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Abstract. 1. Generalist natural enemies are usually not considered as being capable of
causing population cycles in forest insects, but they may influence the population dynam-
ics of their prey in the low density cycle phase when specialist enemies are largely absent.

2. In the present field study, the total response of the generalist invertebrate predator
community to experimentally established pupal densities of the closely related autumnal
(Epirrita autumnata) and winter moths (Operophtera brumata) was analysed.

3. Due to the high amount of variation in the dataset, the exact shape of the response
curve could not be convincingly estimated. Nevertheless, two important conclusions can
be drawn from the analyses.

4. Firstly, the natural invertebrate predator community seems to become saturated
at rather low densities of both autumnal and winter moth pupae. Secondly, the predator
community seems to become saturated at much lower densities of autumnal than of winter
moth pupae.

5. Furthermore, pupal mass was significantly negatively correlated with invertebrate
predation probability in autumnal moth pupae.

6. These results indicate that differences in the predator assemblage being able to
consume pupae of the two moth species, as well as different handling times, could be
responsible for the substantially higher predation rates in winter than in autumnal moth
pupae.

7. As a consequence, the population dynamics of autumnal moths might be less af-
fected by generalist invertebrate predators than those of winter moths, as autumnal moths
seem able to escape from the regulating influence of generalist predators at much lower
population densities than winter moths.

Key words. Density-dependent predation, Epirrita autumnata, forest Lepidoptera, Oper-
ophtera brumata, population dynamics, pupal predation.

INTRODUCTION

Cyclic population dynamics of outbreaking forest pests have fascinated researchers

ever since they were first observed. As a consequence, numerous studies have been
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conducted to reveal the factors driving population cycles (Berryman, 1988, 1996; My-

ers, 1988). In forest-defoliating Lepidoptera, the most often suggested factors caus-

ing cyclicity are delayed density-dependent interactions with host plants (via qual-

ity/defence) and natural enemies, particularly specialised parasitoids/pathogens (An-

derson & May, 1980; Berryman, 1987; Haukioja et al., 1988; Myers, 1988; Berryman,

1996; Ruohomäki et al., 2000; Tanhuanpää et al., 2002).

Generalist natural enemies are usually not considered as being capable of causing

high-amplitude population cycles in forest insects, as they rarely interact with their

prey in a delayed density-dependent fashion (Turchin, 2003). Nevertheless, they may

contribute to the characteristics of cycles caused by other mechanisms, especially in

low-density phases of the cycle when specialised enemies are largely absent (see ex-

amples in Berryman, 1987). Direct density-dependent predation by generalists, for

example, may have a stabilising influence on cyclic prey population dynamics (Hanski

et al., 1991). However, once the population density of a pest species surpasses the sat-

uration point of its generalist predators, the pest species escapes from their influence.

Other regulating factors, such as specialist predators, then come into play (Holling,

1965; Berryman, 1987). This saturation point depends both on the prey species and

the predators. Therefore, in order to comprehensively reveal the influence of generalist

predators on population cycles in nature, their responses to prey density need to be

studied.

Predators can respond in various ways to changes in prey density. Most commonly,

four response types are distinguished: (1) numerical, (2) aggregative, (3) functional,

and (4) developmental responses (Holling, 1959). A numerical response of predators

can occur as a result of reproduction by the predator. An aggregative response results

from the movements or concentrations of predators in areas of high prey density. The

functional response measures how many prey items each individual predator eats per

given time period, while the developmental response describes changes in predator

feeding due to growth and maturation. The combination of all these responses results

in the total response of the predator to prey density, which is measured as the per cent

of prey organisms eaten per unit time by the entire predator population.

