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Abstract

This work deals with three different combinatorial optimization problems: minimiz-

ing the total size of a pair of binary decision diagrams (BDDs) under a certain structural

property, a variant of the facility location problem, and a dynamic version of the Shortest-

Path Interdiction (DSPI) problem. However, these problems all have the following core idea

in common: They all stem from representing an optimization problem as a decision diagram.

We begin from cases in which such a diagram representation of reasonable size might exist,

but finding a small diagram is difficult to achieve. The first problem develops a heuristic for

enforcing a structural property for a collection of BDDs, which allows them to be merged

into a single one efficiently. In the second problem, we consider a specific combinatorial

problem that allows for a natural representation by a pair of BDDs. We use the previous

result and ideas developed earlier in the literature to reformulate this problem as a linear

program over a single BDD. This approach enables us to obtain sensitivity information,

while often enjoying runtimes comparable to a mixed integer program solved with a com-

mercial solver, after we pay the computational overhead of building the diagram (e.g., when

re-solving the problem using different costs, but the same graph topology). In the last part,

we examine DSPI, for which building the full decision diagram is generally impractical. We

formalize the concept of a game tree for the DSPI and design a heuristic based on the idea

of building only selected parts of this exponentially-sized decision diagram (which is not bi-

nary any more). We use a Monte Carlo Tree Search framework to establish policies that are

near optimal. To mitigate the size of the game tree, we leverage previously derived bounds
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for the DSPI and employ an alpha–beta pruning technique for minimax optimization. We

highlight the practicality of these ideas in a series of numerical experiments.
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Chapter 1

Introduction

This dissertation focuses on leveraging decision diagrams to solve combinatorial op-

timization problems. We consider several specific aspects of this vast topic and illustrate

the proposed approaches with a few network optimization problems. The first large part of

the work, presented in Chapters 3 and 4, deals with binary decision diagrams (BDDs). We

develop a technique that helps consider some of the combinatorial problems in a framework

of optimization over BDDs, and demonstrate the possible computational pipeline with a

variant of the Facility Location Problem. This approach implies building the diagram first,

and then solving an optimization problem to obtain a solution. Then, we take another per-

spective in Chapter 5 and adapt a method that would rely on building the diagram along

with looking for a solution, similar to how a branch-and-bound algorithm would work. We

consider a complex variation of the widely studied Shortest-Path Interdiction problem to

present an algorithm based on Monte Carlo Tree Search idea. This chapter, along with the

literature review presented in Chapter 2, aims to provide the necessary research context for

this discussion.

Binary decision diagrams (BDDs) are a special class of layered acyclic networks that

can be used to represent combinatorial optimization problems (COPs). BDDs contain a root

node, r, and two terminal nodes: true (T) and false (F). The BDD is constructed so that
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there exists a one-to-one correspondence between r-to-T paths and solutions to the COP it

represents, such that the COP objective and BDD path length are equivalent. Paths from

r to node F in the BDD correspond to infeasible solutions in the corresponding COP. Thus,

the COP instance can be solved by creating a BDD that represents the COP instance, and

then solving a shortest- (or longest-) path problem over the BDD.

BDDs are instrumental in representing Boolean functions, which arise in computer-

aided design (see, e.g., Meinel and Theobald 1998), and increasingly many studies leverage

BDDs to solve COPs. However, the size of a BDD that equivalently represents a COP can

be exponentially larger than the size of the original problem. This exponential growth can

happen due to two reasons. First, it might be intrinsically impossible to represent the COP

by a compact (i.e., polynomial-size) BDD. Alternatively, even if it were possible to derive a

compact BDD that represents the COP, doing so may be very difficult.

To overcome these difficulties, some COPs can instead benefit from being represented

as a collection of multiple BDDs, where each BDD is fairly small in size, as done by Bergman

and Cire (2016). The trade-off is that, as we will show, the original COP is now equivalent

to solving a set of shortest-path problems over networks corresponding to these BDDs,

subject to a set of side constraints. The problem of optimizing this set of jointly-constrained

shortest-path problems is called the consistent path problem (CPP), which is itself NP-

hard. However, under certain conditions that we discuss in this work, the CPP can be

transformed into a single, tractable shortest-path problem. When this transformation is

attainable, the COP not only becomes relatively easy to solve, but it also becomes possible

to obtain sensitivity analysis on the problem, as we demonstrate with a detailed example

presented in Chapter 4.

The conditions needed to make the aforementioned transformation are that the col-

lection of BDDs must have aligned variable orders, as defined in the beginning of Chapter 3,

and that the component BDDs must be relatively small (measured by the number of nodes).

If the collection of BDDs does not have an aligned variable order, then one interesting strat-

egy is to (a) identify a common variable order for the BDD collection and (b) revise the
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component BDDs to align each of their variable orders with the identified common variable

order. The step of revising BDD variable orders typically changes the size of those BDDs.

Hence, the goal is to identify a variable order that minimizes the total size of the BDD

collection. This problem is the focus of Chapter 3.

Certain problems (e.g., those studied in Bergman et al. 2016a and Lozano et al.

2020) allow for a “natural” aligned variable order. That is, for those problems, the creation

of the collection of BDDs naturally retains a common variable order within the collection.

Sometimes the algorithm used to construct the collection implies a representation of differ-

ent diagrams, in which they can share nodes. It allows to save space and naturally enforces

a shared order of variables. However, many other problems imply no natural variable align-

ments, and no clear mechanism exists to choose one. In such cases, it might be beneficial to

revise a collection of diagrams to enforce the same order of layers, either to build a single

BDD, or to apply another method that requires this property, such as the one presented

by Lozano et al. (2020). We present a specific example of such problem in Chapter 4. In

a variant of the Facility Location Problem, assuming facilities can have different types, it

seems natural to represent two groups of constraints by two different BDDs. The structure of

the problem, generally speaking, will dictate different orders of variables in these diagrams.

Therefore, we use the algorithm developed in the previous chapter to align them. As we

show in a series of numerical experiments, sometimes this allows to reformulate the problem

as a linear program of reasonable size and enjoy the corresponding numerical benefits. To

sum up, key contributions of the part concerning BDDs include development of a heuristic

to align BDDs, which tries to achieve better scaling by avoiding intermediate BDD transfor-

mations, and demonstration of a specific computational pipeline and insights into the effects

of the problem structure for a combinatorial optimization problem involving this heuristic.

Finally, it may be not necessarily tractable to consider a full decision tree at all.

In fact, a binary decision diagram can be exponentially large regardless of the order of

variables.1 In Chapter 5 we consider a case in which building the full tree is practically
1This effect is well known in the study of Boolean functions: some functions just yield exponential BDD

sizes in any case. (They are called “very ugly” then, see Wegener 2000, Definition 5.1.3.)
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impossible. Hence, we try to build only a part of it, ignoring those parts that are ultimately

unnecessary. Our focus here is the Dynamic Shortest Path Interdiction (DSPI) problem,

introduced by Sefair and Smith (2016). The DSPI is a zero-sum game played over a directed

weighted graph, where two players, the Evader and the Interdictor, take steps in turns. The

Evader seeks to take a shortest-path between two given nodes, while the Interdictor tries

to maximize the cost of this path by attacking (or interdicting) the arcs. When an arc is

interdicted, its cost increases by a pre-defined amount. The Interdictor starts the game, and

can interdict any subset of arcs, subject to a cardinality (budget) constraint. The Evader

follows and traverses one arc during each turn. The players take turns until the Evader

reaches the given terminal node.

Potential applications include counter-terrorist activities, infrastructure reliability

problems, and vulnerability analysis, as well as natural disaster response, analysis of social

effects, and others. Note that it is not forbidden for the user to visit a node, or an arc, more

than once. Moreover, it is sometimes optimal to do so, as discussed in an example presented

by Sefair and Smith (2016). This complexity implies that for graphs of modest size (tens

of nodes) enumerating all game states while building the decision tree becomes impractical

for consumer-grade hardware. Following some ideas of Reinforcement Learning research and

strategy employed to design a powerful Go playing machine (Silver et al. 2017), we adapt

Monte Carlo Tree Search approach. The decision tree in this case is not necessarily a BDD,

and we guide its construction with cost estimates obtained from random simulations of the

players’ turns. We also incorporate tree pruning mechanism using bounds presented in the

literature and using a classical approach for two-agent zero-sum games, called alpha–beta

pruning. The resulting procedure is a reinforcement learning algorithm in a sense that it

does not require a pre-compiled dataset to devise a good solution, but learns parts of the

solution by interacting with the environment model and receiving rewards (in the form of

costs in this case).

The remainder of this dissertation is organized as follows. We provide a brief overview

of the relevant literature in Chapter 2. Then, we introduce a problem of aligning two BDDs
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and propose several related algorithms in Chapter 3. The following Chapter 4 presents an

example of a computational pipeline to solve a variant of the Facility Location problem,

using the results obtained in the previous chapter. Then, Chapter 5 focuses on the DSPI

and a heuristic algorithm designed using the Monte Carlo Tree Search ideas. Each of the

chapters 3–5 concludes with a set of numerical experiments. Finally, we provide a brief note

on future research and concluding remarks in Chapter 6.
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Chapter 2

Literature Overview

Our work builds upon the vast existing research on the decision diagrams, a few

sources on DSPI, and general literature on reinforcement learning.

