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Bivariate stochastic modelling of functional respose with natural

mortality

M.J. FADDY, J.S. FENLON and D.J. SKIRVIN

A correction due to Abbott (1925) is the standarethod of dealing with

control mortality in insect bioassay to estimate tmortality of an insect
conditional on control mortality not having occudrén this paper a bivariate
stochastic process for overall mortality is develdm which natural mortality
and predation are jointly modelled to take accooihthe competing-risks
associated with prey loss. The total mortality reate from this model is
essentially identical with that from more classinaddelling. However, when
predation loss is estimated in the absence of cbniortality the results are
somewhat different, with the estimate from the bate model being lower
than that from using Abbott’s formula in conjunctiwith the classical model.
It is argued that over-dispersion in observed ntitytalata corresponds to
correlated outcomes (death or survival) for theypretially present, while

Abbott’s correction relies implicitly on indepenaen
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1 INTRODUCTION

It is often the case in bioassays that mortalitineécts can occur for reasons other than
those due to the substance under investigationgdfof1992) makes the distinction
between ‘natural’ and ‘control’ mortality, citingdekstra (1987) and Preisler (1989).
Natural mortality may occur as well as mortalityedo handling of the insects, or mortality
may be due to the fact that the insects are nibigiin natural habitat. In order to assess the
degree of ‘control mortality’, groups of insectg aften kept under conditions that are the
same as those for the treated groups, exceptdalibence of the treatment. Abbott’s
formula (Abbott, 1925) is then commonly used toneate treatment mortality in the
absence of control mortality for dose responseyas$@r a given dos# if the expected
proportion responding g then this is not directly observable because ofamination
through natural mortality; so if the expected ollggeoportion dead ip*, thenp* is made

up of the proportion of insecisthat die naturally, and a proportiprof the remainder

(1 —¢) that die due to the treatment, so ttxat ¢ + (1-¢)p. The actual probability of

dying because of the dose is therefore givep by{p* —¢)/(1-¢). Hewlett and Plackett

(1979) remark that it is rarely possible to test éissumptions on which this formula is
based, and cite Kuenen (1957). They make the rathprising comment that “control

response should be avoided if possible”.

A particular type of assay in predator-prey stucdk@®wn as a functional response assay,
involves experiments in which different numberpdy are made available to a single
predator (sees.g. Fenlon and Faddy, 2006). The data presented leeneedrom a predator-
prey study in which the assay arena has been eedaondsimulate small plants. The purpose

of the original study was to derive realistic estigs of predation rates for input into larger
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simulation models to examine practical biologicahtrol scenarios (Skirviet al. 2002).
However, in moving to larger arenas it was not gxdsgo guarantee recovery of non-
predated prey, so that a simultaneous assay prazeds used with separate arenas for
control and predator groups. Classical models hatia-binomial distributed residuals about
a mean function, as described in Fenlon and Fa2lolyg), are first fitted to the data, with
predator mortality estimated using Abbott’s formulae main contribution of the paper is
the development of a bivariate stochastic procesdehfor both predation loss and natural
mortality as an extension of the univariate stottbasodel in Fenlon and Faddy (2006),

and the fitting of this model to the data. Thisdriate modelling owes its genesis to a recent
paper by Faddy and Smith (2005). Estimates of poedaortality in the absence of control
mortality from the classical and stochastic modegllapproaches are then compared, and the
paper concludes with some speculations on the medso the apparent differences between

these estimates.

2 DATA

Details of the experimental procedure are give8kinvin and de Courcy Williams (1999)
and Skirvin and Fenlon (2001). The assay systenpdsed cut stems with four tri-foliate
leaves ofChoisya ternata (a popular garden ornamental sometimes called ddexvrange
blossom). Mini-plants were ‘primed’ with webbing thie spider mitdetranychus urticae,

a pest of many garden plants, before eliminatiocalldffe stages of the spider mite.
Different levels of pest load were then transfetedhdividual stems using a fine
paintbrush, and a singkhytoseiulus persimilis (predator) was introduced onto each stem
before the stems were placed in individual persgydinders which were sealed with

ventilated lids. The number of assays at each aéitly level (2, 5, 10, 20 and 40 prey



initially) with the predator present varied (avezekd), and there were 25 control assays

with 40 prey initially, in which no predator wasegent, to monitor natural loss(es).