In order to elucidate the various kinds and shapes of predator responses to prey

density in a given system, detailed information about predators and prey, e.g. popula-

tion densities, age structure, individual foraging behaviour, is necessary. As a conse-

quence, the majority of empirical studies on predator-prey models have been conducted

under laboratory conditions (e.g. Desurmont & Weston, 2008; Mahdian et al., 2008;

Seko & Miura, 2008), where many aspects of the predator-prey interaction can be con-

trolled. However, the results of such studies have often proved difficult to translate to

field populations (Sih et al., 1998; Lester & Harmsen, 2002) due, among other factors,
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to the unavoidable simplifications of laboratory experiments. Furthermore, depending

on the predator-prey system, even laboratory set-ups may not suffice in providing all

the necessary information, for example if both predators and prey are soil-dwelling

species and predation events cannot be observed directly. Field experiments, on the

other hand, at least provide valuable information about the total response of the natu-

ral predator community to prey density, which can be used to estimate the importance

of predation on population dynamics. Thus, there is an obvious trade-off between lab-

oratory and field experiments concerning the amount of detailed information that can

be gained and the relevance of the results for natural populations.

The focus of this study is on the autumnal moth, Epirrita autumnata (Borkhausen),

and the winter moth, Operophtera brumata (Linnaeus), which are two closely related

species of geometrid moths (Lepidoptera: Geometridae). Both are serious pests on the

mountain birch, Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti (Fagales:

Betulaceae), in the Scandinavian mountains and northern Fennoscandia (Tenow, 1972;

Haukioja et al., 1988). There, both moth species have cyclic population dynamics and

reach their peak with or without outbreak densities every 9-10 years (Tenow, 1972;

Haukioja et al., 1988; Klemola et al., 2006). Previously, the species have been showing

synchronous peak densities and outbreaks or the winter moth has lagged 1-3 years

behind the autumnal moth (Tenow, 1972; Tenow et al., 2007; Klemola et al., 2008).

The population dynamics of autumnal and winter moths have been extensively

studied over a long period of time in Fennoscandia (Ims et al., 2004; Klemola et al.,

2006; Tenow et al., 2007; Jepsen et al., 2008). However, the contribution of generalist

predators to population dynamics has mainly been examined with relation to explain-

ing differences between outbreaking and non-outbreaking populations (Tanhuanpää

et al., 1999, 2003; Klemola et al., 2002; Raymond et al., 2002). So far, pupal pre-

dation by generalists seems to be the only factor having the potential of regulating

autumnal moth populations without high-amplitude cycles in southern Finland (Tan-

huanpää et al., 1999). Only recently, the potential consequences of pupal predation by

generalists on the population dynamics of autumnal and winter moths within the out-

break range have also been discussed (Klemola, 2009). The importance of generalist

predators for the dynamics of such populations with high-amplitude cycles remains

yet to be scrutinised.

Both autumnal and winter moths pupate in the soil, and the majority of their pu-

pal predators are also soil-dwelling invertebrates. Therefore, the limited amount of

detailed information on predator responses to prey density that could be gained from

laboratory experiments, seemed to be less valuable for elucidating the implications of

pupal predation on moth population dynamics, than the information on the total preda-

tor response that can be gained from field experiments. Due to the length of cycle
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periods of autumnal and winter moths, studying predation rates at different naturally

occurring densities is hardly feasible. In order to get true replicates of the different

cycle phases, any experiment would need to be repeated over several complete cycles

(i.e. at least 30 years). As the densities of generalist predators are, however, not as-

sumed to follow the moth cycles, the influence of the current cycle phase on the results

is likely to be small.

Therefore, in the experiment described in this study, autumnal and winter moth

pupae were simultaneously exposed in different densities to the natural predator com-

munity, which should allow us to draw conclusions over the whole range of cycle

phases. In addition to invertebrate predators, moth pupae are preyed upon also by ver-

tebrates (voles and shrews), but the total number of vertebrate predation events was

too low to allow a meaningful analysis of the response of vertebrates to prey density.

Thus, only the total response of generalist invertebrate predators to prey density was

analysed for both moth species. Furthermore, the influence of pupal mass on the prob-

ability of invertebrate predation was analysed as a potential source for differences in

predation between winter and autumnal moths.