BDD foundations appear in early works of Lee (1959), Akers (1978), Bryant (1986),

Brace et al. (1990), and Bryant (1992). See overviews by Wegener (2004), Drechsler and

Becker (1998), Meinel and Theobald (1998), and Bryant (2018) for a more recent treatment

of this material. Knuth (2009, Section 7.1.4) provides an overview of basic algorithms

concerning the manipulation of BDDs. Minato (2013) presents an overview on BDDs and

their modifications with notes on applications. There is a growing body of literature on

BDDs in the optimization context (Consistent Path Problem and Market Multisplit being

some of many examples), as discussed by Bergman et al. (2016a), Bergman et al. (2016b),

Hooker (2013), Lozano et al. (2020), and others.

The problem of aligning two diagrams, which we study in Chapter 3, is a natural

generalization of the problem seeking to minimize the size of a single BDD. Since any pair of

adjacent layers can be swapped, any BDD can be revised to an arbitrary order of variables;

however, finding one to minimize the BDD size is NP-hard (Bollig and Wegener 1996).

Moreover, Sieling (2002) demonstrated that the problem is not approximable.

Heuristic methods seek to improve the BDD size incrementally utilizing swap and sift
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operations. The window permutation algorithm discussed by Fujita et al. (1991), Ishiura

et al. (1991), and Rudell (1993) exhaustively searches through all permutations of layers

within a small consecutive subset of layers (a “window”), moving this window until no more

improvements are found. The sifting method by Rudell (1993) (a variant of which we are

using as a baseline) processes variables consecutively by sifting each one to all possible

positions, other variables being fixed; ultimately, the variable is sifted to the position corre-

sponding to the smallest BDD. The process is stopped after every variable is examined or

when no more improvements are found.

Rudell introduced the idea of running “housekeeping” procedures to periodically

deflate the diagram size. Drechsler and Günther (2000) further discuss efficient use of the

information from the previous sifts. To accelerate this sifting process, Panda and Somenzi

(1995) examine sifting variables in groups. Meinel and Slobodová (1997) introduce the

idea of “block-restricted sifting”: identifying certain blocks within the BDD and restricting

variable reordering process to these blocks. Slobodová and Meinel (1998) and Jain et al.

(1998) exploit the idea of sampling to determine a good variable order for the whole BDD.

Nevo and Farkash (2006) discussed the parallel implementation of Rudell’s sifting algorithm.

Lin and Wei (2005) report a significant improvement against a benchmark instances set with

a randomized algorithm (utilizing random starting variable orders). Friedman and Supowit

(1987) give an exact algorithm for the BDD size minimization problem . The complexity of

this algorithm isO(n23n) for a Boolean function of n variables, orO(n3n) with a modification

mentioned by Bollig and Wegener (1996). Drechsler et al. (1998) propose a branch-and-

bound search scheme based on this algorithm. Drechsler et al. (2001) present lower bounds

for the BDD size, further improved by Ebendt and Drechsler (2006) (by generalizing the

ones proposed by Bryant 1991). Ebendt et al. (2005) and Ebendt and Drechsler (2005)

present another branch-and-bound technique (combined with an ordered best-first search)

and a quality-runtime trade-off. Drechsler et al. (2001) use lower bounds in the dynamic

minimization process to introduce the “lb-sifting” method, which speeds up the “normal”

sifting without compromising the solution quality (BDD sizes).
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There is a vast literature on minimizing the size of a single BDD (see, e.g., overviews

by Knuth (2009), Wegener (2000), or many of the works on BDDs mentioned above). Less

research has been conducted on the problem of finding a good variable order for a collec-

tion of BDDs. For example, Cabodi et al. (1998) discuss greedy heuristics based on the

minimization of the necessary number of layer swaps and on preserving the longest common

partial order. (Note that the multiple variable order problem discussed there is equivalent

to our AP(A,B;T ∗).) The approach of Scholl et al. (2001) starts with one of the initial

BDD orders as a target, adjusting this target if the “reordering limit” is reached. However,

both studies (along with the literature on single BDD minimization) directly manipulated

BDDs, resulting in high computational costs if a bad solution was examined. By contrast,

we construct a heuristic based on a problem simplification that allows for computationally

cheap incremental improvements. Some discussion of the operations over BDDs and the

corresponding bounds on layer sizes, which were an inspiration for our concept of the sim-

plified problem, presented in many sources, including Bollig et al. (1996), Wegener (2000)

in Section 5.7, and Knuth (2009) in Section 7.1.4. (In particular, our sift-up and sift-down

operations discussed in Section 3.3 are also referred to as jump-up and jump-down in the

literature.)

Network interdiction, which we deal with in Chapter 5, is a well-established research

area. The foundation for our work is the problem of Shortest-Path Interdiction (SPI): a

two-stage game, with the attacker first choosing arcs to be interdicted, and the user then

minimizing its path cost given the information on the attacker’s decision (Israeli and Wood

2002, Fulkerson and Harding 1977). Many variants of the problem are discussed in the

literature, including ones with arcs fortification, asymmetric information, multi-objective

versions, etc. See, e.g., the chapter on network interdiction by Pardalos et al. (2013) or

Smith and Song (2020) for an overview. We consider a specific complication of SPI, viz., a

dynamic version of the game, introduced by Sefair and Smith (2016). As opposed to SPI,

the DSPI is a multi-stage game. An exact dynamic-programming based algorithm proposed

in the aforementioned paper is able to find an optimal solution in polynomial time for a
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directed acyclic graph. However, the authors show that for the general case, no polynomial-

time algorithm exists (unless P = NP). To the best of our knowledge, while Sefair and

Smith (2016) proposed bounds on the optimal objective, no heuristic algorithm exists in the

literature that yields high quality solutions (valid sequences of moves corresponding to the

objective values, supplied by the bounds, or the players’ policies). We seek to fill in this gap

with the algorithm proposed in Chapter 5.

From a methodological perspective, we draw inspiration from the vast and growing

research area of Machine Learning (ML) and, in particular, reinforcement learning (RL).

There is growing literature on using ML for combinatorial optimization, in various ways:

see, e.g., Bengio et al. (2021) for a general overview and Mazyavkina et al. (2021) for

one emphasizing RL. We build our algorithm using the Monte Carlo Tree Search (MCTS)

framework, which is described in many sources. In particular, Sutton and Barto (2018)

give a thorough introduction to RL. Browne et al. (2012) briefly describe the method and

summarize many ideas for improving different components of an MCTS algorithm developed

in the literature. (These ideas include a specific way for encouraging exploration during the

selection process using the ideas from multi-armed bandit literature, introduced by Kocsis

and Szepesvári 2006, Kocsis et al. 2006.) Apart from this, there are numerous examples of

using this framework for solving various problems, both within the area of game playing and

beyond, including Rimmel et al. (2010), Silver et al. (2017), and Karwowski and Mańdziuk

(2019). To implement the tree pruning we used a classical idea of alpha–beta pruning,

mentioned in many sources, including, e.g., Knuth and Moore (1975).
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Chapter 3

On Aligning Binary Decision
Diagrams

In this chapter we derive a heuristic to close a specific gap in the research literature

regarding application of BDDs for optimization, highlighted by Lozano et al. (2020). We

start by presenting the necessary definitions on BDDs in Section 3.1 and introducing the

BDD alignment problem in Section 3.2. The latter will be the focus of this chapter. Then,

we discuss the changes in BDD layer sizes due to their reordering, and propose the auxiliary

problem in Section 3.3, which will constitute the core of our heuristic for the alignment

problem. We present the underlying technical results and formally present the algorithm to

solve the simplified problem in the next Section 3.4. The Chapter concludes with a series of

numerical experiments with random instances of the BDD alignment problem, presented in

Section 3.5.

3.1 Formal definition of BDDs

A BDD B is an acyclic graph having a node set N that possesses the following

properties.

• All nodes in N are partitioned into (N + 1) layers. We denote the i-th layer Li (or
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LBi , if we need to specify that this layer belongs to B). We refer to i as a layer index.

The layer width is the number of nodes in the layer, and the diagram size |B| is the

sum of layer widths.

• The first layer contains the single root node (denoted by r), and the last layer comprises

two terminal nodes, referred to as true (T) and false (F) nodes.

• Layers are ordered, and layer index i = 1, . . . , N is associated with a unique variable,

var(Li). We let var(B) denote the ordered list of variables for B. (When var(B) = v,

we say that B “has variable order v.”)

• We say that variable a has position iB(a) in B if a = var(LiB(a)). For convenience, we

will write a ≺B b to mean iB(a) < iB(b) (“a appears in B before b”).

