫
|w|≥1

wN(t, dw).

It follows that

δ(t) = δ0 +
∫ t

0
g1(δ(s))ds + σ

∫
|w|<1

wÑ(t, dw) + σ
∫
|w|≥1

wN(t, dw).

Remark 1 ([28], p. 191). Lα
ct and c

1
α Lα

t have the same distribution for every c > 0, i.e., Lα
ct

d
= c

1
α Lα

t .

Lemma 2. Under the assumptions (H1)–(H3), stochastic Koper system (1) has a unique solution.

Proof. Rewrite the stochastic Koper system (1) into the form ẋ
ẏ
ż

 =

 1
ε g1(x, y, z)
g2(x, y, z)
g3(x, y, z)

+

 σε−
1
α L̇α

t
0
0


From [30], under the assumptions (H1)–(H3), it implies (from [31], Theorem III.2.3.2) that
there exists a unique solution of Equation (2). Moreover, there also exists one exponentially
mixing invariant measure with respect to the transition semigroup of x(t). Then, by [23],
Chapter 6, the assumptions (H1)–(H3) indicate that there exists a unique mild solution
(x(t), y(t), z(t))T in R3 for the stochastic Koper system (1).

Define a random transformation X
Y
Z

 := µ(θtω, x, y, z) :=

 x− σηε(θtω)
y
z

.

where ηε(θtω) := ε−
1
α Lα

t (ω). Then, (X(t), Y(t), Z(t)) = µ(θtω, x, y, z) satisfies the ran-
dom system 

dX = 1
ε g1(X + σηε(θtω), Y, Z)dt,

dY = g2(X + σηε(θtω), Y, Z)dt,
dZ = g3(X + σηε(θtω), Y, Z)dt.

(3)

The term σηε(θtω) does not change the Lipschitz constants of g1, g2, and g3. Thus, g1, g2,
and g3 in random dynamical system (3) and in stochastic dynamical system (1) have the
same Lipschitz constants. The random system (3) can be solved for any ω ∈ Ω. Thus, for
any initial value (X(0), Y(0), Z(0))T = (X0, Y0, Z0)

T , the solution operator

(t, ω, (X0, Y0, Z0)
T) 7→ Φ(t, ω, (X0, Y0, Z0)

T)

=
(
X(t, ω, (X0, Y0, Z0)

T), Y(t, ω, (X0, Y0, Z0)
T), Z(t, ω, (X0, Y0, Z0)

T)
)T ,

represents the random dynamical system for (3). Furthermore,

φ(t, ω, (X0, Y0, Z0)
T) = Φ(t, ω, (X0, Y0, Z0)

T) + (σηε(θtω), 0, 0)T ,

characterizes the random dynamical system generated by stochastic Koper system (1).
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4. Random Slow Manifolds

Introduce the Banach spaces of functions for investigating random system (3). For any
β ∈ R,

CR,−
β :=

{
Φ : (−∞, 0]→ R is continuous and sup

t∈(−∞,0]
|e−βtΦ(t)| < ∞

}
,

CR,+
β :=

{
Φ : [0, ∞)→ R is continuous and sup

t∈[0,∞)

|e−βtΦ(t)| < ∞
}

,

with norms

||Φ||CR,−
β

:= sup
t∈(−∞,0]

|e−βtΦ(t)|, and ||Φ||CR,+
β

:= sup
t∈[0,∞)

|e−βtΦ(t)|.

Let CR3,±
β be the product of spaces CR3,±

β := CR,±
β × CR,±

β × CR,±
β , with norm

||U||
CR3,±

β

= ||X||CR,±
β

+ ||Y||CR,±
β

+ ||Z||CR,±
β

, U = (X, Y, Z)T ∈ CR3,±
β .

For U(·, ω) =
(
X(·, ω), Y(·, ω), Z(·, ω)

)T ∈ CR3,−
β , it is the solution of (3) with initial

value U0 = (X0, Y0, Z0)
T iff U(t, ω) satisfies X(t)

Y(t)
Z(t)

 =

 1
ε

∫ t
−∞ g1

(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds

Y0 +
∫ t

0 g2
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds

Z0 +
∫ t

0 g3
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds

. (4)

Lemma 3. Suppose that

U(t, ω, U0) =
(

X
(
t, ω, (X0, Y0, Z0)

T), Y
(
t, ω, (X0, Y0, Z0)

T), Z
(
t, ω, (X0, Y0, Z0)

T))T

is the solution of (4) with t ≤ 0. Then, U(t, ω, U0) is the unique solution in CR3,−
β , where

U0 = (X0, Y0, Z0)
T is the initial value.