MATERIALS AND METHODS

Study species

Autumnal and winter moths are medium-sized nocturnal moths [wingspan: autumnal

moth: 25-35 mm; winter moth (male): 22-28 mm; winter moth females are virtually

wingless]. They are obligatorily univoltine, and their eggs overwinter and hatch at host

plant budburst. The polyphagous larvae feed on foliage during their five larval instars

and pupate in the soil by mid-summer, with autumnal moths preceding winter moths

in all stages by approximately a week (Mjaaseth et al., 2005). Owing to the large

individual variation in the pupal phase length (Peterson & Nilssen, 1998; Tammaru

et al., 1999), flight periods of populations last at least a month each autumn. Autum-

nal moths eclose in northern Fennoscandia from early August to late-September, and

winter moths from mid-September to mid-October (Peterson & Nilssen, 1996, 1998;

pers. obs. by the authors), with males preceding females by approximately a week. In

both species, adults rely solely on larval-derived resources and do not have to feed for

either maintenance or reproduction.

All developmental stages of autumnal and winter moths are attacked by various

predators such as ants, beetles, spiders, insectivorous birds, and small mammals (voles

and shrews) (Tanhuanpää et al., 1999, 2003; Ruohomäki et al., 2000; Tanhuanpää

et al., 2001; Enemar et al., 2004; Hogstad, 2005). Furthermore, several parasitoid

species are known to attack either the autumnal or the winter moth or both species.
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Different studies have found at least one egg parasitoid, one egg-larval, one larval-

pupal, and approximately 15 larval and 5 pupal species (Ruohomäki, 1994; Ruohomäki

et al., 2000; Klemola et al., 2007; Klemola, 2009; T. Klemola & K. Ruohomäki, un-

published).

Study area

The study was carried out in the immediate vicinity of the Kevo Subarctic Research

Station (69◦45’N, 27◦01’E; 80 m a.s.l.) in northernmost Finland in summer 2008. Dur-

ing this year, the natural larval abundance of both moth species was low in the Kevo

area (Kai Ruohomäki, pers. comm. and pers. obs. by the authors), as both species were

in the bottom phase of their cycles there. Similarly, pupal parasitoids, which follow

the densities of the moth populations with a time-lag, were also in the low density

phase of their cycle. The pupal exposure experiment was conducted in an unconfined

2.5-ha forest area within a large continuous forest northeast of Lake Kevo. The forest

was divided into two adjacent sites by a small (width 3 m) gravelled forest road. The

whole forest was dominated by mountain birches and Scots pines (Pinus sylvestris

L.; Pinales: Pinaceae) with dwarf shrubs, mainly bilberry (Vaccinium myrtillus L.),

bog bilberry (V. uliginosum L.), lingonberry (V. vitis-idaea L.), and northern mountain

crowberry [Empetrum nigrum L. ssp. hermaphroditum (Lange ex Hagerup) Böcher]

(all: Ericales: Ericaceae).

Experimental design

In each of the two forest sites, 10 square plots of 4 m2 size were established in two

parallel transects (2 × 5 plots) with an inter-plot distance of ca 20 m. The location

of each plot was marked with coloured paper string at the closest tree and the GPS

coordinates were recorded. The 10 plots within each site contained moth pupae of both

species in seven different densities, with each of the three lowest densities replicated

twice. The different densities were 8, 12, 18, 32, 50, 72, and 144 moth pupae per plot,

with 50% autumnal and 50% winter moths maintained. This corresponds to densities

of 2, 3, 4.5, 8, 12.5, 18, and 36 pupae per m2. The different densities were randomly

assigned to the different square plots. In total, 748 pupae were used for this experiment.

Ten-day-old laboratory-raised and parasitoid-free pupae were sexed and weighed

(from 12 to 16 July 2008, depending on availability) and exposure started for all pupae

on 17 July 2008. The pupae were buried a few centimetres deep to the moss layer in

small cages of green plastic mesh (6 × 3 × 4 cm, 0.5 cm mesh, open top). The cages

were filled with moist Sphagnum moss, which is among the natural pupation substrates

of both moth species. Each pupa had an individual identification code, which was

written onto a label and attached to the bottom of the cage. Each cage contained one
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autumnal and one winter moth pupa, except in the highest density plot, where each

cage contained two pupae of each species. In these cages, a dividing wall (of the same

plastic mesh as used for the cages) was used in order to allow the re-identification

of individuals after the exposure. Thus, each half of the cage contained one autumnal

and one winter moth pupa. Doubling the number of moths per cage in the highest

density plots was necessary, as 36 cages was the maximum number of cages that could

be allocated to 4 m2, while still allowing us to set the cages without stepping onto

cages that were already set. The cages were arranged in a grid system within each plot

(Fig. 1) and each grid point was marked with a 20 cm long wooden stick.
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Fig. 1. Spatial arrangement of mesh cages in the study plots with (a) 4, (b), 6, (c) 9, (d) 16, (e) 25, and
(f) 36 cages. Each cage contained one autumnal and one winter moth pupa, except in the highest density
treatment (g, not shown), where each cage contained two autumnal and two winter moth pupae. The
spatial arrangement of cages in the highest density plots was identical to the second-highest density plots
(f).

