1,635 research outputs found

    An improved rotor speed observer for standalone brushless doubly-fed induction generator under unbalanced and nonlinear loads

    Get PDF
    The conventional control methods for brushless doubly-fed induction generator (BDFIG) normally employ mechanical sensors to acquire the information of rotor speed, which brings many disadvantages in the cost, complexity, reliability, and so on. This paper presents an improved rotor speed observer (RSO) for the sensorless operation of a standalone BDFIG, which is based on the power winding (PW) voltage and control winding (CW) current. In order to eliminate the impact of unbalanced and nonlinear loads on the RSO, second-order generalized integrators (SOGIs) and low-pass filters (LPFs) are introduced to pre-filter the PW voltage and CW current, respectively. Through comprehensive parameter design, the response speed of the improved RSO will be not lower than that of the basic RSO with ensuring the filtering effect of these additional filters. In addition, the proposed RSO is independent to machine parameters except the pole pairs. Comprehensive experiments are conducted and results verify the proposed improved RSO applied to the standalone BDFIG. Also, the applicability of the proposed RSO on another dual-electrical-port machine, DFIG, is confirmed by simulation results

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    Voltage Sag Compensation Using Dynamic Voltage Restorer for DFIG Fed Distribution Network

    Get PDF
    This paper investigates compensation of voltage sag due to faults in distribution system for a doubly fed induction motor(DFIG) configuration using dynamic voltage restorer(DVR). Series compensation of terminal voltage during fault conditions using DVR is carried out by injecting voltage at the point of common coupling to the grid voltage to maintain constant DFIG stator voltage. However, the control of the DVR is crucial in order to improve the FRT capability in the DFIG-based wind turbines.wind turbine is controlled by pitch angle which controls the rotor and stator currents of induction generator under different wind speeds. DVR injects voltage in series using vector control which compensates voltage quality problems. The proposed work is verified using matlab/ Simulink software. Keywords: DFIG,DVR.Voltage sag,FRT DOI: 10.7176/ISDE/10-2-0

    Fractional kVA Rating PWM Converter Doubly Fed Variable Speed Electric Generator Systems:An Overview in 2020

    Get PDF
    Variable speed generator systems (VSGs) are at work in the now 600 GW installed wind power plants (parks). Also, they are used as vehicular and on ground stand-alone generators. VSGs imply full kVA rating PWM converters in permanent magnet (PM) or in electrically excited synchronous or in cage rotor inductance generators. But, to reduce cost in absence of PMs at a reasonable initial cost (weight) and efficiency, the fractional kVA PWM converter doubly fed induction generators (DFIG) cover now about 50% of all installed power in wind generators. The present paper reviews recent progress in DFIG and various forms of brushless DFGs (doubly fed generators) characterized in terms of topology, design, performance and advanced control for healthy and faulty load conditions in the hope of inspiring new, hopefully ground breakings, progress for wind and hydro energy conversion and in vehicular and on the ground stand-alone generator applications

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    Modeling of the magnetizing phenomena of doubly fed induction generator using neuro-fuzzy algorithm considering non-linearity

    Get PDF
    Doubly fed Induction Generators (DFIGs) are quite common in wind energy conversion systems because of their variable speed nature and the lower rating of converters. Magnetic flux saturation in the DFIG significantly affect its behavior during transient conditions such as voltage sag, sudden change in input power and short circuit. The effect of including saturation in the DFIG modeling is significant in determining the transient performance of the generator after a disturbance. To include magnetic saturation in DFIG model, an accurate representation of the magnetization characteristics is inevitable. This paper presents a qualitative modeling for magnetization characteristics of doubly fed induction generator using neuro-fuzzy systems. Neuro-fuzzy systems with one hidden layer of Gaussian nodes are capable of approximating continuous functions with arbitrary precision. The results obtained are compared with magnetization characteristics obtained using discrete fourier transform, polynomial and exponential curve fitting. The error analysis is also done to show the effectiveness of the neuro fuzzy modeling of magnetizing characteristics. By neuro-fuzzy algorithm, fast learning convergence is observed and great performance in accuracy is achieved

    Sveobuhvatan pregled LVRT mogućnosti i kliznog režima upravljanja vjetroagregata spojenog na mrežu s dvostruko napajanim asinkronim generatorom

    Get PDF
    In this paper, a comprehensive review of several strategies applied to improve the Low Voltage Ride-Through (LVRT) capability is presented for grid-connected wind-turbine-driven Doubly Fed Induction Generator (DFIG). Usually, the most proposed LVRT solutions in the literature based on: hardware solutions, which increase the system costs and software solutions, which increase the control system complexity. Therefore, the main objective of this study is to take into account grid requirements over LVRT performance under grid fault conditions using software solution based on Higher Order-Sliding Mode Control (HOSMC). Effectively, this control strategy is proposed to overcome the chattering problem and the injected stator current harmonics into the grid of the classical First Order Sliding Mode (FOSMC). Furthermore, the resultant HOSMC methodology is relatively simple; where, the online computational cost and time are considerably reduced. The LVRT capacity and effectiveness of the proposed control method, compared to the conventional FOSMC, are validated by time-domain simulation studies under Matlab on a 1.5 MW wind-turbine-driven DFIG.U ovom radu, prikazan je sveobuhvatan pregled strategija primjenjenih za poboljšanje sposobnosti rada tijekom prolaznih smetnji niskog napona mreže za vjetroagregat s dvostruko napajanim asinkronim generatorom (DFIG). Uobičajeno, većina predloženih LVRT rješenja u literaturi temelji se na: hardverskim rješenjima, što povećava troškove sustava i softverskih rješenja te složenost sustava upravljanja. Stoga je glavni cilj ovog istraživanja da se uključuje i zahtjevi mreže kroz ponašanje LVRTa u uvjetima mrežnih kvarova korištenjem softverskog rješenja zasnovanoga na kliznom režimu rada višeg reda (HOSMC). Efektivno, ova upravljačka strategija je predložena kako bi se prevladali oscilacije i ubacivanje harmonika struje statora u mrežu klasičnim metodama kliznog režima rada prvog reda (FOSMC). Nadalje, rezultantna metodologija HOSMC je relativno jednostavna; gdje su online računski zahtjevi i potrebno vrijeme značajno smanjeni. LVRT kapacitet i učinkovitost predložene metode upravljanja, u usporedbi s konvencionalnim FOSMC potvrđene su simulacijama u vremenskoj domeni u Matlabu na 1.5 MW vjetroagregatu s DFIG-om

    A Review on Direct Power Control of Pulsewidth Modulation Converters

    Get PDF
    corecore