Proof. By using the Banach fixed point theorem, we prove that

U(t, ω, U0) =
(

X
(
t, ω, (X0, Y0, Z0)

T), Y
(
t, ω, (X0, Y0, Z0)

T), Z
(
t, ω, (X0, Y0, Z0)

T))T

is the unique solution of (4). For the proof of it, define three operators for t ≤ 0:

J1(U)[t] =
1
ε

∫ t

−∞
g1
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds,

J2(U)[t] = Y0 +
∫ t

0
g2
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds,

J3(U)[t] = Z0 +
∫ t

0
g3
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds.

Then, the Lyapunov–Perron transform is defined to be

J(U) =

 J1(U)
J2(U)
J3(U)

 =
(
J1(U), J2(U), J3(U)

)T .
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Now, it is necessary to prove that J maps CR3,−
β onto itself. Take U = (X, Y, Z)T ∈ CR3,−

β

satisfying:

||J1(U)[t]||CR,−
β

= ||1
ε

∫ t

−∞
g1
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds||CR,−

β

≤ 1
ε

sup
t∈(−∞,0]

{
e−βt

∫ t

−∞

∣∣g1
(
X(s) + σηε(θsω), Y(s), Z(s)

)∣∣ds
}

≤ K
ε

sup
t∈(−∞,0]

{
e−βt

∫ t

−∞

(
|X(s)|+ |Y(s)|+ |Z(s)|

)
ds
}
+ C1

≤ K
ε

sup
t∈(−∞,0]

{ ∫ t

−∞
e−β(t−s)ds

}
||U||

CR3,−
β

+ C1

=
K
−εβ
||U||

CR3,−
β

+ C1.

Similarly, we have

||J2(U)[t]||CR,−
β

= ||Y0 +
∫ t

0
g2
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds||CR,−

β

≤ sup
t∈(−∞,0]

{
e−βt

∫ t

0

∣∣g2
(
X(s) + σηε(θsω), Y(s), Z(s)

)∣∣ds
}
+ ||Y0||CR,−

β

≤ sup
t∈(−∞,0]

{
e−βt

∫ t

0

(
|X(s)|+ |Y(s)|+ |Z(s)|

)
ds
}
+ C2

≤ K sup
t∈(−∞,0]

{ ∫ t

0
e−β(t−s)ds

}
||U||

CR3,−
β

+ C2

=
K
β
||U||

CR3,−
β

+ C2.

Furthermore,

||J3(U)[t]||CR,−
β

= ||Z0 +
∫ t

0
g3
(
X(s) + σηε(θsω), Y(s), Z(s)

)
ds||CR,−

β

≤ sup
t∈(−∞,0]

{
e−βt

∫ t

0

∣∣g3
(
X(s) + σηε(θsω), Y(s), Z(s)

)∣∣ds
}
+ ||Z0||CR,−

β

≤ sup
t∈(−∞,0]

{
e−βt

∫ t

0

(
|X(s)|+ |Y(s)|+ |Z(s)|

)
ds
}
+ C3

≤ K sup
t∈(−∞,0]

{ ∫ t

0
e−β(t−s)ds

}
||U||

CR3,−
β

+ C3

=
K
β
||U||

CR3,−
β

+ C3.

By using the Lyapunov–Perron transform, the estimate of J in combined form is

||J(U)||
CR3,−

β

≤ $(β, K, ε)||U||
CR3,−

β

+ C,

where
$(β, K, ε) =

−K
εβ

+
K
β
+

K
β

.