• A node outside the last layer has exactly two outgoing arcs, pointing to nodes in the

next layer. One is designated as a “one-arc” and the other as a “zero-arc.” Nodes T

and F have no outgoing arcs.

• A node outside the first layer has at least one incoming arc (emanating from a node

on the previous layer); r has no incoming arcs.

• For convenience, we define a “path” to be a path from r to T or F and a “subpath” to

be any consecutive subsequence of nodes in a path.

Associating each layer of a BDD with a binary variable, every path in B encodes a

vector of binary variables corresponding to a solution to the underlying problem represented

by the BDD (a feasible one if the path ends at T, or an infeasible one otherwise). Optimiza-

tion problem solutions correspond to BDD paths, such that a path uses a one-arc (zero-arc)

at layer Li, i ∈ {1, . . . , N}, if and only if var(Li) equals 1 (respectively, 0) in the solution.

All feasible (respectively, infeasible) solutions to the optimization problem correspond to

BDD paths that terminate at T (respectively, F).

Remark 3.1. In much of this and the next chapter, we will seek to reduce the size of BDDs

by merging redundant node pairs where possible. Suppose that there exists a pair of nodes

11



u and v in N , such that one-arcs of u and v point to the same node and zero-arcs of u and

v point to the same node (and respective arc weights for u and v coincide, if applicable).

In that case, nodes u and v can be merged. A BDD that has no such pair of nodes u

and v is said to be quasi-reduced (which is equivalent to the definition by Wegener 2000).

Our methods do not require the BDDs we consider to be quasi-reduced; however, all our

computations will operate over quasi-reduced BDDs to remove all redundant node pairs.

�

Example 3.1. Figure 3.1 illustrates the process of modeling a maximum independent set

(MIS) instance with a BDD. MIS seeks a largest subset of nodes such that no two nodes

in the subset are adjacent. We first associate a binary variable with every node in the MIS

graph (Figure 3.1a), order these nodes (arbitrarily), and associate each variable with a BDD

layer. The last layer comprises nodes T and F, with all paths corresponding to feasible

(infeasible) solutions ending at T (F), as desired. Each such path consists of five arcs, with

one arc outgoing from each of the first five layers. The arc lengths reflect the solution’s

objective by assigning a unit length to each one-arc and a zero length to each zero-arc.

Let binary variables xi determine if node i of the MIS graph belongs to the indepen-

dent set, and consider the order (x1, x2, x3, x4, x5). Figure 3.1b displays a BDD constructed

from this ordering. Note, for example, that BDD node 5 in Figure 3.1b indicates that one-

arcs have been selected in layers corresponding to x1 and x2, so x1 = x2 = 1. Because

nodes 1 and 2 are adjacent in the MIS graph, all subpaths starting from BDD node 5 in

Figure 3.1b terminate at F.

Constructing the BDD with respect to another MIS variable order, (x1, x4, x3, x2, x5),

yields the larger BDD depicted in Figure 3.1c. Because the MIS can be solved by identifying

a longest-path from r to T in the BDD, requiring effort proportional to the number of nodes

in the BDD, we seek a variable order that yields the smallest possible BDD. �

To explore this notion further, we formally introduce the concept of equivalent BDDs.

Definition 3.1. BDDs B and B′ are equivalent if for every path in B (or B′) there exists
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Figure 3.1: BDD representation for max independent set
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(c) v = (x1, x4, x3, x2, x5) : 17 nodes

Note. One-arcs (zero-arcs) are depicted with solid (respectively, dashed) lines and given unit (respectively,
zero) lengths.
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a path in B′ (or B) that corresponds to the same variable assignment and ends at the same

terminal node (T or F).

Remark 3.2. Where possible, we will also ignore BDD arc lengths in this chapter to simplify

our exposition. Our subsequent results easily extend to problems having arc weights, and

the source code implemented for this dissertation accommodates weighted BDDs as well.

�

Finally, note that all definitions presented for BDDs here are compatible with the

optimization-related research we build upon, mostly by Lozano et al. (2020). The diagram

we define is effectively different from the classical definition of the BDD as a reduced function

graph by Bryant (1986) in the following aspects:

• We do not enforce the condition that one- and zero-arcs must point to distinct nodes.

Therefore, our BDDs are not generally reduced (as per definition by Bryant 1986).

• We restrict BDD arcs to connect nodes on adjacent layers only. Therefore, we consider

only complete ordered BDDs in terms of Definition 3.2.1 by Wegener (2000): all paths

include N arcs.

While such diagrams are general enough to represent feasible sets for COPs, some

problems might benefit from leveraging more specialized decision diagram-type data struc-

tures. See, e.g., more general notes on diagrams by Knuth (2009), a more focused discussion

of zero-suppressed BDDs (ZDDs) by Minato (2013), or a comprehensive overview by We-

gener (2000), to name a few sources.

3.2 Collection of BDDs and the alignment problem

The problem of finding a variable order that minimizes the diagram size is NP-hard

(Bollig and Wegener 1996); moreover, this minimum size could still be extremely large. An

alternative way to limit diagram sizes is based on the idea of representing the problem with
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Figure 3.2: BDD collection representation for max independent set

r

u1 u2

F T

1

1/2 1/2 0
0

0

x1

x2

r

u1 u2

F T

1/2

1/3 1/3 0
0

0

x2

x3

r

u1 u2

F T

1/3

1/2 1/2 0
0

0

x3

x4

r

u1 u2

F T

1/2

1/2 1/2 0
0

0

x4

x5

r

u1 u2

F T

1/2

1/3 1/3 0
0

0

x5

x3

(x1,x2) (x2,x3) (x3,x4) (x4,x5) (x5,x3)

Note. Representation of the independent set problem depicted in Figure 3.1a with a collection of BDDs.

a collection of multiple BDDs, as proposed by Bergman and Cire (2016). We illustrate this

representation in the following example.

Example 3.2. For the MIS example, one could design a collection of BDDs as in Figure 3.2

(adapted from Lozano et al. 2020). For each MIS edge (xi, xj), create a separate diagram

with two layers associated with variables xi and xj , plus a terminal layer, enforcing the

condition that no two adjacent nodes belong to the independent set. Arc lengths in BDDs

are chosen to ensure that setting xi = 1 for any i yields a total contribution of one to the

objective (and zero otherwise).

Now, note that these diagrams (one for every edge in the original graph) have over-

lapping variables. We seek a collection of r-to-T paths, one per diagram, that has the

maximum sum of lengths and is consistent in the following sense: For each variable, all

paths that include an arc corresponding to this variable must share the same arc type. For

example, if we have a zero-arc in the x2 layer in a path for some diagram, all paths in the

collection that involve x2 must include a zero-arc for that layer. This problem is the CPP.

Critical to this study, the CPP is NP-hard if the number of diagrams is not fixed, or even

with just two BDDs if the diagrams do not share the same order of variables (Lozano et al.

2020).

We address the problem of aligning a pair of BDDs that are (without loss of general-

ity) defined over the same set of variables, but have a different variable order. The alignment
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problem aims to find a common variable order such that after revising both BDDs to this

variable order, the total number of nodes in both diagrams is minimized. Since the problem

is NP-hard by extension from Bollig and Wegener (1996), we aim to create a heuristic.

Our heuristic approach creates an auxiliary, simplified problem. As we will show,

determining the impact of changing a variable order on the corresponding BDD size might

involve significant computational cost, because diagram sizes can grow exponentially. We

introduce a way to quickly update upper bounds on layer widths after swapping variables

corresponding to adjacent BDD layers, which naturally yields a heuristic of minimizing the

upper bound on the objective. We will refer to labeled arrays of such upper bounds as

weighted variable sequences. The following definitions help to define the BDD alignment

problem formally.

Definition 3.2. An optimal transformation of BDD A to variable order v, denoted by

T ∗[A,v], is defined as a smallest BDD equivalent to A that has variable order v.

Definition 3.3. Given two BDDs A and B defined over the same variable set, the alignment

problem solves:

s∗ = min
v

(|T ∗[A,v]|+ |T ∗[B,v]|), (AP)

where v belongs to the set of all possible permutations of the labels in the variable list,

var(A). We refer to this problem as the “original” one, as opposed to a “simplified” version

considered later, and parameterize it as AP(A,B;T ∗). Note that we examine the alignment

of only two diagrams for the sake of readability; the problem can also be easily generalized

to the alignment of several BDDs. Also, as we mentioned before, the requirement to have

the same variable set is not restrictive: If a variable appears in BDD A, but not in B, it is

simply ignored in B (and thus, can be trivially introduced at any position).
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3.3 The simplified problem: definition

To illustrate the motivation behind the core concept of weighted variable sequence

(introduced in Section 3.3.1), we briefly introduce the operations required to transform a

BDD B, into an equivalent BDD R(B), having a different variable order. Since both sift-

down and swap can be expressed via sift-up operations, we examine the sift-up of a layer

Ls from source position s to destination position d < s. Note that these operations require

polynomial space and time in the size of the underlying diagram (Wegener 2000).