After a 3-week exposure time (which is approximately half of the median natural

pupal period), the cages were re-collected on 7 August 2008 and brought to the lab-

oratory to check the fate of the pupae. Invertebrate predation was identified based on

specific feeding marks on the pupa (Frank, 1967a,b; Tanhuanpää et al., 1999). Verte-

brate predation was assumed to have occurred when the pupa had disappeared totally

(Tanhuanpää et al., 1999; Klemola, 2009). Two autumnal moth pupae were dead at the

time of re-collection and were thus omitted from the data analyses. Although pupal

parasitism was not in the focus of this study, all non-predated pupae were stored in a
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climatic chamber and the fate (successful eclosion or death due to either parasitism or

unknown reasons) of each individual was recorded. The majority of all pupae eclosed

successfully (172 of 180 winter moths, and 291 of 297 autumnal moths, which corre-

sponds to 96% and 98%, respectively) and no pupal parasitism events were observed.

The remaining eight winter and six autumnal moth pupae died due to unknown rea-

sons. As, first of all, these pupae seemed to be alive at the time of re-collection, and

secondly, the removal of these 14 individuals from the analyses did not change the

results qualitatively, we decided to keep them in the dataset.

Statistical analysis

As no detailed information about the composition of the predator community or even

single predation events was available, it did not seem reasonable to try to fit mech-

anistic response models (e.g. specific functional response models like the Holling

Disc Equation) to the obtained field data. Instead, three general types of responses

(1) linear, (2) asymptotic exponential [y = a × (1 − exp(−bx))], and (3) sigmoid

y = a/[1+b× exp(−cx)] were fitted to the data using the ‘glm’ and ‘nls’ functions of

the statistics software R 2.8.1 (R Development Core Team, 2008) in order to determine

the most likely shape of the total predator response to prey density. Akaike’s Infor-

mation Criterion corrected for small sample size (AICc) as well as Akaike’s weight

(ωic), which was used as model selection criteria (Burnham & Anderson, 2002) via

the ‘selMod’ function in the R-package ‘pgirmess’ (Giraudoux, 2008).

Furthermore, the relationship between the proportion of predated pupae and the

initial pupal density, which can give further information about the most likely shape of

the total predator response to prey density, was estimated by local polynomial regres-

sion fitting, using the ‘loess’ function in R 2.8.1. This visual exploration method was

chosen, as the low number of replicates and the high amount of variation in the data

did not allow for rigorous statistical testing. In the case of a linear predator response

to prey density, the proportion of predated pupae should be approximately constant

across pupal density. In the asymptotic exponential case, the proportion of predated

pupae should asymptotically decrease with increasing pupal density. When the preda-

tor response to pupal density has a sigmoid shape, the proportion of predated pupae

should first increase with pupal density and then decrease when pupal density is higher

than the inflection point of the sigmoid predator response curve.

Finally, the probability of invertebrate predation depending on moth species and

pupal mass was analysed with generalised linear-mixed effects models (the GLIMMIX

procedure in SAS 9.1) with a binomial error distribution and a logit link function. In

these models, site (i.e. the two parts of the forest), grid, and cage were used as nested
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random effects (‘cage’ within ‘grid’ within ‘site’) to account for the nested structure

of the data.

RESULTS

Model selection criteria suggested in both moth species that an asymptotic exponen-

tial response of the invertebrate predator community to increasing pupal density fits

the data best (Table 1, Fig. 2a). However, for autumnal moths, the difference in model

probability between the linear and the asymptotic exponential model was very small,

while for winter moths the asymptotic exponential model had a two times higher prob-

ability than the linear model (Table 1). The probability of the sigmoid model was very

low in both moth species (Table 1).