Hence, J(U) is in CR3,−
β for all U ∈ CR3,−

β , which means that J maps CR3,−
β onto itself.
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Now, we should show that the map J is contractive. For this, take U = (X, Y, Z)T , Ũ =

(X̃, Ỹ, Z̃)T ∈ CR3,−
β ,

||J1(U)− J1(Ũ)||CR,−
β

≤ 1
ε

sup
t∈(−∞,0]

{
e−βt

∫ t

−∞

∣∣∣g1
(
X(s) + σηε(θsω), Y(s), Z(s)

)
− g1

(
X̃(s) + σηε(θsω), Ỹ(s), Z̃(s)

)∣∣∣ds
}

≤ K
ε

sup
t∈(−∞,0]

{
e−βt

∫ t

−∞

(
|X(s)− X̃(s)|+ |Y(s)− Ỹ(s)|+ |Z(s)− Z̃(s)|

)
ds
}

≤ K
ε

sup
t∈(−∞,0]

{ ∫ t

−∞
e−β(t−s)ds

}
||U − Ũ||

CR3,−
β

=
K
−εβ
||U − Ũ||

CR3,−
β

.

Using the same way,

||J2(U)− J2(Ũ)||CR,−
β
≤ K sup

t∈(−∞,0]

{ ∫ 0

t
e−β(t−s)ds

}
||U − Ũ||

CR3,−
β

≤ K
β
||U − Ũ||

CR3,−
β

.

Moreover,

||J3(U)− J3(Ũ)||CR,−
β
≤ K sup

t∈(−∞,0]

{ ∫ 0

t
e−β(t−s)ds

}
||U − Ũ||

CR3,−
β

≤ K
β
||U − Ũ||

CR3,−
β

.

Combining the three together,

||J(U)− J(Ũ)||
CR3,−

β

≤ $(β, K, ε)||U − Ũ||
CR3,−

β

,

where

$(β, K, ε) =
K
−εβ

+
K
β
+

K
β

.

By setting β = − γ
ε ,

$(β, K, ε)→ K
γ

for ε→ 0.

Thus, there exists a sufficiently small ε0 → 0 with property

0 < $(β, K, ε) < 1, for ε ∈ (0, ε0).

Hence, the map J in CR3,−
− γ

ε
is contractive. By the Banach fixed point theorem, every

contractive mapping in Banach space has a unique fixed point. Thus, (4) has the unique
solution

U(t, ω, U0) =
(
X(t, ω, (X0, Y0, Z0)

T), Y(t, ω, (X0, Y0, Z0)
T), Z(t, ω, (X0, Y0, Z0)

T)
)T in CR3,−

− γ
ε

.
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From Lemma 3, we obtain the following remark:

Remark 2. For any (X0, Y0, Z0)
T , (X′0, Y′0, Z′0)

T ∈ R3, and for all ω ∈ Ω, Y0, Y′0, Z0, Z′0 ∈ R,
there is an ε0 > 0 such that

||U
(
t, ω, (X0, Y0, Z0)

T)−U
(
t, ω, (X′0, Y′0, Z′0)

T)||
CR3,−
− γ

ε

≤ 1
1− $(β, K, ε)

(
|Y0 −Y′0|+ |Z0 − Z′0|

)
. (5)

Proof. Instead of writing U
(
t, ω, (X0, Y0, Z0)

T) and U
(
t, ω, (X′0, Y′0, Z′0)

T), we write
U(t, ω, Y0, Z0) and U(t, ω, Y′0, Z′0). For all ω ∈ Ω and Y0, Y′0, Z0, Z′0 ∈ R, we determine
an upper bound

||U(t, ω, Y0, Z0)−U(t, ω, Y′0, Z′0)||CR3,−
− γ

ε

= ||X(t, ω, Y0, Z0)− X(t, ω, Y′0, Z′0)||CR,−
− γ

ε

+ ||Y(t, ω, Y0, Z0)−Y(t, ω, Y′0, Z′0)||CR,−
− γ

ε

+ ||Z(t, ω, Y0, Z0)− Z(t, ω, Y′0, Z′0)||CR,−
− γ

ε

≤
( K
−εβ

+
2K
β

)
× ||U(t, ω, Y0, Z0)−U(t, ω, Y′0, Z′0)||CR3,−

− γ
ε

+ |Y0 −Y′0|+ |Z0 − Z′0|

= $(β, K, ε)||U(t, ω, Y0, Z0)−U(t, ω, Y′0, Z′0)||CR3,−
− γ

ε

+ |Y0 −Y′0|+ |Z0 − Z′0|.

