5 research outputs found

    Selected Topics in Network Optimization: Aligning Binary Decision Diagrams for a Facility Location Problem and a Search Method for Dynamic Shortest Path Interdiction

    Get PDF
    This work deals with three different combinatorial optimization problems: minimizing the total size of a pair of binary decision diagrams (BDDs) under a certain structural property, a variant of the facility location problem, and a dynamic version of the Shortest-Path Interdiction (DSPI) problem. However, these problems all have the following core idea in common: They all stem from representing an optimization problem as a decision diagram. We begin from cases in which such a diagram representation of reasonable size might exist, but finding a small diagram is difficult to achieve. The first problem develops a heuristic for enforcing a structural property for a collection of BDDs, which allows them to be merged into a single one efficiently. In the second problem, we consider a specific combinatorial problem that allows for a natural representation by a pair of BDDs. We use the previous result and ideas developed earlier in the literature to reformulate this problem as a linear program over a single BDD. This approach enables us to obtain sensitivity information, while often enjoying runtimes comparable to a mixed integer program solved with a commercial solver, after we pay the computational overhead of building the diagram (e.g., when re-solving the problem using different costs, but the same graph topology). In the last part, we examine DSPI, for which building the full decision diagram is generally impractical. We formalize the concept of a game tree for the DSPI and design a heuristic based on the idea of building only selected parts of this exponentially-sized decision diagram (which is not binary any more). We use a Monte Carlo Tree Search framework to establish policies that are near optimal. To mitigate the size of the game tree, we leverage previously derived bounds for the DSPI and employ an alpha–beta pruning technique for minimax optimization. We highlight the practicality of these ideas in a series of numerical experiments

    Complexity of the Temporal Shortest Path Interdiction Problem

    Get PDF
    In the shortest path interdiction problem, an interdictor aims to remove arcs of total cost at most a given budget from a directed graph with given arc costs and traversal times such that the length of a shortest s-t-path is maximized. For static graphs, this problem is known to be strongly NP-hard, and it has received considerable attention in the literature. While the shortest path problem is one of the most fundamental and well-studied problems also for temporal graphs, the shortest path interdiction problem has not yet been formally studied on temporal graphs, where common definitions of a "shortest path" include: latest start path (path with maximum start time), earliest arrival path (path with minimum arrival time), shortest duration path (path with minimum traveling time including waiting times at nodes), and shortest traversal path (path with minimum traveling time not including waiting times at nodes). In this paper, we analyze the complexity of the shortest path interdiction problem on temporal graphs with respect to all four definitions of a shortest path mentioned above. Even though the shortest path interdiction problem on static graphs is known to be strongly NP-hard, we show that the latest start and the earliest arrival path interdiction problems on temporal graphs are polynomial-time solvable. For the shortest duration and shortest traversal path interdiction problems, however, we show strong NP-hardness, but we obtain polynomial-time algorithms for these problems on extension-parallel temporal graphs

    Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground

    Get PDF
    Urban rail transit systems are highly prone to disruptions of various nature (e.g., accidental, environmental, man-made). Railway networks are deemed as critical infrastructures given that a service interruption can prompt adverse consequences on entire communities and lead to potential far-reaching effects. Hence, the identification of optimal strategies to mitigate the negative impact of disruptive events is paramount to increase railway systems’ resilience. In this paper, we investigate several protection strategies deriving from the application of either single asset vulnerability metrics or systemic optimization models. The contribution of this paper is threefold. Firstly, a single asset metric combining connectivity, path length and flow is defined, namely the Weighted Node Importance Evaluation Index (WI). Secondly, a novel bi-level multi-criteria optimisation model, called the Railway Fortification Problem (RFP), is introduced. RFP identifies protection strategies based on stations connectivity, path length, or travel demand, considered as either individual or combined objectives. Finally, two different protection strategy approaches are applied to a Central London Underground case study: a sequential approach based on single-asset metrics and an integrated approach based on RFP. Results indicate that the integrated approach outperforms the sequential approach and identifies more robust protection plans with respect to different vulnerability criteria. View Full-Tex
    corecore