The transformed network R(B) will be identical to B in layers L1, . . . , Ld and in

layers Ls+1, . . . , LN+1, with the caveat that the variable associated with index d in R(B)

changes from var(LBd ) to var(LBs ). A key challenge is that after the sift-up operation, we

must now create arcs that connect nodes in the layer corresponding to var(LBs−1) to nodes

in the layer corresponding to var(LBs+1), which are now adjacent in R(B). However, the

destinations of these arcs depend on the choice of value for var(LBs ) in R(B).

Example 3.3. Consider the BDD depicted in Figure 3.3 and a sift-up operation with source

variable x4 and destination variable x2. Consider node 9 in Figure 3.3: Following the zero-

arc should lead to node 18 if x4 = 1, and to node 19 if x4 = 0. Therefore, creating such arcs

in our transformation must incorporate the previous choice of the value for x4.

Our transformation therefore generates two copies of the BDD between layers LBd and

LBs−1 (inclusive) in the transformation, with the purpose of retaining the value of var(LBs ).

The overall process is as follows.

• R(B) is the same as B through layers 1, . . . , d and s+ 1, . . . , N + 1.

• Two copies of B between layers LBd and LBs−1 (inclusive), a one-copy and a zero-

copy, are generated and placed in parallel in R(B), where for each copy, the nodes

corresponding to layer LBi of B are now in layer LR(B)
i+1 in R(B). One-arcs from the

nodes in L
R(B)
d point to the corresponding nodes in the one-copy, zero-arcs to the

nodes in the zero-copy.
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• Nodes in layer LR(B)
s are connected to LR(B)

s+1 in R(B) according to the corresponding

choice of var(LBs ) (i.e., whether the node is in the one-copy or zero-copy of the network)

and var(LBs−1), as detailed in Algorithm A3.1.

Figure 3.4 illustrates the final step in which, for example, the zero-arc from 9′ con-

nects to node 18, because 9′ belongs to the one-copy of the network, signifying that x4 = 1,

and reflecting the path 9 → 14 → 18 in B (Figure 3.3). Similarly, the zero-arc from 9′′

connects to node 19, because 9′′ belongs to the zero-copy of the network (x4 = 0), reflecting

the path 9→ 14→ 19 in B. �

Importantly, this duplication permits us to retain the value of var(LBs ), at the ex-

pense of duplicating the layer widths between s and d in the worst case. Nodes in layer

L
R(B)
s are connected to LR(B)

s+1 in R(B) according to the corresponding choice of var(LBs )

(i.e., whether the node is in the one-copy or zero-copy of the network) and var(LBs−1).

Algorithm A3.1. Sift-up (BDD).
Input: a BDD B with var(B) = (v1, . . . , vN ); source layer index s ∈ (1, N ] and destination layer index d < s

Output: a transformed BDD R(B) with var
(
R(B)

)
= (v1, . . . , vd−1, vs, vd, vd+1, . . . , vs−1, vs+1, . . . , vN )

Step 1. Initialize R(B):

• Create R(B) as a duplicate of B.

• Duplicate layer LR(B)
d (including outgoing arcs) and insert it after LR(B)

d as the new layer LR(B)
d+1 .

Step 2. Label the group of all nodes in layers LR(B)
d+1 , . . . , L

R(B)
s+1 as sD0. Reassign zero-arcs emanating from every

node in LR(B)
d to point to its corresponding node in layer LR(B)

d+1 of sD0.
Step 3. Duplicate the sD0 group including all the arcs and respecting layer labels. Label the new group as sD1.
Reassign one-arcs emanating from every node in LR(B)

d to point to its corresponding node in layer LR(B)
d+1 of sD1.

Step 4. Reassign the destination layer variable var(LR(B)
d )← var(LB

s ).
Step 5. For every node n ∈ Ld ∩ sD0, reassign its outgoing arcs as follows. Identify nodes j0(n) and j1(n) reached
by starting at n and following:

• for j0(n): two consecutive zero-arcs;

• for j1(n): the one-arc, followed by the zero-arc.

Reassign the tail of the zero- (respectively, one-) arc emanating from n to j0(n) (j1(n)).
Step 6. For every node n ∈ Ld ∩ sD1 reassign the outgoing arcs as follows. Identify nodes j0(n) and j1(n) reached
by starting at n and following:

• for j0(n): the zero-arc followed by the one-arc;

• for j1(n): two consecutive one-arcs.

Reassign the tail of the one- (respectively, zero-) arc emanating from n to j1(n) (j0(n)).
Step 7. Remove layer LR(B)

d+1 (which now has no incoming arcs).

This procedure is formally presented in Algorithm A3.1. It returns diagram R(B)

that has the correct variable order by construction, and B and R(B) are equivalent since
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Figure 3.3: Diagram B (before the sift-up)
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paths corresponding to the same variable assignment pass through the same nodes in the

Ls layer. (Reassigning arc lengths to preserve path lengths is also straightforward, if one

chooses to implement a weighted version of the algorithm.) Also, if we use hash tables to

access nodes by IDs in constant time, it takes O(|N |) operations to perform a sift-up (in the

worst case the whole BDD will be duplicated if we sift-up the last layer to the first position).

Finally, Algorithm A3.1 might result in the creation of redundant node pairs, as

defined in Remark 3.1. Continuing with the previous example, both one-arcs and zero-arcs

of nodes 11′, 10′′, 11′′ point to node 19 in Figure 3.4. Hence, the resulting diagram is not

quasi-reduced. These three nodes can be merged. In our numerical experiments we remove

such redundancy by considering exclusively quasi-reduced diagrams in terms of Wegener

2000: minimal size complete diagrams. This is equivalent to forbidding the “redundant

nodes” by ensuring that for all u ∈ N , there is no such v ∈ N \{u} that one-arcs of u and v

point to the same node and zero-arcs of u and v point to the same node (and respective arc

weights for u and v coincide, if we implement a weighted version). Note that this diagram

will be still not necessarily reduced, because it can contain nodes with only one descendant.

Starting from a quasi-reduced diagram, we can preserve this property in a course

of the diagram transformations by incorporating this idea into the implementation of swap

operation. The necessary logic can be derived from the discussion of the reduced diagrams

(and canonical arc costs, if we are implementing the weighted version) by Hooker (2013)

or adapted from Knuth (2009). The swap operations are then adjusted as presented in

Algorithm A3.2 (arc lengths are ignored for readability). We iterate over the nodes of the

upper layer, Ls−1, in lines 3–20. For each outgoing arc, we examine if a target node (with

the specified zero- and one-arcs) already exists in layer Ls. If it does, we point the outgoing

arc to this node (line 9). Otherwise, a new node is created in Ls (line 6). We use a dictionary

(newNodes) to make sure that only unique nodes are created in the layer Ls. An example

for this algorithm is given in Figure 3.5, the diagram before the swap is presented in the

left panel, and the updated diagram is on the right. Assume we are swapping x1 and x2.

Denote one-arc leaving node u as HI(u) and zero-arc leaving node u as LO(u). Consider node
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F1 after the swap: its one-arc must point to a node n1 with HI(n1) = 1 and LO(n1) = 2

(determined just by examining outgoing arcs), and its zero-arc must point to a node n2 with

HI(n2) = 2 and LO(n2) = 3. Neither node exists during the processing of node F1, so both

are created and linked to F1. Then we repeat the procedure for node F2. HI(F2) must have

a one-arc pointing to 1 and a zero-arc pointing to 2. This node (n1) already exists, so F2

will be linked to it with a one-arc. The process is repeated for the zero-arc of F2, resulting in

a diagram that is smaller than the original one. Therefore, if the diagram was quasi-reduced

before the swap, it keeps this property after the operation is performed according to this

implementation.

Algorithm A3.2. Swap (quasi-reduced BDD)
Input: a quasi-reduced BDD B; a layer number s to swap up
Output: A (quasi-reduced) transformed diagram with layers s and s− 1 swapped
1: procedure swap-qr(B, s)
2: newNodes ← {∅ : ∅} // A dictionary, with O(1) access operations
3: for all nodes F ∈ Ls−1 do // iterate over a nodes of the destination (upper) layer
4: Adjust one-arc: // Creating a node if necessary
5: if (HI(HI(F )), HI(LO(F ))) /∈ keys of newNodes then
6: FHI ← create new node with HI(FHI) = HI(HI(F )) and LO(FHI) = HI(LO(F )))
7: add {(HI(FHI), LO(FHI)) : FHI} to newNodes
8: else
9: FHI ← a node from newNodes corresponding to key (HI(HI(F )), HI(LO(F )))
10: end if
11: Adjust zero-arc: // Create a node if necessary for the other arc
12: if (LO(HI(F )), LO(LO(F ))) /∈ keys of newNodes then
13: FLO ← create new node with HI(FLO) = LO(HI(F )) and LO(FLO) = LO(LO(F ))
14: add {(HI(FLO), LO(FLO)) : FLO} to newNodes
15: else
16: FLO ← a node from newNodes corresponding to (LO(HI(F )), LO(LO(F )))
17: end if
18: HI(F )← FHI
19: LO(F )← FLO

20: end for
21: end procedure

3.3.1 The simplified problem

We first introduce a data structure that keeps track of the upper bounds on layer

widths as we perform layer sifts.
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Figure 3.5: A swap-up operation (as per Algorithm A3.2)
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Note. Swapping layers s and (s − 1). Changes are marked with bold text outside the nodes: F1 and F2

nodes get their outgoing arcs updated; layer s is rebuilt, layer (s+ 1) remains unchanged (as well as all the
layers above s). The algorithm guarantees that each node in the newly built layer has a unique (HI,LO) tuple
(depicted as numbers in parentheses outside of newly created nodes). Note that there are only two nodes in
the resulting layer s: the total number of nodes has decreased.