Therefore, (5) is valid.

Next, with the help of the Lyapunov–Perron method, we will construct the slow
manifold as a random graph.

Theorem 1. Assume that the hypotheses (H1)–(H3) hold. Then, for sufficiently small ε > 0,
random system (3) possesses a Lipschitz random slow manifold:

Mε(ω) =
{(

lε(ω, Y0, Z0), Y0, Z0
)T : Y0, Z0 ∈ R

}
,

where
lε(·, ·) : Ω×R2 → R,

is a Lipschitz graph map with Lipschitz constant

Liplε(ω, ·) ≤ K
γ− K(1− 2ε)

.

Proof. For any Y0, Z0 ∈ R, we define Lyapunov–Perron map lε by

lε(ω, Y0, Z0) =
1
ε

∫ 0

−∞
g1
(
X(s, ω, Y0, Z0) + σηε(θsω), Y(s, ω, Y0, Z0), Z(s, ω, Y0, Z0)

)
ds.

Then, by (5), we obtain

∣∣lε(ω, Y0, Z0)− lε(ω, Y′0, Z′0)
∣∣ ≤ K
−εβ

1
[1− $(β, K, ε)]

(
|Y0 −Y′0|+ |Z0 − Z′0|

)
,

for all Y0, Y′0, Z0, Z′0 ∈ R and ω ∈ Ω. Thus,

∣∣lε(ω, Y0, Z0)− lε(ω, Y′0, Z′0)
∣∣ ≤ K

γ

1
[1− $(β, K, ε)]

(
|Y0 −Y′0|+ |Z0 − Z′0|

)
,

for every Y0, Y′0, Z0, Z′0 ∈ R and ω ∈ Ω. Utilizing Theorem III.9 in Casting and Valadier ([32],
p. 67),Mε(ω) is a random set, i.e., for any U = (X, Y, Z)T ∈ R3,

ω 7→ inf
U′∈R3

∣∣U − (lε(ω, JU′), JU′
)T∣∣, (6)
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is measurable. The space R3 has a countable dense subset Q3. Then, the infimum in (6) is
equivalent to

inf
U′∈Q3

∣∣U − (lε(ω, JU′), JU′
)T∣∣.

Under the infimum in (6), the measurability of any expression can be determined, since for
all U′ in R3, the map ω 7→ lε(ω, JU′) is measurable. The slow flow is found as a random
graph of lε.

Finally, we need to show thatMε(ω) is positively invariant, i.e., for all U0 = (X0, Y0, Z0)
T

inMε(ω), U(s, ω, U0) is inMε(θsω) for every s ≥ 0. Note that U(t + s, ω, U0) is a solu-
tion of

dX =
1
ε

g1(X + σηε(θtω), Y, Z)dt,

dY = g2(X + σηε(θtω), Y, Z)dt,

dZ = g3(X + σηε(θtω), Y, Z)dt,

with initial value U(s) =
(
X(s), Y(s), Z(s)

)T
= U(s, ω, U0). Thus, U(t + s, ω, U0) =

U
(
t, θsω, U(s, ω, U0)

)
. Since U(·, ω, U0) is in CR3,−

− γ
ε

, we gain U
(
·, θsω, U(s, ω, U0)

)
∈ CR3,−

− γ
ε

.

Hence, U(s, ω, U0) ∈ Mε(θsω).

5. Examples

Example 1. Namely, we consider the stochastic Koper system
ẋ = 1

ε (−x3 + 3x− 10y + 5z + 3) + σ
α√ε

L̇α
t , in R,

ẏ = x− 2y + z, in R,
ż = y− z, in R,

(7)

where x is the “fast" component, (y, z) is the “slow" component, k = −10, and λ(z) = −5z− 3.

If we scale the time t→ εt and use the self-similarity ε−1/αLα
εt

d
= Lα

t , then stochastic system
(7) in the sense of distribution is equal to

dx = (−x3 + 3x− 10y + 5z + 3)dt + σdLα
t , in R,

dy = ε(x− 2y + z)dt, in R,
dz = ε(y− z)dt, in R.

