20,398 research outputs found

    Responses of generalist invertebrate predators to pupal densities of autumnal and winter moths under field conditions

    Get PDF
    1. Generalist natural enemies are usually not considered as being capable of causing population cycles in forest insects, but they may influence the population dynamics of their prey in the low density cycle phase when specialist enemies are largely absent. 2. In the present field study, the total response of the generalist invertebrate predator community to experimentally established pupal densities of the closely related autumnal (Epirrita autumnata) and winter moths (Operophtera brumata) was analysed. 3. Due to the high amount of variation in the dataset, the exact shape of the response curve could not be convincingly estimated. Nevertheless, two important conclusions can be drawn from the analyses. 4. Firstly, the natural invertebrate predator community seems to become saturated at rather low densities of both autumnal and winter moth pupae. Secondly, the predator community seems to become saturated at much lower densities of autumnal than of winter moth pupae. 5. Furthermore, pupal mass was significantly negatively correlated with invertebrate predation probability in autumnal moth pupae. 6. These results indicate that differences in the predator assemblage being able to consume pupae of the two moth species, as well as different handling times, could be responsible for the substantially higher predation rates in winter than in autumnal moth pupae. 7. As a consequence, the population dynamics of autumnal moths might be less affected by generalist invertebrate predators than those of winter moths, as autumnal moths seem able to escape from the regulating influence of generalist predators at much lower population densities than winter moths

    Density-and trait-mediated effects of a parasite and a predator in a tri-trophic food web

    Get PDF
    1. Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density- or trait- mediated. 2. We studied a tri-trophic food chain comprised of: (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum), and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully-factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling, and analyses of host (Paramecium) morphology and behavior. 3. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. 4. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. 5. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. 6. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non- host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction

    Modelling Food Webs

    Full text link
    We review theoretical approaches to the understanding of food webs. After an overview of the available food web data, we discuss three different classes of models. The first class comprise static models, which assign links between species according to some simple rule. The second class are dynamical models, which include the population dynamics of several interacting species. We focus on the question of the stability of such webs. The third class are species assembly models and evolutionary models, which build webs starting from a few species by adding new species through a process of "invasion" (assembly models) or "speciation" (evolutionary models). Evolutionary models are found to be capable of building large stable webs.Comment: 34 pages, 2 figures. To be published in "Handbook of graphs and networks" S. Bornholdt and H. G. Schuster (eds) (Wiley-VCH, Berlin

    Models for an Ecosystem Approach to Fisheries

    Get PDF
    This document is one outcome from a workshop held in Gizo in October 2010 attended by 82 representatives from government, NGO's private sector, and communities. The target audience for the document is primarily organizations planning to work with coastal communities of Solomon Islands to implement Community-Based Resource Management (CBRM). It is however also envisaged that the document will serve as a reference for communities to better understand what to expect from their partners and also for donors, to be informed about agreed approaches amongst Solomon Islands stakeholders. This document does not attempt to summarize all the outcomes of the workshop; rather it focuses on the Solomon Islands Coral Triangle Initiative (CTI) National Plan of Action (NPoA): Theme 1: Support and implementation of CBRM and specifically, the scaling up of CBRM in Solomon Islands. Most of the principles given in this document are derived from experiences in coastal communities and ecosystems as, until relatively recently, these have received most attention in Solomon Islands resource management. It is recognized however that the majority of these principles will be applicable to both coastal and terrestrial initiatives. This document synthesizes information provided by stakeholders at the October 2010 workshop and covers some basic principles of engagement and implementation that have been learned over more than twenty years of activities by the stakeholder partners in Solomon Islands. The document updates and expands on a summary of guiding principles for CBRM which was originally prepared by the Solomon Islands Locally Managed Marine Area Network (SILMMA) in 2007

    Bivariate stochastic modeling of functional response with natural mortality

    Get PDF
    A correction due to Abbott (1925) is the standard method of dealing with control mortality in insect bioassay to estimate the mortality of an insect conditional on control mortality not having occurred. In this article a bivariate stochastic process for overall mortality is developed in which natural mortality and predation are jointly modeled to take account of the competing-risks associated with prey loss. The total mortality estimate from this model is essentially identical with that from more classical modeling. However, when predation loss is estimated in the absence of control mortality the results are somewhat different, with the estimate from the bivariate model being lower than that from using Abbott’s formula in conjunction with the classical model. It is argued that overdispersion in observed mortality data corresponds to correlated outcomes (death or survival) for the prey initially present, while Abbott’s correction relies implicitly on independence
    corecore