Define a weighted variable sequence over variables x1, . . . , xN , denoted by S =

[x1, . . . , xN |n1, . . . , nN ], as an ordered list of N variable names var(S) = (x1, . . . , xN )

together with associated integer weights (n1, . . . , nN ), ni ∈ {1, . . . , 2ni−1}, i =

2, . . . , N . Similarly to BDDs, we define the sequence size as |S| =
∑
ni. A variable-

weight pair (xi, ni) is a sequence element (for convenience, we refer to iS(x) as the

position of x in var(S); e.g., for S = [x1, x3, x2|n1, n3, n2] the position iS(x2) = 3).

Our problem simplification captures the worst-case change in the diagram size due

to sifts, wherein all layer widths between the source and the destination are duplicated. (For

instance, recall the doubling of layers corresponding to x2 and x3 in Figures 3.3 and 3.4.) We

focus on the swap operation, which interchanges adjacent variable positions and duplicates

the destination element weight. Sift operations can be represented as a series of swap

operations. For convenience, we denote the variable sequence before the operation as S =

22



[x1, . . . , xN |n1, . . . , nN ], and after the operation as S′ = [x′1, . . . , x
′
N |n′1, . . . , n′N ].

The operations over a weighted variable sequence are described as follows.

• swap(S, i): exchanges positions of two adjacent variables at positions i and i + 1.

Labels are adjusted as x′i = xi+1 and x′i+1 = xi, and weights are updated as

n′i = ni and n′i+1 = 2ni. Other weights and labels are unchanged: x′j = xj and

n′j = nj for all j /∈ {i, i+ 1}.

Example: [x1, x2, x3, x4|n1, n2, n3, n4]→ [x1, x3, x2, x4|n1, n2, 2n2, n4].

• sift(S, s, d): changes position of variable xs from s to d (with the relative positions

of all other variables unchanged), defined as a series of consecutive swap(S, i)

operations with i = s− 1, . . . , d if d < s and i = s, . . . , d− 1 if d > s.

Examples:

[x1,x2, x3, x4|n1, n2, n3, n4]→ [x1, x4, x2, x3|n1, n2, 2n2, 2n3];

[x1, x2, x3,x4|n1, n2, n3, n4]→ [x2, x3, x1, x4|n1, 2n1, 4n1, n4].

Remark 3.3. Sequence S′ = sift(S, s, d) can be constructed in O(N) time as follows. For

a sift-up (d < s) : n′i = 2ni−1 if d < i ≤ s and n′i = ni otherwise. For a sift-down

(d > s) : n′i = 2(i−s)ns for s < i ≤ d and n′i = ni otherwise. �

Similarly to the discussion for BDDs above, we now define an optimal transformation

T ∗VS[S,v] as a variable sequence with variable order v of minimal size that can be obtained

from S by applying a series of swap operations.

Remark 3.4. Consider a swap operation that exchanges elements i and i+1. After the swap,

the sum of affected elements’ weights in the new sequence becomes ni + 2ni ≥ ni + ni+1,

since 2ni ≥ ni+1. Hence, the total size of the sequence never decreases with a swap, i.e.,

|swap(S, i)| ≥ |S| for all i ∈ {1, . . . , N − 1}. Consequently, |T ∗VS[S,v]| ≥ |S|. �

These concepts allow us to introduce a simplified alignment problem as follows.

Definition 3.4. Given the original problem AP(A,B;T ∗), define variable sequences SA
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and SB with variable lists var(SA) = var(A) and var(SB) = var(B). Define element weights

to equal the corresponding layer widths: nAi = |LAi | and nBi = |LBi | for all i = 1, . . . , N .

Overloading the notation, we refer to the problem AP(SA, SB;T ∗VS) as the simplified problem

for AP(A,B;T ∗).

Weighted variable sequences yield upper bounds on diagram sizes in the following

sense.

Lemma 3.1

Given BDD A and its corresponding sequence S (constructed as per Definition 3.4),

consider BDD A′ = swap(A, i) and sequence S′ = swap(S, i). Then |S′| − |S| ≥

|A′| − |A|, which implies that for any variable order v: |T ∗[A,v]| ≤ |T ∗VS[S,v]|.

Lemma 3.1 states that the swap operation increases the size of a sequence by at

least as much as it increases the size of the corresponding BDD. This fact can be proven by

contradiction, since the opposite would yield a schedule of swaps implying a transformation

of A that would be strictly smaller than T ∗[A,v]. (The formal proof is omitted for brevity.)

Corollary 3.2

The optimal objective s∗ of AP(A,B;T ∗) is no more than the optimal objective s∗V S

for AP(SA, SB;T ∗VS).

Proof. Assume the contrary is true. If there is an optimal variable order shared between

AP(A,B;T ∗) and AP(SA, SB;T ∗VS), then the claim immediately follows from Lemma 3.1.

Otherwise, there must exist an optimal variable order u for AP(SA, SB;T ∗VS) correspond-

ing to the optimal value s∗VS,u = |T ∗VS[SA,u]| + |T ∗VS[SB,u]| < s∗. But due to Lemma

3.1, |T ∗VS[SA,u]| ≥ |T ∗[A,u]| and |T ∗VS[SB,u]| ≥ |T ∗[B,u]|. Hence, s∗VS,u ≥ |T ∗[A,u]| +

|T ∗[B,u]| ≥ s∗, which is a contradiction.

Note that complexity of the swap and sift-up operations for variable sequences is

O(1) and O(N), respectively, while for BDDs these operations are O(|Li|) and O(|N |).
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(Moreover, both |Li| and |N | can be exponential in N .) This justifies the idea of exploiting

the simplified problem to obtain an upper bound.

To derive several key properties of an optimal solution that will serve a foundation

for our branch-and-bound algorithm, we obtain some insight in this section into how an

optimal transformation can be built. We first note that a certain structure in variable

sequence allows for changes in the variable order at no additional cost. Then we introduce

a concept of non-redundant schedule of swaps, which is, essentially, a sequence of swaps

without any steps that can be safely removed. These two concepts allow us to prove the

existence of an optimal solution that possess certain properties that makes it easier to find

(by constructing such solution from an arbitrary alternative optimum). In particular, in the

next section we establish restrictions on the first element, last element, and potentially on

the mutual order of some other elements as well.

We introduce exponentially weighted subsequence to denote a continuous subsequence

of elements spanning positions k to l, k < l, such that ni = 2ni−1 for all i = (k + 1), . . . , l.

Lemma 3.3

Consider an exponentially weighted subsequence of S spanning positions k, . . . , l. An

exponentially weighted subsequence spans positions k, . . . , l in S′ = swap(S, i) for any

i ∈ {k, . . . , (l − 1)} and positions k, . . . , (l + 1) in S′ = swap(S, l).

Proof. Consider the case for k ≤ i < l. Affected elements’ weights before the swap are ni and

ni+1 = 2ni (since both elements belong to an exponentially weighted subsequence). After

the swap the weights become n′i = ni and n′i+1 = 2ni = ni+1 (no change), so the subsequence

is still an exponentially weighted one. For i = l, before the swap we have nl = 2(l−k)nk.

After the swap we have n′l = nl and n′l+1 = 2nl = 2(l−k)+1nk, so the exponentially weighted

subsequence now includes position (l + 1).
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Corollary 3.4

Consider a variable sequence S with var(S) = v. If an exponentially weighted subse-

quence spans positions k, . . . , l, then |S| = |T ∗VS[S,u]| for any u such that ui = vi for

all i < k and all i > l.

We will say that a pair of elements a, b ∈ var(S) appears in a schedule of swaps if

there exists a swap(S, i) in the schedule such that either xi = a, xi+1 = b or xi = b, xi+1 = a.

A non-redundant schedule of swaps is one in which each pair appears at most once.

Lemma 3.5

For a variable sequence S and an arbitrary permutation of var(S), denoted v, there

exists a non-redundant schedule of swaps that yields T ∗VS[S,v].

