95 research outputs found

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms

    Artificial Intelligence in Civil Engineering

    Get PDF
    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering

    Development of a multi-objective optimization algorithm based on lichtenberg figures

    Get PDF
    This doctoral dissertation presents the most important concepts of multi-objective optimization and a systematic review of the most cited articles in the last years of this subject in mechanical engineering. The State of the Art shows a trend towards the use of metaheuristics and the use of a posteriori decision-making techniques to solve engineering problems. This fact increases the demand for algorithms, which compete to deliver the most accurate answers at the lowest possible computational cost. In this context, a new hybrid multi-objective metaheuristic inspired by lightning and Linchtenberg Figures is proposed. The Multi-objective Lichtenberg Algorithm (MOLA) is tested using complex test functions and explicit contrainted engineering problems and compared with other metaheuristics. MOLA outperformed the most used algorithms in the literature: NSGA-II, MOPSO, MOEA/D, MOGWO, and MOGOA. After initial validation, it was applied to two complex and impossible to be analytically evaluated problems. The first was a design case: the multi-objective optimization of CFRP isogrid tubes using the finite element method. The optimizations were made considering two methodologies: i) using a metamodel, and ii) the finite element updating. The last proved to be the best methodology, finding solutions that reduced at least 45.69% of the mass, 18.4% of the instability coefficient, 61.76% of the Tsai-Wu failure index and increased by at least 52.57% the natural frequency. In the second application, MOLA was internally modified and associated with feature selection techniques to become the Multi-objective Sensor Selection and Placement Optimization based on the Lichtenberg Algorithm (MOSSPOLA), an unprecedented Sensor Placement Optimization (SPO) algorithm that maximizes the acquired modal response and minimizes the number of sensors for any structure. Although this is a structural health monitoring principle, it has never been done before. MOSSPOLA was applied to a real helicopter’s main rotor blade using the 7 best-known metrics in SPO. Pareto fronts and sensor configurations were unprecedentedly generated and compared. Better sensor distributions were associated with higher hypervolume and the algorithm found a sensor configuration for each sensor number and metric, including one with 100% accuracy in identifying delamination considering triaxial modal displacements, minimum number of sensors, and noise for all blade sections.Esta tese de doutorado traz os conceitos mais importantes de otimização multi-objetivo e uma revisão sistemática dos artigos mais citados nos últimos anos deste tema em engenharia mecânica. O estado da arte mostra uma tendência no uso de meta-heurísticas e de técnicas de tomada de decisão a posteriori para resolver problemas de engenharia. Este fato aumenta a demanda sobre os algoritmos, que competem para entregar respostas mais precisas com o menor custo computacional possível. Nesse contexto, é proposta uma nova meta-heurística híbrida multi-objetivo inspirada em raios e Figuras de Lichtenberg. O Algoritmo de Lichtenberg Multi-objetivo (MOLA) é testado e comparado com outras metaheurísticas usando funções de teste complexas e problemas restritos e explícitos de engenharia. Ele superou os algoritmos mais utilizados na literatura: NSGA-II, MOPSO, MOEA/D, MOGWO e MOGOA. Após validação, foi aplicado em dois problemas complexos e impossíveis de serem analiticamente otimizados. O primeiro foi um caso de projeto: otimização multi-objetivo de tubos isogrid CFRP usando o método dos elementos finitos. As otimizações foram feitas considerando duas metodologias: i) usando um meta-modelo, e ii) atualização por elementos finitos. A última provou ser a melhor metodologia, encontrando soluções que reduziram pelo menos 45,69% da massa, 18,4% do coeficiente de instabilidade, 61,76% do TW e aumentaram em pelo menos 52,57% a frequência natural. Na segunda aplicação, MOLA foi modificado internamente e associado a técnicas de feature selection para se tornar o Seleção e Alocação ótima de Sensores Multi-objetivo baseado no Algoritmo de Lichtenberg (MOSSPOLA), um algoritmo inédito de Otimização de Posicionamento de Sensores (SPO) que maximiza a resposta modal adquirida e minimiza o número de sensores para qualquer estrutura. Embora isto seja um princípio de Monitoramento da Saúde Estrutural, nunca foi feito antes. O MOSSPOLA foi aplicado na pá do rotor principal de um helicóptero real usando as 7 métricas mais conhecidas em SPO. Frentes de Pareto e configurações de sensores foram ineditamente geradas e comparadas. Melhores distribuições de sensores foram associadas a um alto hipervolume e o algoritmo encontrou uma configuração de sensor para cada número de sensores e métrica, incluindo uma com 100% de precisão na identificação de delaminação considerando deslocamentos modais triaxiais, número mínimo de sensores e ruído para todas as seções da lâmina

