1,140 research outputs found

    Throughput Rate of a Two-worker Stochastic Bucket Brigade

    Get PDF
    Work-sharing in production systems is a modern approach that improves throughput rate. Work is shifted between cross-trained workers in order to better balance the material now in the system. When a serial system is concerned, a common work-sharing approach is the Bucket-Brigade (BB), by which downstream workers sequentially take over items from adjacent upstream work- ers. When the workers are located from slowest-to-fastest and their speeds are deterministic, it is known that the line does not suffer from blockage or starvation, and achieves the maximal theoretical throughput rate (TR). Very little is known in the literature on stochastic self-balancing systems with work-sharing, and on BB in particular. This paper studies the basic BB model of Bartholdi & Eisenstein (1996) under the assumption of stochastic worker speeds. We identify settings in which conclusions that emerge from deterministic analysis fail to hold when speeds are stochastic, in particular relating to worker order assignment as a function of the problem parameters

    Clickstream Big Data and “Delivery before Order Making” Mode for Online Retailers

    Get PDF
    Our research is inspired by a leading online retailer using clickstream big data to estimate customer demand and then ship items to customers or hubs near customers by a mode of “delivery before order making” (DBOM) mode. Using clickstream data to obtain advance demand information in order quantities, we integrate the forecasting with a singleitem uncapacitated dynamic lot sizing problem in a rolling-horizon environment. Using the simulated clickstream data, we evaluate the performance of DBOM mode

    Behavior of bucket brigade in an order-picking system under the effect of fatigue

    Get PDF
    Il lavoro considera l’effetto della fatica sugli operatori in un bucket-brigade in un sistema di order-picking. Lo scopo dell’ elaborato è quello di studiare il comportamento di tutti i possibili tipi di bucket brigade e decidere quali sono i più performanti. I risultati sono stati ottenuti sia numericamente con MATLAB che analiticamente. Oltre a presentare i risultati ottenuti, sono fornite anche delle istruzioni che il manager deve seguire per massimizzare la performance del sistema

    A Novel Work-Sharing Protocol for U-Shaped Assembly Lines

    Get PDF
    Companies worldwide try to employ contemporary manufacturing systems that can cope with changes in external competitive environments and internal process variability. Just In Time (JIT) philosophy helps achieve the required resilience by its policy of having people, machines, and material just-in-time for any given process. U-shaped assembly lines (U-lines) are used to implement JIT principles. Another principle that helps achieve competitive advantage by developing a flexible workforce that responds efficiently to change is that of work-sharing. Operators share work and help each other in a dynamic and floating way, requiring little management effort to distribute workload amongst operators, or balance the assembly line. The aim of this work is to develop an effective work-sharing protocol for U-shaped assembly lines that will provide the combined advantages of U-lines and work-sharing principles. The new protocol is based on two ideas from literature - the Cellular Bucket Brigade (CBB) system, and the Modified Work-Sharing (MWS) system. To keep the focus on developing the protocol, the scope of this work was limited to two worker systems. The methodology used is to model the protocol and U-line system as a discrete event simulation model, and then use an optimization model to maximize throughput and find optimal buffer locations and levels. A physical simulation experiment was conducted in the Toyota Production Systems lab at RIT to validate the model. Once validated, computer simulation experiments were run with industry data, and results obtained were compared with existing protocols from literature. It was found that the new protocol performed at least as well as the CBB protocol, improving the output by an average of 1%, for the scenarios tested. Increase in processing speed variability as well as larger variation among workers were found to negatively impact the performance of the protocol. The results were analyzed further to understand why these factors are significant, and why there are anomalies and patterns, or lack thereof. Finally, limitations of the protocol, and opportunities for future research in the field are presented. Major limitations of the protocol are that it is difficult to comprehend, and the assumption of an assembly line divided into equal tasks is not practical in the industry

    Dynamic Quay Crane Allocation

    Get PDF
    We introduce simple rules for quay cranes to handle containers along a berth where vessels arrive continuously in time. We first analyze a model where workload is continuous. Our analysis shows that if the system is configured properly, it will always converge to a state with the maximum possible throughput regardless of external disruptions or changes in workload. Numerical simulations based on a discrete workload model suggest that, by following the same rules, the system can still converge to state with throughput that is very close to its upper bound

    Performance of cellular bucket brigades with hand-off times

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Performance of cellular bucket brigades with hand-off times

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Deterministic Chaos in a Model of Discrete Manufacturing

    Get PDF
    Abstract: A natural extension of the bucket brigade model of manufacturing is capable of chaotic behavior in which the product intercompletion times are, in effect, random, even though the model is completely deterministic. This is, we believe, the first proven instance of chaos in discrete manufacturing. Chaotic behavior represents a new challenge to the traditional tools of engineering management to reduce variability in production lines. Fortunately, if configured correctly, a bucket brigade assembly line can avoi
    • …
    corecore