For each individual assay the number of survivireypvas counted after 24 hours, and the
number predated or lost determined by differerigata from assays in which the predator
was not found, or was dead, were excluded. Sirgjladntrol assays in which a predator
was found were also removed from the analysis.d&te with some summary statistics are
presented in Table 1 and plotted in Figure 1. Whthexception of availability level 2, it
appears that all these data show over-dispersiativeeto the binomial distribution, with

the over-dispersion tending to increase with prgjlability (the variance ratio statistics in

the final row of Table 1 bear this out).

3 CLASSICAL MODELLING

3.1 BETA-BINOMIAL MODEL

In the summaries of the data it is quite clear s@fple binomial modelling is really of no
value since over-dispersion relative to the bindmiistribution is significant. So, a beta-

binomial (residual) distribution was used:

NYB(n+-4 N-n+N4
P(n prey lost) :(nJ ( N9 Ng)

where B(. , .) is the beta function. The mean of this distribati®: and the variance

,u(l—ﬁ)[1+ (%)(N - J)} wheref is an over-dispersion parameter. The mean resgdnse

4



the compound data (predation with natural mortplitgs modelled as a function of the
availability N, with some adjustment being made for natural ¢mtrol) mortality using

Abbott’s formula. The underlying model then takles form:

:ucontrol = N¢ (1)

and Heompouns = N@ + (1= @) e 2)
wheregicontrol, #eompound 8NAupredaor COrrespond to the means for the respective sydbscri
groups. Only data relating to the control and conmagbmeans are observable, with the
predator mean being inferred. As in Fenlon and #8806 ).redaior is Modelled using a

Gompertz function constrained to pass through tiggrno
Hoyemor = a{ exp| —b ex(~cN) |- ex;b—b]} (3)
which corresponds to a Type Il functional respomselel (Holling, 1959). Some additional

modelling of the over-dispersion parametexs a function oN was indicated by the data —

the details are deferred to the next sub-section.
3.2 RESULTS

A saturated beta-binomial model was first fittedhte control and compound data by
maximum likelihood; this consisted of individualdvparameter beta-binomials for each
prey availability levelN. It was noted that estimates of the beta-binoowal-dispersion
parameterd, generally declined with prey availability, so eead forms were tried, with
means from equations (1), (2) and (3), to desdtibecontrol and compound data over all
availability levels:

(@) 6=d,

(b) & = do for control data, ané = d; for the compound data,

(c) ¥ =d+ e/Nfor all data,



(d) 8 = dp for control data, and = d; + €/N for the compound data.

All fits resulted in large estimateds and smalb’s in the form ofupregator given by (3),

corresponding to the limitingu(— « andb — 0 with ab=a’) form:

Moo =8 1= €xp(—cN) |, (4)
with a' andc > 0.i.e, type Il behaviour without an inflexion point (Hiolg, 1959). The
respective log-likelihoods from the model fits wei19.0, —248.5, —248.3 and —248.2, and
the corresponding AIC values (-2 x {log-likelihoedo. of parameters}) 505.9, 507.0,

506.6 and 508.4, which all suggest that staying thi# simplest model (2 not

unreasonable.

However, the corresponding generalised Pearsastgtat(sums of squared standardised
residuals), which give measures of goodness olvéte 125.8, 123.9, 118.9 and 119.4 with
115, 114, 114 and 113 d.f., respectively. Thesevgiiate a marked reduction whéns

made dependent dwy and suggest that a model based on (c) mightdfenped, with the
generalised Pearson statistic indicating a battegdich a decline il with N does moderate
the dispersion for larged, more in accord with the values in Table 1. Thisdel also
compares favourably with the saturated model (deéa 5.3 on 7 d.f.). The fit of the
model to the compound (predator + control) mowtadéta is illustrated in Figure 1 where
the estimated mean from (2) and (4) is plotted witine standard deviation limits. The fit
to the control data gave estimated mean 6.8 andnaw 16.2, compared with the observed
values of 6.9 and 17.8 shown in Table 1. The mxiseme observation is the count of 19 in
this control data sub-set, and corresponds td pratability of just under 0.01, which
would not be unexpected in a data-set of size a18tal. In Figure 2 is the (Abbott’s
formula corrected) mean predator mortality derifredh the estimated mean compound and

control mortality given by (1) and (2); the + ortargdard deviation limits here have been
6



estimated under the assumption that a beta-binahstlbution applies with the same over-

dispersion parameter as that associated with tigpeond mortality.