    Advanced Sensing, Fault Diagnostics, and Structural Health Management

    Get PDF
    Advanced sensing, fault diagnosis, and structural health management are important parts of the maintenance strategy of modern industries. With the advancement of science and technology, modern structural and mechanical systems are becoming more and more complex. Due to the continuous nature of operation and utilization, modern systems are heavily susceptible to faults. Hence, the operational reliability and safety of the systems can be greatly enhanced by using the multifaced strategy of designing novel sensing technologies and advanced intelligent algorithms and constructing modern data acquisition systems and structural health monitoring techniques. As a result, this research domain has been receiving a significant amount of attention from researchers in recent years. Furthermore, the research findings have been successfully applied in a wide range of fields such as aerospace, manufacturing, transportation and processes

    Application of Wavelets-based SVM Classification for Automated Fault Diagnosis and Prognosis of Mechanical Systems

    Get PDF
    Anwendung der Wavelet-basierte SVM Klassifizierung für die automatisierte Fehlerdiagnose und -prognose mechanischer Systeme In dieser Arbeit werden Techniken der Mustererkennung auf verschiedene Problemstellungen der Fehlerdiagnose und -prognose angewendet. Die untersuchten Anwendungen stellen reale industrielle Anwendungen dar, bei denen verschiedene Messeigenschaften (wie zyklische, impulsive, und periodische Signale), verschiedene Charakteristik der Erkennungsobjektiven (wie kumulativ und einmalige Ereignisse), verschiedene Betriebsbedingungen und -parameter der Maschine, und verschiedene Fehler und Erkennungssystemanforderungen (wie Verschleiß, Riss, und Objekterkennung; Systemzustand und Restlebensdauer) die modulare Mustererkennungsverfahren und -techniken erfordern. Verschiedene Ansätze werden untersucht und angewendet, wie Support Vector Machine (SVM), Continuous Wavelet-Transform (CWT),Wavelet Packet Transform (WPT) und Diskrete Wavelet-Transform (DWT), und viele Konzepte und Lösungen werden vorgeschlagen und überprüft, um ein zuverlässiges Zustandsüberwachungssystem zu erreichen, dass die Instandhaltungsplanung der Maschine unterstützt und die Produktionsqualität und Produktionskosten verbessert. In der ersten untersuchten Anwendung in dieser Arbeit wird ein Ansatz für die Entwicklung eines Fehlerdiagnose- und -prognosesystems vorgestellt. Das System wird als Vorwarnmodul verwendet, um die Notwendigkeit für das Ersetzen von Verschleißteilen von Produktionsmaschinen zu erkennen und die Restlebensdauer des überwachten Teils zu bewerten. In der zweiten untersuchten Anwendung wird ein Produktionsverfahren überwacht. Ziel ist die Erkennung eines Objektes mit einer möglichst geringen Fehlalarmrate. Die Signale beinhalten nichtstationäre, impulsartige bzw. einmalige Ereignisse. Ein weiteres Merkmal der Sensorcluster-Signale ist die nicht gleichzeitige Erzeugung von Ereignissen, die die Verwendung von geeigneten Entscheidungsfusionstechniken erfordert. In der letzten untersuchten Anwendung, werden modell- und signalbasierte Verfahren für die Risserkennung und Prognose in rotierenden Maschinen untersucht, um eine Vorwarnung für Rotor-Risse zu erreichen für Online- Überwachung in Turbomaschinen. Die angetroffenen Signale sind periodische Schwingungssignale mit kumulativen Auswirkungen der Fehlerereignisse. Offene Fragen stellen sich bei den Themen Zustandsbewertung, Fehlerschweregrad und Restlebensdauer, basierend auf spezifischen Sensordaten mit besonderen anwendungsorientierten Eigenschaften. Diese Arbeit befasst sich mit diesen offenen Fragen, um ein zuverlässiges Zustandsüberwachungssystem zu erreichen. Es kann festgestellt werden, dass Wavelets und SVM sehr nützliche Werkzeuge für die Merkmalsextraktion und Klassifikation im Bereich der Zustandsüberwachung sind. Der Merkmalsraum von SVM ist nützlich für die Bewertung der verbleibenden Lebensdauer. Allerdings zeigt sich ebenfalls, dass angesichts der Herausforderungen anwendungsorientierte Lösungen gefunden werden müssen.In this thesis, the application of pattern recognition techniques is considered for different kinds of fault diagnosis and prognosis problems and applications. The investigated applications represent real industrial applications, in which different measurement characteristics (such as cyclic, impulsive, and periodic signals), different recognition objective characteristics (such as accumulative and one-time events), different operational conditions and parameters of the machine, and different faults and detection system requirements (such as wear, crack, and object detection; System state and remaining life time) are challenging the existence of modular pattern recognition procedures and techniques. Different approaches are investigated and applied such as Support Vector Machine (SVM), Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), and Continuous Wavelet Transform (CWT), and many concepts and solutions are proposed and verified, in order to achieve a reliable condition monitoring system, which supports the maintenance planning of the machine and adds value to the production quality and cost. In the first investigated application in this thesis, an approach for developing a fault diagnosis and prognosis system is presented. The system is used as a prewarning module to detect the necessity for replacing wear parts of production machines and to evaluate the remaining life time of the supervised part. The sensor signals encountered for processing are nondeterministic with cyclic nature related to the operation cycle of the machine. In the second investigated application, the goal is to monitor a production process for online detection of a target object with the lowest possible false alarm rate. The signals encountered in the system of this work are characterized with nonstationary impulsive one-time events representing the goal object. Another characteristic of the sensor cluster signals is the partly simultaneous stimulation of events which requires the use of suitable decision fusion techniques. In the last investigated application, two main approaches used for crack detection and prediction in rotating machinery; model based and signal based, are investigated, in order to achieve a prewarning technique for rotor cracks to be applied for online monitoring in turbo-machinery. The signals encountered are periodic vibration signals with accumulative impact of the fault incident. Open questions arise in the issues of state evaluation, severity estimation, and remaining life time prediction, based on specific sensor data with particular applicationoriented characteristics. This work deals with these open questions, in order to achieve a reliable condition monitoring system. As a general conclusion of the work, it can be stated that Wavelets and SVM are reliable tools for feature extraction and classification in the field of condition monitoring, and the feature space of SVM is useful for remaining life prediction. However; specific application oriented Solutions and tricks are necessary, considering the diversity of fault diagnosis and prognosis problems and difficulties