When σ = 0, the deterministic system
ẋ = (−x3 + 3x− 10y + 5z + 3), in R,
ẏ = ε(x− 2y + z), in R,
ż = ε(y− z), in R,

(8)

has a unique fixed point P = (1, 1, 1). Linearize by finding the Jacobian matrix. Hence,

J =

 3(1− x2) −10 5
ε −2ε ε
0 ε −ε

.

Therefore,

JP =

 0 −10 5
ε −2ε ε
0 ε −ε

.

The stability of the equilibrium point P is determined by the associated Jacobian matrix JP. The trace
tr(JP) = −3ε is negative, and the determinant det(JP) = −5ε2 is also negative. It follows that
three eigenvalues are negative. Thus, P is a stable fixed point.
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Observe that, in the beginning, the blue curve of system (8) with ε = 0.05 departs from
x(0) = y(0) = z(0) = 0 along the direction of the x-axis, shown in Figure 1a. However, some
time later, there is a gentle growing tendency for the trajectory at x(t) = 2 to move upward. With
the increase of time, the path encounters a crucial turning point and has a precipitous climb to the
stable fixed point P. More significantly, it is parallel to the (y, z)-plane of the slow variables in
this situation. By comparison with Figures 2 and 3, the Koper system (7) exhibits sensitivity to
stochastic disturbance.

We sketch three time series data for the system (8) when x(0) = y(0) = z(0) = 0 and
ε = 0.05, as clearly detailed in Figure 1b. It manifests that the fast variable x(t) jumps to 2
instantaneously at first, and then decreases to 1 rapidly and suddenly. The green curve about x(t)
stays at the same level after t = 15. From the time series drawings of the slow variables y(t) and
z(t), they both grow to 1 eventually. The red path about y(t) increases much quicker than the purple
trajectory about z(t).
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Figure 1. When x(0) = y(0) = z(0) = 0 and ε = 0.05: (a) dynamical behavior for the trajectory
of system (8); (b) the three variables x(t), y(t), and z(t) in system (8) eventually settle down to
constant values.

If we fix σ = 0.5 and increase α in system (7) for the choice of initial conditions x(0) =
y(0) = z(0) = 0 with a scaling parameter ε = 0.05, we observe the following typical sequence of
events in Figure 2. The stochastic nonlinear dynamics with the stability index α = 0.8 display the
complex spatio-temporal oscillations accompanied by a few big jumps as depicted in Figure 2a. With
respect to α = 1.6, the external Lévy noise leads to dramatically different dynamical behavior in the
red trajectory, which is confirmed numerically in Figure 2b. As the stability index α is increased
toward 1.9, the path of stochastic system (7) shows low frequency oscillations excited by Lévy noise
as illustrated in Figure 2c. For three different values of α, stochastic noise of the the fast variable x
can significantly influence the dynamics of the whole Koper model. However, the shapes of different
trajectories from the viewpoint of the slow surface (y, z) are consistent.
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Figure 2. The evolution of system (7) for the choice of initial conditions x(0) = y(0) = z(0) = 0 at the
fixed noise intensity σ = 0.5 with a scaling parameter ε = 0.05 and a gradual increase in the stability
index: (a) α = 0.8; (b) α = 1.6; (c) α = 1.9.
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Figure 3. The evolution of system (7) starting from x(0) = y(0) = z(0) = 0 with a fixed stability
index α = 1 and a scaling parameter ε = 0.05 as the noise intensity increases: (a) σ = 0.1; (b) σ = 0.5;
(c) σ = 0.8.

Now, we fix α = 1 and consider a variation of σ in system (7) starting from x(0) = y(0) =
z(0) = 0 with a scaling parameter ε = 0.05; see Figure 3. For small enough σ = 0.1, the path has a
spiral pattern with small-amplitude fluctuations, which is clearly demonstrated in Figure 3a. When
σ-value just arrives at 0.5, the status of the path changes happens abruptly for stochastic system (7)
as plotted in Figure 3b. As the noise intensity σ increases further to 0.8, large variations in the
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dynamics of the trajectory are indicated in Figure 3c because of strong external noise. Based on the
effects of increasing noise intensities, the curves become more and more sophisticated.

The nonlocal Fokker–Planck equation [33] is a vital tool for studying the dynamical behaviors
of stochastic Koper system (7). Define f : R3 → R as a smooth function. Suppose that the
solution (x, y, z) of system (7) possesses a conditional probability density p(x, y, z, t|x0, y0, z0, t).
For simplicity in the notation, we hide the initial condition and denote it by p(x, y, z, t).