4 STOCHASTIC PROCESS MODELLING

4.1 BIVARIATE STOCHASTIC MODEL

In Fenlon and Faddy (2006) probability distribusam O, 1, ...N for the number of prey
lost were constructed from a univariate Markov pﬂn{ X(t);t= O} with X (0) =0 and
rate parameter®, A1, ..., Ano1, An (With Ay = 0) where:

P{X(t+dt)=n+1|X(t)=n} =24t

The modelling of prey loss is here extended tovariate Markov process

{X (t),Y(t);t= O} , with one componerX(t) for natural mortality and the oth¥t) for

predator mortality, with & X(t) + Y(t) < N andX(0) =Y(0) = 0. So that two transitions now
have to be considered, with infinitesimal probaies:

P{X(t+3t)=x+1Y(t+dt) =y [X €)=xY ()= y} = A0t

and
P{X (t+3t) =x.Y (t+3t) = y+1X €)=xY ()= y} =A%t

(5)

representing, respectively, an increase in theralmoiortality of the prey, and an increase in
predator-induced mortality. Whil3t(t) can be observedt) cannot; what is observed,

rather, is the total mortalit{(t) + Y(t). However, since the processes may not be

- 1) . (2) . .
independent, the rateéy of natural mortality and, )’ of predator mortality cannot simply

be added together to describe the total mortality.



The solution for the probabilitiep(x, y) = P{ X (9 =x,Y () =y} where the process of prey

loss is taken, without loss of generality, to randne unit of time can be expressed in terms

of a matrix,Q, of transition rates from (5). The rows and colgmofthis matrix are indexed
by (x,y) taking the value$0,0) (0,3 ,.. ( ON) ¢ L9 (, 1)1... (, N - )1.; (N ) with the
three non-zero elements @fin the row corresponding t()( y) being:

—(/]X‘ly) +/1X(§)) in the column corresponding {x, y),

AL in the column corresponding {x+1,y), and

A2 in the column corresponding {ox, y +1),
except whenx+y=N in which case all the entries are zero. The pr'dil;akp(x, y) is then

the appropriate element in the row vectdr Fenlon and Faddy, 2006):

[p(0.0) p(0,3 ...p( ON) p( Lpp( Di..p( M- )1..p(N )P
=[1 0 Dex®)

with the probability of a total af prey lost then given by the convoluti(ﬁ::0 p(x,n-x),

(6)

forn=0,1,...,N.

A reasonable description of control mortality woblelin terms of the total numbers lost,

i.e. Ax(l)) =f (x+ y). For predation mortality, following Fenlon and Fgd@006), a product

form is used wherd? = g(y)h(x+y); hereg(y) can be thought of as a predator

behaviour componenef. g(y) constant would correspond to constant predatirityc
regardless of the number of prey consumed]tgrély) as relating to the preg.p.
h(x+y) = N-x=y would correspond to the remaining prey being ergkable (Faddy and

Fenlon, 1999)]. The expression:

AY =-log(1-¢)(N - (x+y)) 7)



corresponds to a simple binomial distribution watbbability ¢ for control mortality in the
absence of predator mortality. And, following Fenbnd Faddy (2006), the form

[1— exp[—J(N - X+ y))‘SH

o

A2 = exp(a + By) (8)

was used, which, fgf > 0, corresponds to greater predator activity witteasing prey

consumed and, far> 0 and/ok # 1, non-exchangeable prey.

4.2 RESULTS

The bivariate stochastic process model for bothroband predator mortality described by

the transition rates in equations (5) and the fridihas from (6) with the expression (7) for
A® as has already been remarked, corresponds to &eddmpmial distribution with

probabilitye for control mortality in the absence of predatartality. However, the
analysis of section 3.2 showed that the controltatity exhibited over-dispersion relative
to the binomial distribution, and that a beta-bimardistribution was more appropriate.
Beta-binomially distributed control mortality cae lmcorporated into the bivariate

stochastic process with the probabilityxgsrey lost naturally anglost by predation being

given by:
1 ¢r—1(1_¢)5‘1
{ p(x,y|¢)wd¢, 9)

where p(x, Y] ¢) is the probability ok prey lost naturally ang prey lost by predation for a

given value ofp, determined from equations (6), (7) and (8), deddther component in the

integrand of (9) is the probability density functiof a beta distribution.

Use of probabilities given by equation (9) is veogtly in computing time, as numerical

computation of the integral would involve many ma@xponential evaluations of quite

9



large matrices (6); to expedite these computatodiscrete binomial mixture distribution

for control mortality was used as an alternativeligcrete mixed binomial model uses

probabilitieszik:lwib(N,¢i ,X),where0<w < 1 Zik:lvvi =land0< g <1fori=1,2,...k

N X
k being the number of components in the mix, &(M, ¢,,x) :(x ]¢ix(1— ¢i)N ,

0< x< N, are binomial probabilities. Table 2 shows detaflsnaximum likelihood fitting
of these distributions to the control data: a twmponent binomial mixture model would
be selected according to the AIC values, and ivshefit to the data that is comparable to

the beta-binomial.