Table 1. Information theoretic model selection criteria used to evaluate how well three different types of
models (linear, asymptotic exponential, sigmoid) describe the total response of the invertebrate predator
community to pupal densities of autumnal and winter moths. −2 log likelihood, the number of estimable
parameters (K), Akaike’s Information Criterion corrected for small sample sizes (AICc), the difference
in AICc between each model and the best model (∆AICc), as well as the model probabilities (ωic) are
given. For each species, the model with the highest model probability is printed in bold letters.

Species Model −2 log likelihood K AICc ∆AICc ωic

Autumnal moth Linear −45.99 3 99.47 0.13 0.44

Asymptotic exponential −45.92 3 99.34 0 0.48

Sigmoid −46.12 4 102.91 3.57 0.08

Winter moth Linear −61.19 3 129.88 1.22 0.33

Asymptotic exponential −60.58 3 128.66 0 0.60

Sigmoid −61.20 4 133.06 4.40 0.07

The visual examination of the relationship between the proportion of predated pu-

pae, and the initial pupal density aided by local polynomial regression fitting, sup-

ported the notion of an either linear or asymptotic exponential total predator response

to autumnal moth pupal density (Fig. 2b). In contrast, for the winter moth the fitted

curve rather suggested a sigmoid total predator response, as the proportion of predated

pupae first increased at low pupal densities and then decreased again (Fig. 2b).

In total, almost three times as many winter than autumnal moth pupae were pre-

dated by invertebrates (183 vs 69). Likewise, the probability of invertebrate preda-

tion was significantly higher for winter than for autumnal moths across all densities

(species: F1,428 = 84.50, P < 0.0001; density × species: F1,427 = 0.10, P = 0.749).

The pupal mass of winter moths ranged from 22.5 to 54.6 mg (mean ± 95% CI: 40.0

± 0.5 mg) and autumnal moth pupae weighed between 51.2 and 116.4 mg (79.2 ± 1.1

mg). There was a highly significant negative relationship between pupal mass and the
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Fig. 2. Total response of the invertebrate predator community to pupal density (a) and relationship be-
tween the proportion of predated pupae and pupal density (b). Data and model fits are shown separately
for autumnal (open circles, hatched lines) and winter moths (filled circles, solid lines) in both graphs.
n1 = 4 plots in the three lowest initial pupal densities (4, 6, 9 pupae of each moth species) and n2 = 2
plots in all other initial pupal densities (16, 25, 36, 72 pupae of each moth species). The shown model
fits were obtained by (a) non-linear least-squares regression and (b) local polynomial regression (loess).
Above each graph, hypothetical examples of three potential relationships (linear, asymptotic exponential,
sigmoid) between total predation and pupal density (a) and the corresponding relationships between the
proportion of predated pupae and pupal density (b) are shown.

probability of invertebrate predation for autumnal moths (F1,69 = 9.34, P = 0.0032;

Fig. 3), but not for winter moths (F1,68 < 0.01, P = 0.956).

DISCUSSION

Despite substantial research effort, the mechanisms causing cyclic population dynam-

ics in forest pest species are still not thoroughly understood. Even less is known about

potential effects of generalist predators that might modify the shape of the cycle dur-

ing low-density phases. The results of our field experiment on pupal predation suggest

an asymptotic exponential response (similar to a type II functional response) of the

generalist invertebrate predator community to the density of both winter and autumnal

moth pupae in northern Fennoscandia. Overall, winter moth pupae suffered from about

threefold higher predation rates by generalist invertebrates than autumnal moths across

all tested densities. As a consequence, the influence of invertebrate pupal predation on

the population dynamics may be less pronounced in autumnal than in winter moths.

This might explain the observed time lag in moth population dynamics, with autumnal
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Fig. 3. Probability of invertebrate predation depending on pupal mass for autumnal moths. Plotted are
the mean ± 1 SE of the incidences of invertebrate predation events in evenly distributed classes of pupal
mass and the predicted probability of predation (solid line) with 95% confidence limits (dashed lines)
calculated by the logistic regression model described in the text. n = 366 autumnal moth pupae. The data
are plotted in groups for illustrational purposes only whereas the analyses were performed on the original
continuous scale.

moth densities increasing first, followed by winter moths after 1-3 years (Tenow, 1972;

Tenow et al., 2007; Klemola et al., 2008; Klemola, 2009).