Proof. First, note that TVS[S,v] 6= ∅ (since any two adjacent elements can be swapped),

and |TVS[S,v]| is finite, because there is a finite number of valid variable sequences with

variable order v. Hence, there is an optimal schedule of swaps that yields T ∗VS[S,v]. If the

schedule is non-redundant, then the claim is proven. Otherwise, suppose that pair {a, b}

appears more than once in the schedule. Now, modify the schedule by ignoring all swaps

between a and b (except for the last one, if the number of occurrences is odd), and perform

the same schedule of swaps in terms of element indices. The new schedule produces the same

variable order with some swaps removed. Due to Remark 3.4, the resulting sequence will

have size at most |T ∗VS[S,v]| (hence, exactly the optimal value). Repeating the procedure

for each redundant pair of swaps, we obtain a non-redundant optimal schedule.

To build a non-redundant schedule of swaps that yields an optimal transformation,

examine a specific swapping strategy presented in Algorithm A3.3. Without loss of gen-

erality, assume elements are labeled as 1, . . . , N , and the target order is v = (1, . . . , N).

At every iteration of the algorithm, we find the element with the largest label that is not

in its final position (line 3). Indexing this element as Nf , note that elements in positions

(Nf + 1), . . . , N cannot participate in any further swaps (otherwise, they would belong to a
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redundant swap). Therefore, we focus on the subsequence spanning positions 1, . . . , Nf .

We perform the corresponding sift in line 4. Note that in any non-redundant schedule

this element will not be swapped further with any one having index less than iS′(Nf ) or

more than Nf . Moreover, this element also must be swapped with all elements occupying

positions (iS′(Nf )+1), . . . , Nf . Since we do not perform any other swaps with this element,

then due to Remark 3.4, the weights of elements in positions iS′(Nf ), . . . , N after the sift

represent a lower bound on the corresponding weights in T ∗VS[S,v].

Algorithm A3.3. Align-to (weighted variable sequence)
Input: S = [x1, . . . , xn|n1, . . . , nN ] – a weighted variable sequence
Output: T ∗VS[S,v] for v = (1, . . . , N)
1: S′ ← S, Nf ← N
2: while Nf > 1 do
3: Let Nf be the largest index such that x′j = j for all j = (Nf + 1), . . . , N (and N if no such index exists).
4: S′ ← sift(S′, iS′ (Nf ), Nf )
5: end while

Note that by the above rationale, weights for elements Nf , . . . , N at any moment

represent a lower bound on the corresponding weights for an optimal transformation. Since

each cycle decreases Nf by at least one, the while-loop of Algorithm A3.3 iterates at most

N times. This algorithm is illustrated with a specific example as follows.

Example 3.4. An optimal transformation of S = [3, 5, 6, 11, 7, 9, 2, 19, 8, 4, 1|n1, . . . , n11] to

the target order (1, . . . , 11) is presented in Figure 3.6. We start with Nf = 11. The first

sift moves element 11 to position 11, which creates an exponentially weighted subsequence

spanning positions 4–11. The next four steps move elements 10, 9, 8, and 7 to their respective

positions without changing any weights (due to Corollary 3.4, since these are sifts within

an exponentially weighted subsequence), resulting in Nf = 6. Step six sifts element 6 to

the target position, creating an exponentially weighted subsequence spanning positions 3–6

and updating Nf to the value of 5. The next step sifts element 5 to the target position,

creating an exponentially weighted subsequence spanning positions 2–5, which allows us to

perform the next sift of element 4 without changing weights. Finally, element 3 is sifted to

its respective position and 2 is swapped without any weight updates. �

It can be shown that all non-redundant schedules of swaps transforming S to variable
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Figure 3.6: Transforming a variable sequence (sifts)
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order v yield the same variable sequence, and hence T ∗VS[S,v] is unique.

The sift operations will be called many times in the course of our further solution

search, but Algorithm A3.3 can require runtime in O(N2). For example, note that a case

when we would like to revert the order from 1, 2, . . . , N to N, (N − 1), . . . , 1 would require

a quadratic number of swap operations. In fact, we can build the transformation in linear

time, as we present now with Algorithm A3.4.

As suggested by the example presented in Figure 3.6, the only sifts that change

sequence weights are the ones dealing with elements that never participate in a swap that

would decrease their index (referred to as sinking ones). In Figure 3.6, sinking elements are

3, 5, 6, and 11. This allows us to build a linear-time procedure as follows (illustrated in

Figure 3.7). We iterate through such elements and keep a running set P of elements that

are swapped with the current sinking one. Scanning the initial sequence S top-down (main

loop of the algorithm, lines 4–16) we check if the current element is a sinking one in line

5 (which is equivalent to checking if xi /∈ P ). If xi ∈ P then we exclude it from P in line

14, since it will not be swapped with any of the further sinking elements. Otherwise, we

build an exponentially weighted subsequence until the next sinking element with lines 6–12

as follows. We set the first element’s weight in line 6 and then fill in the remaining weights

one by one, doubling the previous weight. Note that by the end of this procedure (line 12)

j points to the start of the subsequence that will be defined by the next sinking element.

Since we modify each target element’s weight exactly once, the algorithm takes linear time.

Algorithm A3.4 yields T ∗VS[S,v], since it replicates weights that would be obtained

by Algorithm A3.3. To see this, first note that algorithms A3.4 and A3.3 generate ex-

ponentially weighted subsequences spanning the same positions (viz., between consecutive

sinking elements). Then, observe that the first element in each such subsequence receives

the same weight regardless of the algorithm. Consider an arbitrary such element f . Algo-

rithm A3.4 assigns weight 2|P |ns, where ns is the weight of the current sinking element in

S, and P contains all such elements e that e < f , but iS(e) > iS(s). But there are exactly

f − iS(s) such elements (which is the number of elements that needs to be moved out of the
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Figure 3.7: Transforming a variable sequence (alternative)

1

2

3

4

5

6

7

8

9

10

11

3

5

6

11

7

9

2

10

8

4

1

[ n1 ]

[ n2 ]

[ n3 ]

[ n4 ]

[ n5 ]

[ n6 ]

[ n7 ]

[ n8 ]

[ n9 ]

[ n10 ]

[ n11 ]

S (initial sequence) T*
VS (optimal transformation)

optimal 
weightsweight var var

Algorithm A3.4. Align-to (weighted variable sequence), linear time
Input: S = [x1, . . . , xn|n1, . . . , nN ]
Output: T ∗VS[S,v] for v = (1, . . . , N)

1: function align_to_target(S)
2: P ← ∅; // set of elements to be passed by the current sinking element
3: j ← 1; // current position in the target sequence
4: for i = 1, . . . N do // loop over the initial sequence
5: if xi /∈ P then // a sinking element detected
6: n′j ← ni × 2|P |;
7: while j < xi do
8: P ← P ∪ {j};
9: j ← j + 1;
10: n′j ← n′j−1 × 2

11: end while
12: j ← j + 1
13: else
14: P ← P \ {xi} // xi is already processed in the resulting sequence
15: end if
16: end for
17: return T ∗VS ← [1, . . . , N |n′1, . . . , n′N ]
18: end function
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subsequence spanning positions iS(s), . . . , s for it to attain its final length). The value of

2|P |ns = 2f−iS(s)ns coincides with the weight that would be assigned by Algorithm A3.3 to

this element after sifting the element s down f − iS(s) positions. So, algorithms A3.3 and

A3.4 construct the same values in each exponentially weighted subsequences, which results

in the same (optimal) sequence.

Remark 3.5. The variable order obtained from solving the simplified problem is a solution

to the original problem; however, its quality depends on the starting variable orders and the

problem structure. For instance, consider two BDDs whose variable sequences are already

aligned. Then, the simplified problem generated from these two diagrams would imply no

changes to the variable order at optimality. (The diagrams are already aligned, and no swap

decreases the size of a variable sequence, per Remark 3.4.) Therefore, the simplified problem

could return a solution that is arbitrarily good or bad with respect to the original problem

objective. �

3.4 An algorithm to solve the simplified problem

This section presents an algorithm that will be the core of our heuristic for the

BDD alignment problem: a branch-and-bound procedure to solve the simplified problem,

AP(SA, SB;T ∗VS). To design it, we first discuss a few properties of an optimal solution we

seek to find in Section 3.4.1. These properties serve a foundation to the algorithm we present

then in Section 3.4.2 (which also includes a detailed discussion of the lower bound we use).

3.4.1 Properties of an optimal solution to the simplified problem

The key property supports the intuition that if a pair of elements is already aligned

in two sequences, then there is no need to change their mutual order in order to achieve an

optimum.
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Lemma 3.6: Aligned pair

Given an instance of AP(SA, SB;T ∗VS) and any pair of elements a, b ∈ var(SA) such

that a ≺SA
b and a ≺SB

b, there exists an optimal solution v∗ such that a ≺v∗ b.

Proof. The claim is illustrated in Figure 3.8a. Consider any optimal alignment v, and

suppose that b ≺v a. Consider two non-redundant schedules of swaps that transform SA and

SB to v. Note that pair {a, b} appears in the schedule both for SA and SB. If we modify both

swap schedules by simply ignoring the swaps between a and b, then the resulting sequences

will be still aligned. There will be fewer swaps in each schedule, and by Remark 3.4 the total

size of the resulting sequences will be no more than |T ∗VS[SA,v]| and |T ∗VS[SB,v]|. Thus, v∗

is an alternative optimal alignment with the desired property.