Fitting the bivariate stochastic process model w&itivo component binomial mixture

distribution for the control mortality simply inwats probabilitiesp(x, y |¢1) and

p(x, y|¢2) created from only two matric€® andQ. derived from equations (6), (7) and

(8) with probabilitiesp; andg,, respectively, and using the discrete versiorxpf@ssion
(9):

wp(x yld,) +(1-w) p(x.y 1¢,)
Parameter estimates and their corresponding stdedaors from fitting this model to the
control and compound mortality data are given ashacond and third columns of Table 3.
The log-likelihood under this model is —245.4, congplato —248.3 from the previously
fitted beta-binomial model. However, these two nisdave different sub-models (two-
component mixed binomial and beta-binomial, respelsf) for the control data, and the
likelihoods for the compound data only are more garable: —179.4 and —-180.5,

respectively.
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The results in Table 3 suggest that setfirg0 in equation (8), corresponding to constant
predator activity, might be acceptable, and ind&tahg such a reduced model results in
only a small decline in the log-likelihood from -84 to —246.0. However, the overall
generalised Pearson statistic increases from iMia 2 d.f. to 125.1 on 113 d.f. when

£ =0, indicating a poorer fit, and the latter moskeéms less convincing for the data
corresponding tdl = 5 and 20. Exceedance probabilities of apparettieaifor the full

(8 > 0) model correspond to one with tail probabiatyout 0.01 and three with tail
probabilities between 0.01 and 0.05, which woukhs@inremarkable given the size of the

data-set.

Shown in Figure 1 is the estimated mean total nityrfaom the full (3 > 0) model (along
with the data and estimated means from the preliditied beta-binomial model); the
figure also shows the spread of + one standarchteriabout the mean for both models.
These two fits are clearly very similar. The estirdateean control mortality was 6.8,
similar to the earlier fitted beta-binomial valleit the estimated variance was slightly
larger at 19.0df. 16.2) so that the 2-component mixed binomial dstion used here is

somewhat better able to accommodate the extrem# obd9 in the control data sub-set.

The estimated predation when natural mortality ispnesent can be determined from the
distribution ofY(1) corresponding td® =0 in (5), and is shown in Figure 2 (along with
that from the beta-binomial model); the + one staddleviation limits here have been
estimated from this reduced model with no furthesuanptions necessary. Of note is the
smaller magnitude of the estimate from the stoah@asbcess model compared with that

from the classical beta-binomial model.
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5 DISCUSSION

The main contribution of this paper has been theatroation of a bivariate stochastic
process model for natural and predator mortalitg e comparison of the results from
fitting this model to a data-set with those frommare classical approach. The
differentiation methods used to estimate net preddbr the two models in the absence of
natural mortality gave rather different result® gtochastic process model used the
univariate process with the natural mortality trdos rates set to zero, whereas the beta-
binomial modelling used Abbott’s formula. This reedlin rather different estimates, with
those from the stochastic model being lower thasetlfrom the beta-binomial (Figure 2),
even though the estimates of total mortality wereially identical (Figure 1). While both
mean responses and the standard deviation frostabbastic process model have stabilised
by N = 40, the standard deviation from the beta-binbmiadel continues to increase;
however, the assumption under which this has bstema&tedj.e. that the level of over-
dispersion is the same as that for total mortatglearly unverifiable. An aesthetic
argument can be made for the stochastic processlimgdwhich has a consistency insofar
as the ‘tension’ between the control and compouondatity (with the former sometimes
outrunning the latter for largd) leads to an early horizontal asymptote of the poumnd
mortality (effectively satiation) within the exparental range. Furthermore, the stochastic
modelling attempts to model the actual temporatess of predation, and offers a possible
explanation of how the predator behaves in relatochanging prey availability, even
though the data are observed only at a single pion&. The problem associated with over-
dispersion in the control data has been addresst istochastic modelling by the use of a
discrete binomial mixture model to obviate the ne@dtostly numerical integration
involving many matrix exponential evaluations asstel with using a beta-binomial

distribution.
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Abbott’s formula essentially estimates for an indial prey theconditional probability of
loss due to the predatgiven that natural death has not occurred, where predatbnatural
mortality can be considered as competing risks.okenappropriate estimate is that of the
unconditional probability of loss due to the predator. These abiliiies will be the same if
the risks of predator and natural mortality arauaesd to applyndependently to the prey. A
further assumption that loss (either natural deattheath from predation) occurs
independently between prey when there are seveadahble initially will lead to a binomial
distribution of the number of prey lost during twurse of an experiment or study, with
Abbott’s formula giving an estimate of the uncorafitl mean number of prey lost to the

predator.