Model selection criteria suggested an asymptotic exponential response of the inver-

tebrate predator community to increasing pupal densities of both autumnal and winter

moths. However, the rather high amount of variation in our dataset made it difficult to

decide with high confidence which of the three types of response functions fitted the

data best. On the one hand, the model probability of the asymptotic exponential model

was almost one order of magnitude higher than the probability of the sigmoid model in

the winter moth. On the other hand, however, the relationship between the proportion

of predated winter moth pupae and pupal density rather suggested a sigmoid response

of the invertebrate predator community. In the autumnal moth, neither model selection

criteria nor visual examination of the proportion of predated pupae, depending on pu-

pal density, revealed a clear difference between a linear and an asymptotic exponential

response, although the latter had the highest model probability. Furthermore, due to the

rather small size of the plots (2 m × 2 m) in which the experimental densities of pupae

were established, edge effects might have obscured any density-dependent responses

of predators to pupal density. This is if predators were foraging at the scale of the site

rather than the plot, or if predators were aggregating at plots of high pupal density (e.g.

Raymond et al., 2002). This might also explain why we did not find such a strongly

density-dependent predation as described by Varley et al. (1973) for Wytham Woods

and by Roland (1994, 1998) in British Columbia. As a consequence, the specific shape

of the response of the invertebrate predator community to pupal density cannot fully be
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concluded from the present experimental data. Therefore, implications of the response

type for the population dynamics of the two moth species are not further discussed

here.

Independent of the exact shape of the response curve, two important things can be

concluded from our experiment. Firstly, it can be seen that the invertebrate predator

community already starts to get saturated at the pupal densities used in the present

study. The highest density of pupae used in our experiment (36 per m2) was still far

below that observed during outbreak phases, when hundreds of pupae per square metre

can be found in the forest soil (Frank, 1967a; Varley et al., 1973; Pearsall & Walde,

1994). This supports previous suggestions that pupal predation is likely to be of little

importance in peak and outbreak situations of autumnal and winter moths (Berryman,

1987; Tanhuanpää et al., 2002). In non-outbreaking populations with low-amplitude

cycles, pupal predation by invertebrates can, however, have a regulating influence on

population density (Tanhuanpää et al., 1999).

Secondly, comparing the response curves for the two moth species, the results of

our experiment indicate that the predator community gets saturated at much lower

densities of autumnal than of winter moth pupae. As a consequence, autumnal moths

seem to be able to escape the regulating influence of their generalist natural enemies

at much lower population densities than winter moths. This might affect their popula-

tion dynamics in the increase phase of the cycle, and could explain why the autumnal

moth densities increase first and are followed by the winter moth densities with a 1-3

year time lag. Our results thus support the hypothesis of Klemola (2009) that these di-

verging population dynamics of autumnal and winter moths in northern Fennoscandia,

might, at least partially, be caused by a combined effect of higher larval parasitism rates

in autumnal moths in peak and post-peak phases of the population cycles, and higher

invertebrate pupal predation rates in winter moths in the low phase of the population

cycle.

In order to obtain a more mechanistic understanding of how individual invertebrate

predator species react to differences in pupal densities of autumnal and winter moths,

and how the predators’ responses might affect the population dynamics of the moth

species, detailed information about all predator species, their population dynamics,

and their foraging behaviour would be required. However, there is only little published

information about the composition of the invertebrate predator community in northern

Fennoscandia (Koponen & Ojala, 1975; Koponen, 1984) and also direct observations

of pupal predation events are rare. In the literature, mostly larvae but also adults of sev-

eral beetle species of the families Carabidae, Elateridae, and Staphylinidae have been

described as predators of autumnal and winter moth larvae (Frank, 1967b; East, 1974;

Roland, 1990; Tanhuanpää et al., 1999; Horgan & Myers, 2004). Beetle larvae feeding
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on moth pupae were occasionally also encountered in laboratory rearings (pers. obs. by

the authors), as the Sphagnum moss that was used as pupation substrate was collected

in the forest. Pitfall trapping in the study area during the present experiment remained

unsuccessful (data not shown), which suggests that mostly beetle larvae, which can-

not usually be caught with pitfall traps (Horgan, 2005), prey upon moth pupae in our

study area. More detailed information about the identity of invertebrate predators of

autumnal and winter moths in northern Fennoscandia is, however, needed to confirm

this assumption.