This fact immediately allows us to restrict the search space without compromising

on the objective. For the next corollary, given a sequence S, variable order v, and element

w of v, define CS,w = {x : w ≺S x} as the set of elements in S covered by w.

Corollary 3.7: Covered elements

For any instance of AP(SA, SB;T ∗VS), there exists an optimal variable order v∗ =

(v∗1, . . . , v
∗
N ) such that:

• CSA,v
∗
N
∩ CSB ,v

∗
N

= ∅;

• a ≺v∗ b for all a, b such that a, b ∈ CSA,v
∗
N

and a ≺SB
b.

Proof. The first claim is illustrated in Figure 3.8b. To see that CSA,v
∗
N
∩CSB ,v

∗
N

= ∅ for some

optimal v∗, note that if there exists w ∈ CSA,v
∗
N
∩ CSB ,v

∗
N
, then v∗N ≺SA

w and v∗N ≺SB
w.

Lemma 3.6 states that there exists an alternative optimal alignment with v∗N ≺ w. (Iterating

this argument establishes the claim.)

To prove the second claim, illustrated by Figure 3.8c, consider an optimal alignment

v, and suppose that a, b ∈ CSA,v
∗
N
, a ≺SB

b, and b ≺v a. Let v∗ be a modified version of v in

which a ≺v∗ b. Note that |T ∗VS[SA,v]| = |T ∗VS[SA,v
∗]|, because reordered elements belonged
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to the same exponentially weighted subsequence. Now, observe that we can modify the

schedule that builds T ∗VS[SB,v] to build T ∗VS[SB,v
∗] by omitting all swaps between elements

a and b. Due to Remark 3.4, |T ∗VS[SB,v
∗]| ≤ |T ∗VS[SB,v]|. Hence, v∗ is also an optimal

order. Applying this procedure for all such pairs of a and b yields an optimal alignment that

possesses the desired property.

In principle, we can also utilize the results from the previous section to restrict the

first element, which will yield a way to build a lower bound.

Lemma 3.8: Target first element

Given an instance of AP(SA, SB;T ∗VS), with SA = [a1, . . . , aN |nA1 , . . . , nAN ] and SB =

[b1, . . . , bN |nB1 , . . . , nBN ], there exists an optimal target variable order v∗ such that

v∗1 ∈ {a1, b1}.

Proof. Assume that in an optimal target variable order v the first element v1 /∈ {a1, b1}.

Without loss of generality, assume iv(a1) < iv(b1). Note that in the transformation from

SA to T ∗VS[SA,v] with Algorithm A3.3, the last sift involving a1 will create an exponentially

weighted subsequence spanning indices 1, . . . , iv(a1) in T ∗VS[SA,v] (and weights of these

elements will not be changed further). Then, pick v∗ such that v∗1 = a1, v∗i = vi−1 for i =

2, . . . , iv(a1), and v∗i = vi for i = (iv(a1) + 1), . . . , N . Due to Corollary 3.4, |T ∗VS[SA,v
∗]| =

|T ∗VS[SA,v]|.

By the same rationale, an exponentially weighted subsequence spans indices 1, . . . , iv(b1)

in T ∗VS[SB,v] and since iv(a1) < iv(b1), an exponentially weighted subsequence also spans

indices 1, . . . , iv(a1) in T ∗VS[SB,v]. Therefore, the same corollary implies that |T ∗VS[SB,v]| =

|T ∗VS[SB,v
∗]|, and that v∗ possesses the desired property.

Therefore, we can restrict our search for v∗1 (the first element in the target variable

order) with just set {vA1 , vB1 }. Hence, at least one of the two sifts to position 1 must be

made: either vA1 in SB, or vB1 in SA, which immediately gives us a lower bound (although,

relatively loose).
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Figure 3.8: Optimal solution properties (variable sequences)
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Table 3.1: Example: alternative optima (simplified problem)

Sequence A Weights |A| Sequence B Weights |B| |A|+ |B|
[1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 2, 2] 14 [6, 5, 4, 3, 2, 1] [1, 2, 2, 3, 5, 1] 14 28
[5, 6, 1, 2, 3, 4] [1, 2, 4, 8, 12, 16] 43 [5, 6, 1, 2, 3, 4] [1, 2, 2, 4, 8, 16] 33 76
[5, 6, 2, 1, 3, 4] [1, 2, 4, 8, 12, 16] 43 [5, 6, 2, 1, 3, 4] [1, 2, 2, 4, 8, 16] 33 76
[6, 5, 1, 2, 3, 4] [1, 2, 4, 8, 12, 16] 43 [6, 5, 1, 2, 3, 4] [1, 2, 2, 4, 8, 16] 33 76
[6, 5, 2, 1, 3, 4] [1, 2, 4, 8, 12, 16] 43 [6, 5, 2, 1, 3, 4] [1, 2, 2, 4, 8, 16] 33 76

3.4.2 Algorithms for solving the simplified problem

Given the algorithm discussed above, we can design a variety of neighborhood search

procedures considering variable order as a point in the solution space (as we do in Sec-

tion 3.5). However, local search procedures that require a decreasing objective at each step

can yield local optima that are inferior to global optima.

Example 3.5. Consider an instance comprising the following variable sequences:

• A = [1, 2, 3, 4, 5, 6|1, 2, 3, 4, 2, 2], and

• B = [6, 5, 4, 3, 2, 1|1, 2, 2, 3, 5, 1].

Corresponding optimal alignments are presented in Table 3.1, below the first line (which

represents the initial sequences).

If we start with the alignment to A or to B as a target, there is no schedule of sifts

that would not increase the objective (momentarily) and at the same time would eventually
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Figure 3.9: An example for local optima (simplified problem)

Note. The figure represents aligning A to var(B) and B to var(A). Variable labels are in blue, black numbers
correspond to element weights. Red numbers represent weights of the corresponding elements of another
sequence if it will be aligned to this one. For example, weight of element 4○ in sequence B is 2 (black
number). If A will be aligned to B as a target, element 4○ of this aligned A’ will get the weight of 4 (red
number).

lead to an optimal target. In fact, for each starting target alignment (var(A) or var(B))

there is exactly one neighbor alignment within one sift such that it would not increase the

total size of two sequences if we decided to align A and B to it. This effect is best illustrated

in the context of Algorithm A3.4. The weights resulting from aligning A to var(B) (or B to

var(A)) are depicted in Figure 3.9.

Let us start with var(B) as alignment target and see if we can modify the target

with a single sift such that the total size of revised diagrams would not increase. Every such

change will affect the total size in two ways:

• Increase in size of the revised version of diagram B (which is obviously zero until we

change the target). The amount will be equal to the cost of the specific sift in B.

• Increase (or decrease) in size of the revised version of diagram A, as compared to the

revised version of A as aligned to var(B).

Sum of these two effects must be nonpositive for us to consider a change in the target

in a greedy algorithm. Let us consider possible single-sift changes in the target (looking at
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Table 3.2: Example: single-sift changes

Element Change in |A| Change in |B| Total change, |A|+ |B|
2 (32− 32) = −0 (10− 1) = 9 +9
3 (24− 32) = −8 (6− 5) + (12− 1) = +12 +4
4 (16− 32) = −16 (4− 3) + (8− 5) + (16− 1) = +19 +3
5 (4− 32) = −28 (4− 2) + (8− 3) + (16− 5) + (32− 1) = +49 +21
6 (2− 32) = −30 (2− 2) + (4− 2) + (8− 3) + (16− 5) + (32− 1) = +49 +19

Note. Each element is sifted to the last position (after element 1).

the left panel of Figure 3.9). Assume we start from aligning A to var(B). It would result in

an exponentially weighted subsequence spanning the whole sequence. Note that any changes

between elements 6, . . . , 2 in the target does not change the size of the revised A. Hence, the

only possibility to be considered is when it does not change the revised B either (otherwise

the total size would increase). There is exactly one such opportunity: swapping 5 and 6

(to obtain the situation depicted in the right panel). If, for example, we wanted to align

A to the sequence similar to B, but with elements 1 and 2 flipped, in the revised diagram

we would get an exponential-size subsequence ending at the second-to-last position with the

size of 16, and the last element 2 would have the same weight of 2 × 24 = 32 (according

to Algorithm A3.4). But the swap of elements 1 and 2 in B would cost 2 × 5 − 1 = 9, so

the objective would increase. All the rest of the target single-sift alignments (assuming the

starting point of var(B)) are summarized in Table 3.2.

The same analysis for the right panel of the figure suggests that there are no other

targets in the single-sift neighborhood of var(B) reachable without increasing the total size.

It can be shown that the situation is similar for the initial point of var(A). Therefore, the

optimum, which implies 5 and 6 as first elements (in any order), followed by elements 1 and

2 (again, in any order), with a tail of [3, 4], can never be reached by a simple greedy search.