However, if the observed number of prey lost shoegsdual variation in excess of that
corresponding to binomial variation thboth the above assumptions of independence are
called into question. Extra-binomial variation innmoers lost can be explained either by a
residual distribution that shows over-dispersiarcfsas the beta-binomial) or a stochastic
process running during the course of the experimghtrates of loss of individual prey that
are not constant but a function of the accumulatimgnber of prey lost. In both of these
models, the over-dispersion corresponds to coaeélatitcomes (death or survival) for the
initial number of prey. And there is an equivalebetéwveen these models in that any
distribution showing over-dispersion relative te thinomial has a representation in terms of
a stochastic process with varying rates of indigldarey loss (Faddy, 1997) — some
increase in these rates with the accumulating nuwibgrey lost gives rise to the over-
dispersion. Such a stochastic representation oligpoe mortality will result in the two
processes, predator loss and loss due to naturélityg not being independent of one

another. This is because individual prey that mii@tnaturally later in the experiment

13



would be exposed to higher rates of predation thase that might die earlier, since more
prey are likely to be consumed by the predatorlonger period of time. So Abbott’s
formula, which (generally) leads to an estimatéhefmean number of prey lost to the
predator conditional on natural death not occurnmigf not give an estimate of the
unconditional mean number of prey lost to the pradaecause of this dependence between
natural and predator mortality. However, tireariate stochastic model of predator and
natural mortality will give an estimate of this wmclitional mean number of prey lost to the

predator if the natural mortality component of thedel is set to zero.

There is no doubt that there are challenges in ningehese data, and deriving estimates of
predator mortality. Further models may be develppetiwhat has been presented here
does offer a novel approach to the problem andwaplausible estimate of net predation,
with interpretable dynamics. The use of stochasticgss modelling ultimately provides an
appropriate temporal structure giving a reasonekjganation for observed data on

functional response, as has been previously arguéenlon and Faddy (2006).
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Table 1: observed numbers and summary statisti€swticae adults consumed or lost

(with predator) and contral (without predator) for groups of assays with tame prey

availability; p is the ratio of sample to binomial variance (a rmea®f over-dispersion).

assay no. prey availability
2 5 10 20 40 40€)
1 2 5 10 17 22 19
2 2 5 9 15 19 14
3 2 5 9 14 18 13
4 2 5 8 14 16 13
5 2 5 8 12 13 10
6 2 5 8 12 13 10
7 2 5 8 12 11 9
8 2 4 7 11 11 7
9 2 4 7 9 11 7
10 2 4 7 8 10 7
11 2 3 7 8 10 7
12 2 3 6 8 9 6
13 2 3 6 7 9 6
14 2 3 6 6 7 5
15 2 3 5 5 7 5
16 1 3 5 3 5 5
17 1 3 5 4
18 1 2 5 4
19 1 1 5 4
20 1 5 4
21 5 4
22 3 3
23 2 3
24 2
25 2
mean 1.8 3.6 6.3 101 11.96.9
variance 0.2 1.7 3.8 154 221178
proportion 0.89 0.72 0.63 050 0.30.170
Y 0.9 1.7 1.6 3.1 26 3.1

17



Table 2: log-likelihood, generalised Pearson and étiistics for mixed binomial models

in comparison to the beta-binomial model for thetoal data.

Model log-lik. gen. Pearsond.f. AIC

simple binomial -77.9 74.8 24 157.7
2-component mix —65.9 25.4 22 137.8
3-component mix —65.7 24.2 20 1415
beta-binomial -67.8 28.0 23 139.6
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Table 3: parameter estimates of the bivariate ssichprocess model of natural mortality

and predator mortality.

full model model withp = 0

Parameter estimate s.e. estimate s.e.

. 0.12 0.014 0.2 0.014
b, 0.34 0.041 0.35 0.039
W, 0.77 0.094 0.74 0.084
a 0.86 028 093 028
B 0.057 0.041 - -

o 0.44 014 041 0.3
é 077 023 079 0.24
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shown by € - —) and (------), respectively, for the two models. Data are deddity open

circles, jittered slightly to indicate multiple dapoints.
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Figure 2: estimates of mean net prey consumeddpridator from the bivariate stochastic
process modeH—) and the beta binomial model £ -); £ one standard deviation limits

are shown by~ - -) and (-------), respectively, for the two models.
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