We can apply an Itô formula to stochastic Koper system (7) to obtain

d f (x, y, z) =ε−1(−x3 + 3x− 10y + 5z + 3)
∂

∂x
f (x, y, z)dt + (x− 2y + z)

∂

∂y
f (x, y, z)dt + (y− z)

∂

∂z
f (x, y, z)dt

+
∫
R\{0}

(
f (x + σε−1/αu, y, z)− f (x, y, z)− σε−1/αu1{|u|≤1}

∂

∂x
f (x, y, z)

)
να(du)dt

=
[
ε−1(−x3 + 3x− 10y + 5z + 3)

∂

∂x
f (x, y, z) + (x− 2y + z)

∂

∂y
f (x, y, z) + (y− z)

∂

∂z
f (x, y, z)

+ σαε−1
∫
R\{0}

(
f (x + u, y, z)− f (x, y, z)

)
να(du)

]
dt, (9)

where 1{|u|≤1} stands for the indicator function of the set {|u| ≤ 1}, να(du) = c(α) 1
|u|1+α dz

represents the α-stable Lévy measure with cα = α
Γ( 1+α

2 )

21−απ
1
2 Γ(1− α

2 )
, and Γ is the Gamma function [34].

If we take expectations on both sides of (9), then we have

dE f (x, y, z) =E
[
ε−1(−x3 + 3x− 10y + 5z + 3)

∂

∂x
f (x, y, z) + (x− 2y + z)

∂

∂y
f (x, y, z) + (y− z)

∂

∂z
f (x, y, z)

+ σαε−1
∫
R\{0}

(
f (x + u, y, z)− f (x, y, z)

)
να(du)

]
dt. (10)

It is worth mentioning that the generator for system (7) is determined by

Ap(x, y, z, t) :=ε−1(−x3 + 3x− 10y + 5z + 3)
∂

∂x
p(x, y, z, t) + (x− 2y + z)

∂

∂y
p(x, y, z, t) + (y− z)

∂

∂z
p(x, y, z, t)

+ σαε−1
∫
R\{0}

(
p(x + u, y, z, t)− p(x, y, z, t)

)
να(du).

We are able to rewrite Equation (10) into

d
dt
E f (x, y, z) =E

[
ε−1(−x3 + 3x− 10y + 5z + 3)

∂

∂x
f (x, y, z) + (x− 2y + z)

∂

∂y
f (x, y, z) + (y− z)

∂

∂z
f (x, y, z)

+ σαε−1
∫
R\{0}

(
f (x + u, y, z)− f (x, y, z)

)
να(du)

]
=
∫
R3

[
ε−1(−x3 + 3x− 10y + 5z + 3)

∂

∂x
f (x, y, z) + (x− 2y + z)

∂

∂y
f (x, y, z) + (y− z)

∂

∂z
f (x, y, z)

+ σαε−1
∫
R\{0}

(
f (x + u, y, z)− f (x, y, z)

)
να(du)

]
p(x, y, z, t)dxdydz

=
∫
R3

f (x, y, z)
(

ε−1 ∂

∂x
[(x3 − 3x + 10y− 5z− 3)p(x, y, z, t)]− ∂

∂y
[(x− 2y + z)p(x, y, z, t)]

− ∂

∂z
[(y− z)p(x, y, z, t)]− σαε−1

∫
R\{0}

(
p(x, y, z, t)− p(x− u, y, z, t)

)
να(du)

)
dxdydz.

It follows that the adjoint operator of the generator A is
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A∗p(x, y, z, t) :=ε−1 ∂

∂x
[(x3 − 3x + 10y− 5z− 3)p(x, y, z, t)]− ∂

∂y
[(x− 2y + z)p(x, y, z, t)]

− ∂

∂z
[(y− z)p(x, y, z, t)]− σαε−1

∫
R\{0}

(
p(x, y, z, t)− p(x− u, y, z, t)

)
να(du).