Even if more detailed information about the predator community had been avail-

able, it would have been close to impossible to establish a (laboratory) set-up with an

adequate number of replicates of different pupal densities in natural substrate, includ-

ing controlled numbers of all relevant natural predators. Therefore, a field experiment

was the only reasonable way to investigate the total response of the natural predator

community to moth pupal density. As a consequence, the resulting data allowed only

for a less rigorous way of investigating the potential shape of the predators’ response

to changes in prey density. Nevertheless, they provide valuable information for esti-

mating the potential impact of pupal predation on the shape of the population cycles

of autumnal and winter moths in northern Fennoscandia.

Despite the lack of detailed data on invertebrate predators, it can be assumed that

not all invertebrates in the forest soil are able to consume both autumnal and winter

moths due to differences in size and texture of the pupal case. In the experiment de-

scribed here, the pupal mass of winter moths was on average only half that of autumnal

moths. The size of the pupa presumably correlates with the thickness and hardiness of

the cuticle of the pupal case, which is known to affect food selection of invertebrate

predators (Frank, 1967a,b; Roland, 1990). Such a correlation might also be the rea-

son for the negative relationship between the probability of invertebrate predation and

pupal mass in autumnal moths (Roland, 1990). The observed differences in the total

response of the invertebrate predator community to densities of autumnal and winter

moth pupae might therefore be attributable to a combination of several factors: (1) the

predator assemblage feeding on the two moth species is most probably not identical;

(2) predator species feeding on both moth species might need more time to open the

thicker/tougher cuticle of autumnal moth pupae; and (3) autumnal moths – due to their

larger size – presumably provide more food per item, thus smaller numbers of them

need to be consumed to obtain the same amount of energy compared to winter moths.

As autumnal and winter moth pupae were always exposed in mixed-species as-

semblages in this experiment, a general preference of invertebrate predators for winter

moths could lead to the observed differences in predation rates between autumnal and

winter moths, as the latter ones might be eaten preferentially as long as they are avail-
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able. However, similar experiments in the previous season, where pupae of both moth

species were exposed to the same predator community but both in single- and in mixed-

species settings, showed the same threefold difference in predation rates irrespective

of whether predators could choose between the two species or not (Klemola, 2009).

Therefore, it seems unlikely that the lower predation rate in autumnal moth pupae was

due to the presence of winter moth pupae.

In our study, less than 3% of all pupae were predated by vertebrates. This is even

less than in previous experiments from the same area [Tanhuanpää et al. (1999) report

vertebrate predation rates of 5-35%] and comparable to our own data from the previ-

ous summer, where we found vertebrate predation rates of < 2.5% in most of the plots

(Klemola, 2009). This suggests that pupal predation by vertebrates has probably no

major impact on the population dynamics of autumnal and winter moths in northern

Fennoscandia. Locally, however, vertebrate predation may have a strong impact on pu-

pal survival, as almost 90% of pupae were eaten by vertebrates in the previous summer

in one plot, which was located in the same forest site where the present experiment was

conducted (Klemola, 2009). In total, vertebrate predation seems to be a very stochastic

component of pupal mortality in autumnal and winter moth populations.

In summary, our study analysed the response of generalist invertebrate predators

to densities of cyclic forest-defoliating Lepidoptera in order to elucidate their potential

influence on population dynamics of the pest species. The exact shape of the responses

of invertebrates to pupal densities of both moth species could not be finally assessed,

due to the high amount of variation in the experimental data. This needs to be studied

in more detail in the future. Irrespective of the shape of the response, the saturation

point of the response curve was reached at much lower densities for autumnal than for

winter moths, which might contribute to the diverging population dynamics of the two

moth species in northern Fennoscandia.
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