19 research outputs found

    Systematic Stochastic Reduction of Inertial Fluid-Structure Interactions subject to Thermal Fluctuations

    Full text link
    We present analysis for the reduction of an inertial description of fluid-structure interactions subject to thermal fluctuations. We show how the viscous coupling between the immersed structures and the fluid can be simplified in the regime where this coupling becomes increasingly strong. Many descriptions in fluid mechanics and in the formulation of computational methods account for fluid-structure interactions through viscous drag terms to transfer momentum from the fluid to immersed structures. In the inertial regime, this coupling often introduces a prohibitively small time-scale into the temporal dynamics of the fluid-structure system. This is further exacerbated in the presence of thermal fluctuations. We discuss here a systematic reduction technique for the full inertial equations to obtain a simplified description where this coupling term is eliminated. This approach also accounts for the effective stochastic equations for the fluid-structure dynamics. The analysis is based on use of the Infinitesmal Generator of the SPDEs and a singular perturbation analysis of the Backward Kolomogorov PDEs. We also discuss the physical motivations and interpretation of the obtained reduced description of the fluid-structure system. Working paper currently under revision. Please report any comments or issues to [email protected]: 19 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1009.564

    Stochastic Eulerian Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations

    Full text link
    We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.Comment: 24 pages, 3 figure

    Simulation-Based Design of Bicuspidization of the Aortic Valve

    Full text link
    Objective: Severe congenital aortic valve pathology in the growing patient remains a challenging clinical scenario. Bicuspidization of the diseased aortic valve has proven to be a promising repair technique with acceptable durability. However, most understanding of the procedure is empirical and retrospective. This work seeks to design the optimal gross morphology associated with surgical bicuspidization with simulations, based on the hypothesis that modifications to the free edge length cause or relieve stenosis. Methods: Model bicuspid valves were constructed with varying free edge lengths and gross morphology. Fluid-structure interaction simulations were conducted in a single patient-specific model geometry. The models were evaluated for primary targets of stenosis and regurgitation. Secondary targets were assessed and included qualitative hemodynamics, geometric height, effective height, orifice area and prolapse. Results: Stenosis decreased with increasing free edge length and was pronounced with free edge length less than or equal to 1.3 times the annular diameter d. With free edge length 1.5d or greater, no stenosis occurred. All models were free of regurgitation. Substantial prolapse occurred with free edge length greater than or equal to 1.7d. Conclusions: Free edge length greater than or equal to 1.5d was required to avoid aortic stenosis in simulations. Cases with free edge length greater than or equal to 1.7d showed excessive prolapse and other changes in gross morphology. Cases with free edge length 1.5-1.6d have a total free edge length approximately equal to the annular circumference and appeared optimal. These effects should be studied in vitro and in animal studies

    Flagellum Pumping Efficacy in Shear-Thinning Viscoelastic Fluids

    Full text link
    Microorganism motility often takes place within complex, viscoelastic fluid environments, e.g., sperm in cervicovaginal mucus and bacteria in biofilms. In such complex fluids, strains and stresses generated by the microorganism are stored and relax across a spectrum of length and time scales and the complex fluid can be driven out of its linear response regime. Phenomena not possible in viscous media thereby arise from feedback between the "swimmer" and the complex fluid, making swimming efficiency co-dependent on the propulsion mechanism and fluid properties. Here we parameterize a flagellar motor and filament properties together with elastic relaxation and nonlinear shear-thinning properties of the fluid in a computational immersed boundary model. We then explore swimming efficiency over this parameter space. One exemplary insight is that motor efficiency (measured by the volumetric flow rate) can be boosted vs.\ degraded by moderate vs.\ strong shear-thinning of the viscoelastic environment.Comment: 15 pages, 8 figure

    On the chordae structure and dynamic behaviour of the mitral valve

    Get PDF
    We develop a fluid-structure interaction (FSI) model of the mitral valve (MV) that uses an anatomically and physiologically realistic description of the MV leaflets and chordae tendineae. Three different chordae models — complex, “pseudo-fibre”, and simplified chordae — are compared to determine how different chordae representations affect the dynamics of the MV. The leaflets and chordae are modelled as fibre-reinforced hyperelastic materials, and FSI is modelled using an immersed boundary-finite element (IB/FE) method. The MV model is first verified under static boundary conditions against the commercial FE software ABAQUS, and then used to simulate MV dynamics under physiological pressure conditions. Interesting flow patterns and vortex formulation are observed in all three cases. To quantify the highly complex system behaviour resulting from FSI, an energy budget analysis of the coupled MV FSI model is performed. Results show that the complex and pseudo-fibre chordae models yield good valve closure during systole, but that the simplified chordae model leads to poorer leaflet coaptation and an unrealistic bulge in the anterior leaflet belly. An energy budget analysis shows that the MV models with complex and pseudo-fibre chordae have similar energy distribution patterns, but the MV model with the simplified chordae consumes more energy, especially during valve closing and opening. We find that the complex chordae and pseudo-fibre chordae have similar impact on the overall MV function, but that the simplified chordae representation is less accurate. Because a pseudo-fibre chordal structure is easier to construct and less computationally intensive, it may be a good candidate for modelling MV dynamics or interaction between the MV and heart in patient-specific applications

    Validation of Immersed Boundary Simulations of Heart Valve Hemodynamics against In Vitro 4D Flow MRI Data

    Full text link
    The immersed boundary (IB) method is a mathematical framework for fluid-structure interaction problems (FSI) that was originally developed to simulate flows around heart valves. Validation of FSI simulations around heart valves against experimental data is challenging, however, due to the difficulty of performing robust and effective simulations, the complications of modeling a specific physical experiment, and the need to acquire experimental data that is directly comparable to simulation data. In this work, we performed physical experiments of flow through a pulmonary valve in an in vitro pulse duplicator, and measured the corresponding velocity field using 4D flow MRI (4-dimensional flow magnetic resonance imaging). We constructed a computer model of this pulmonary artery setup, including modeling valve geometry and material properties via a technique called design-based elasticity, and simulated flow through it with the IB method. The simulated flow fields showed excellent qualitative agreement with experiments, excellent agreement on integral metrics, and reasonable relative error in the entire flow domain and on slices of interest. These results validate our design-based valve model construction, the IB solvers used and the immersed boundary method for flows around heart valves
    corecore