Furthermore, the nonlocal Fokker–Planck equation for stochastic Koper system (7) is

∂

∂t
p(x, y, z, t) =ε−1 ∂

∂x
[(x3 − 3x + 10y− 5z− 3)p(x, y, z, t)]− ∂

∂y
[(x− 2y + z)p(x, y, z, t)]

− ∂

∂z
[(y− z)p(x, y, z, t)]− σαε−1

∫
R\{0}

(
p(x, y, z, t)− p(x− u, y, z, t)

)
να(du)

=ε−1[3(x2 − 1)p(x, y, z, t) + (x3 − 3x + 10y− 5z− 3)
∂

∂x
p(x, y, z, t)]− (x− 2y + z)

∂

∂y
p(x, y, z, t)

− (y− z)
∂

∂z
p(x, y, z, t) + 3p(x, y, z, t) + σαε−1

∫
R\{0}

(
p(x + u, y, z, t)− p(x, y, z, t)

)
να(du)

with the initial condition p(x, y, z, 0) = δ(x− x0, y− y0, z− z0).

Considering a variation of λ(z) and fix k = −10, stochastic Hopf bifurcation occurs
for λ(z) ≈ 7.67. Numerical simulations always give a clear insight into how the trajecto-
ries develop for various values of λ(z). However, stochastic modeling of slow manifold
is much more complicated owing to the dependent integrals of the Lévy noise. Fortu-
nately, the projections in the slow coordinates are useful in forecasting and suggesting
stochastic dynamics.

Example 2. Now, we proceed to analyze the stochastic system
ẋ = 1

ε (−x3 + 3x− 10y− 7) + σ
α√ε

L̇α
t , in R,

ẏ = x− 2y + z, in R,
ż = y− z, in R,

(11)

where x is the “fast" component, (y, z) is the “slow" component, and λ(z) = 7.

Due to the time scaling t→ εt and the self-similarity ε−1/αLα
εt

d
= Lα

t , stochastic Koper system
(11) in the sense of distribution is equivalent to

dx = (−x3 + 3x− 10y− 7)dt + σdLα
t , in R,

dy = ε(x− 2y + z)dt, in R,
dz = ε(y− z)dt, in R.

As a consequence of σ = 0, we derive the deterministic system displaying quasi-periodicity
ẋ = (−x3 + 3x− 10y− 7), in R,
ẏ = ε(x− 2y + z), in R,
ż = ε(y− z), in R.

(12)

As seen in Figure 4a, there is a rich variety of dynamics which can be plotted in three-
dimensional space. For one set of initial conditions x(0) = y(0) = z(0) = 0, the blue trajectory
of the solution (x(t), y(t), z(t)) of system (12) turns around exponentially, and moves closer and
closer to the fold curve in finite time. The three variables x(t), y(t), and z(t) coexist and oscillate
in phase. There are three distinct amplitudes with respect to x(t), y(t), and z(t). The shapes have
discrete peaks displaying the quasiperiodic behaviors. The results are summarized in Figure 4b.



Axioms 2023, 12, 261 15 of 18

(a)

-1

0

-0.8

-0.6

2

z
(t

)

-0.4

1

y(t)

-0.2

-0.5 0

x(t)

0

-1
-2

-1 -3

(b)

0 50 100 150 200 250 300

t

-5

0

5

x
(t

)

0 50 100 150 200 250 300

t

-1

-0.5

0

y
(t

)

0 50 100 150 200 250 300

t

-1

-0.5

0

z
(t

)

Figure 4. When x(0) = y(0) = z(0) = 0 and ε = 0.1: (a) dynamical trajectory of system (12);
(b) quasiperiodic behaviors for the three variables x(t), y(t), and z(t) in system (12).