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Optimal seismic retrofitting of existing RC frames through soft-computing approaches

    Get PDF
    2016 - 2017Ph.D. Thesis proposes a Soft-Computing approach capable of supporting the engineer judgement in the selection and design of the cheapest solution for seismic retrofitting of existing RC framed structure. Chapter 1 points out the need for strengthening the existing buildings as one of the main way of decreasing economic and life losses as direct consequences of earthquake disasters. Moreover, it proposes a wide, but not-exhaustive, list of the most frequently observed deficiencies contributing to the vulnerability of concrete buildings. Chapter 2 collects the state of practice on seismic analysis methods for the assessment the safety of the existing buildings within the framework of a performancebased design. The most common approaches for modeling the material plasticity in the frame non-linear analysis are also reviewed. Chapter 3 presents a wide state of practice on the retrofitting strategies, intended as preventive measures aimed at mitigating the effect of a future earthquake by a) decreasing the seismic hazard demands; b) improving the dynamic characteristics supplied to the existing building. The chapter presents also a list of retrofitting systems, intended as technical interventions commonly classified into local intervention (also known “member-level” techniques) and global intervention (also called “structure-level” techniques) that might be used in synergistic combination to achieve the adopted strategy. In particular, the available approaches and the common criteria, respectively for selecting an optimum retrofit strategy and an optimal system are discussed. Chapter 4 highlights the usefulness of the Soft-Computing methods as efficient tools for providing “objective” answer in reasonable time for complex situation governed by approximation and imprecision. In particular, Chapter 4 collects the applications found in the scientific literature for Fuzzy Logic, Artificial Neural Network and Evolutionary Computing in the fields of structural and earthquake engineering with a taxonomic classification of the problems in modeling, simulation and optimization. Chapter 5 “translates” the search for the cheapest retrofitting system into a constrained optimization problem. To this end, the chapter includes a formulation of a novel procedure that assembles a numerical model for seismic assessment of framed structures within a Soft-Computing-driven optimization algorithm capable to minimize the objective function defined as the total initial cost of intervention. The main components required to assemble the procedure are described in the chapter: the optimization algorithm (Genetic Algorithm); the simulation framework (OpenSees); and the software environment (Matlab). Chapter 6 describes step-by-step the flow-chart of the proposed procedure and it focuses on the main implementation aspects and working details, ranging from a clever initialization of the population of candidate solutions up to a proposal of tuning procedure for the genetic parameters. Chapter 7 discusses numerical examples, where the Soft-Computing procedure is applied to the model of multi-storey RC frames obtained through simulated design. A total of fifteen “scenarios” are studied in order to assess its “robustness” to changes in input data. Finally, Chapter 8, on the base of the outcomes observed, summarizes the capabilities of the proposed procedure, yet highlighting its “limitations” at the current state of development. Some possible modifications are discussed to enhance its efficiency and completeness. [edited by author]XVI n.s

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed
    corecore