It can be discerned from Figure 5a that the intermittency is present in the path of stochastic
Koper system (11) with α = 0.8, which can lead to extremely complex random behavior. When
α = 1.6, the trajectory of system (11) goes through a stochastic regime with an irregular pattern
observed in Figure 5b. As the stability index gets large, system (11) forced with noise is structurally
unstable. The quasiperiodic behavior is interrupted by occasional stochastic bursts. This complication
is confirmed in Figure 5c for α = 1.9.
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Figure 5. The evolution of system (11) for the choice of initial conditions x(0) = y(0) = z(0) = 0
at the fixed noise intensity σ = 0.5 with a scaling parameter ε = 0.1 and a gradual increase in the
stability index: (a) α = 0.8; (b) α = 1.6; (c) α = 1.9.
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It is clearly seen in Figure 6a that the path displays what appears to be random behavior with
small noise intensity σ = 0.1. As systematically captured in Figure 6b, the trajectory of system
(11) could be depicting a very high stochasticity when σ = 0.5. The aperiodic random behavior of
system (11) can be evidently detected in Figure 6c, if there is noisy input with σ = 0.8. Comparing
the results with the deterministic system (12), there is no quasiperiodic behavior in stochastic Koper
system (11).
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Figure 6. The evolution of system (11) for one set of initial conditions x(0) = y(0) = z(0) = 0 with a
fixed stability index α = 1 and a scaling parameter ε = 0.1 as the noise intensity increases: (a) σ = 0.1;
(b) σ = 0.5; (c) σ = 0.8.

Moreover, the nonlocal Fokker–Planck equation for stochastic Koper system (11) is

∂

∂t
p(x, y, z, t) =ε−1 ∂

∂x
[(x3 − 3x + 10y + 7)p(x, y, z, t)]− ∂

∂y
[(x− 2y + z)p(x, y, z, t)]

− ∂

∂z
[(y− z)p(x, y, z, t)]− σαε−1

∫
R\{0}

(
p(x, y, z, t)− p(x− u, y, z, t)

)
να(du)

=ε−1[3(x2 − 1)p(x, y, z, t) + (x3 − 3x + 10y + 7)
∂

∂x
p(x, y, z, t)]− (x− 2y + z)

∂

∂y
p(x, y, z, t)

− (y− z)
∂

∂z
p(x, y, z, t) + 3p(x, y, z, t) + σαε−1

∫
R\{0}

(
p(x + u, y, z, t)− p(x, y, z, t)

)
να(du)

with the initial condition p(x, y, z, 0) = δ(x− x0, y− y0, z− z0).

6. Conclusions and Future Challenges

We investigated three-dimensional stochastic slow-fast Koper system (1) driven by α-
stable Lévy noise, and proved that stochastic slow manifolds exist. We constructed the slow
manifold in which the fast variable x can be expressed as the random function of the two
slow variables y and z. Stochastic nonlinear dimensionality reduction helped us make more
accurate predictions by using stochastic differential equations for the slow variables. We
carried out the computation of the practical Koper models (7)–(8) and (11)–(12). Compared
with the reference [20], we probed the orbital dynamics of stochastic Koper systems to
provide a better understanding of underlying and fascinating properties, and also perceived
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stochastic Hopf bifurcation for noisy Koper dynamical systems. In addition, we rigorously
calculated the conditional probability density described by the nonlocal Fokker–Planck
equation.

When the scaling parameter ε̂ is sufficiently small, i.e., 0 < ε̂ � 1, stochastic Koper
model (1) has three times scales: variable x is fast, y is slow, and z is slower. It indicates the
ratio of three times scales such that | dx

dt | � |
dy
dt | � |

dz
dt |. Thus, it is meaningful to project

high-dimensional dynamics onto lower-dimensional effective manifolds in this case.
What happens if the main bifurcation parameters k and λ(z) =: λ change? The folded

node/focus and supercritical Hopf bifurcation are expected to occur in parameter space
for the Koper model without noise. By classifying the type and stability of the equilibrium
points, we obtain a bifurcation diagram under parameter variation.

We can generalize the consideration to a number of cases where the variables x, y, and
z both are perturbed by α-stable Lévy noises, even to the extent that the influences are the
more general Lévy processes including multiplicative and additive effects. We may use Itô,
Stratonovich, or Marcus type stochastic differential equations.

The orbits can escape from the region of the metastable equilibrium if we face random
perturbation [35]. It is interesting to characterize the most probable transition from one
metastable state to another [36,37]. The random slow manifold still depends on k and λ. It
is a challenge to plot the bifurcation diagram in the (k, λ)-plane of the random slow flow.
Luckily, we can explore stochastic bifurcations in dynamical systems driven by Lévy noises
with support for statistical modeling and computation [18,19,38].

We often have difficulty comprehending data in phase space with the attracting or
repelling of random slow manifolds. Thus, it is useful for visualization purposes in order
to reduce data to a small number of dimensions.
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