(There are more complicated examples with larger neighborhoods, which still do not contain

an optimal target.) �

To find a global optimum for the simplified problem, we design a branch-and-bound

algorithm (Algorithm A3.5) built upon Algorithm A3.3. A search tree node represents a

pair of partially aligned sequences, T ∗VS[SA,v
1] and T ∗VS[SB,v

2], such that tails of v1 and
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v2 coincide (i.e., v1
i = v2

i for all i > Nf for some Nf ).

In lines 3–7 we initialize the search tree with a (trivial) root node with v1 = var(SA)

and v2 = var(SB). We keep a heap of search tree nodes O to be examined, bounds LB and

UB , and a current incumbent candidate for an optimal solution (given by a variable order

w and aligned sequences ŜA = T ∗VS[SA,w] and ŜB = T ∗VS[SB,w]). We generate incumbent

solutions via the heuristic function, lines 35–44, simply as the best of var(SA) and var(SB).

In the main loop (lines 8–32) we pick a node from the heap having the smallest

lower bound and process it as follows. If the corresponding lower bound of the node is

not less than the upper bound UB , then we prune the search and report the solution (line

11). Otherwise, in lines 13–31 we consider each element with index no more than Nf as a

potential candidate for position Nf . If the element does not violate the property described

in Corollary 3.7, then we create a new node with this element moved to position Nf and

decrease Nf by one, similar to Algorithm A3.3. Corollary 3.7 allows us to fix the relative

order for some variables as we sift down, which we do in line 18. We calculate lower and

upper bounds for the new node and try to update the global upper bound UB (lines 23–26).

We push the newly created node into the heap if the algorithm does not terminate (because

the corresponding sequences are not yet aligned) in line 28. We illustrate the algorithm with

the following example, involving a specific instance.

Example 3.6. A sample search tree for a random eight-variable instance of the problem

AP(SA, SB;T ∗VS) is provided in Figure 3.10. Each node represents a pair of sequences, when

all the elements with positions after Nf are aligned (aligned and unaligned subsequences

are separated by brackets). Nodes are differentiated by types: intermediate nodes processed

by the algorithm are marked “[E]”; terminal nodes (with aligned full sequences) are marked

with “[T]” and a thick border; pruned nodes are shaded and marked with “[P]”; an optimal

node is marked with “[O]”. Upper (lower) bound is denoted by UB (respectively, LB). Bounds

within ellipses represent the ones calculated for a particular node, running bounds for the

whole search tree immediately before the corresponding node processing are provided in

text boxes marked with the word “Tree” outside the node. Current best known solution is
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abbreviated as obj. Node names are derived from the search tree decision: e.g., “4to7” name

means that this node was generated from the previous one by sifting an element labeled 4

to (zero-based) position 7. step refers to the current node processing step number (each

such step creates all possible first-level descendant nodes from the current one).

Algorithm A3.5 starts from a trivial root node, representing the original sequences,

with a lower bound (LB) of 73 and upper bound (UB) of 86. The current objective is 86.

Each time a node is created, we calculate lower and upper bounds for that node (depicted

within ellipses). The only candidate for the last position is 4, since it is already aligned

and any other variable choice would have violated the “aligned pair” requirement (Lemma

3.6). Thus, the only possible node, node 1, is created, and a tail with one element, 4, is

marked as “aligned” for this node. At the next step, there are two possible candidates for

position 6 (in zero-based numbering), elements 5 and 6, so two nodes are created, node 2

and node 3. At this point, we have two nodes to process: node 2 and node 3, with lower

bounds 154 and 73, respectively. We choose the one with the smallest lower bound, node 3.

We create node 4 and node 5, with lower bounds 94 and 75, respectively. We calculate an

upper bound for node 5 and obtain a value of 77, which is less than the current best of 86.

Hence, the latter is updated to 77. Now, lower bounds of nodes to explore are 154, 94, and

75. Hence, we update the global lower bound to 75. The next node to process is node 5

(since 75 is the smallest among 154, 94, and 75). We create node 6 and node 7 with lower

bounds 77 and 82, respectively. An updated set of lower bounds is {154, 94, 77, 82}, so the

global lower bound is updated with 77. But we already have a solution for 77 (generated

during the upper bound calculation for node 5). Hence, the optimal value is 77, and we

immediately create an optimal node 8 and prune further search at node 2, node 4, node

6, and node 7.

We tested several approaches to calculate lower bounds (see Section 3.5.2 for details).

The preferred one is calculated with the function lowerBound (lines 45–49), which is based

on the following idea.
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Figure 3.10: Search tree example (simplified problem)

root[E]
A:[2, 8, 7, 1, 5, 3, 6, 4][]( 19)
B:[2, 3, 6, 8, 7, 1, 5, 4][]( 49)

|A|+|B|=68, LB:73, UB:86

Tree: LB=73, UB=86, obj=86

step 0, node 1: 4to7[E]
A:[2, 8, 7, 1, 5, 3, 6][4]( 19)
B:[2, 3, 6, 8, 7, 1, 5][4]( 49)
|A|+|B|=68, LB:73, UB:86

Tree: LB=73, UB=86, obj=86

step 1, node 2: 6to6[P]
A:[2, 8, 7, 1, 5, 3][6, 4]( 19)
B:[2, 3, 8, 7, 1, 5][6, 4](135)

|A|+|B|=154, LB:154, UB:154

(search pruned)

step 1, node 3: 5to6[E]
A:[2, 8, 7, 1, 3, 6][5, 4]( 19)
B:[2, 3, 6, 8, 7, 1][5, 4]( 49)
|A|+|B|=68, LB:73, UB:86

Tree: LB=73, UB=86, obj=86

step 2, node 4: 6to5[P]
A:[2, 8, 7, 1, 3][6, 5, 4]( 19)
B:[2, 3, 8, 7, 1][6, 5, 4]( 75)
|A|+|B|=94, LB:94, UB:94

step 2, node 5: 1to5[E]
A:[2, 8, 7, 3, 6][1, 5, 4]( 22)
B:[2, 3, 6, 8, 7][1, 5, 4]( 49)
|A|+|B|=71, LB:75, UB:77

Tree: LB=75, UB=77, obj=77

step 3, node 6: 6to4[P]
A:[2, 8, 7, 3][6, 1, 5, 4]( 22)
B:[2, 3, 8, 7][6, 1, 5, 4]( 55)
|A|+|B|=77, LB:77, UB:77

step 3, node 7: 7to4[P]
A:[2, 8, 3, 6][7, 1, 5, 4]( 31)
B:[2, 3, 6, 8][7, 1, 5, 4]( 49)
|A|+|B|=80, LB:82, UB:82

step 4, node 8: UB=LB[O]
A:[][2, 8, 7, 3, 6, 1, 5, 4]( 22)
B:[][2, 8, 7, 3, 6, 1, 5, 4]( 55)

|A|+|B|=77, LB:None, UB:None

Aligning variable sequences:

Vars : [ 2, 8, 7, 1, 5,   3,   6, 4 ]

n      : [ 1, 2, 2, 1, 1,   2,   4, 6 ] (sz=19)

-------------------------  vs ---------------------------

Vars : [ 2, 3, 6, 8, 7,   1,   5, 4 ]

n      : [ 1, 2, 4, 6, 12, 12, 4, 8 ] (sz=49)

A

B

(search pruned)

(search pruned) (search pruned) OPTIMAL

Lemma 3.9

For S = [a1, . . . , aN |n1, . . . , nN ] and arbitrary v, define I(S,v) = {(j, l) : aj ≺S al

and al ≺v aj}. Then:

|T ∗VS[S,v]| ≥ |S|+
∑

(j,l)∈I(S,v)

(2nj − nj+1).

Proof. Let us consider the optimal schedule of swaps as implemented in Algorithm A3.3.

We prove the lemma by comparing the maximum possible increase of the lower bound due

to swaps at each step of the algorithm, and by showing that this amount does not exceed

the increase of the actual sequence size.

At the first step, we move an element from position j to N (such as the one depicted

with the first arrow in Figure 3.6). The actual increase in the sequence size is
∑N−j

k=1 (2knj−

nj+k), which is the total difference between the new and old element weights on positions
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j + 1, . . . , N . Because this sift creates an exponentially weighted subsequence spanning

positions j, . . . , N , all subsequent sifts of elements aj+1, . . . , aN do not change any weights

(by Lemma 3.3). The lower bound due to swaps in this first step would be maximal if

(k, l) ∈ I(S,v) for all j ≤ k < l ≤ N . Then, the contribution to the lower bound would be

N−1∑
k=j

(N − k)(2nk − nk+1).

Denoting K = N − j, the difference between the actual size increase and the change in the

lower bound at the first step of Algorithm A3.3 is at most:

∆ =
K∑
k=1

(2knj − nj+k)−
K−1∑
k=0

(K − k)(2nj+k − nj+k+1). (3.1)

We seek to prove that ∆ ≥ 0. Note that for K = 1 we have ∆ = 0. For K ≥ 2:

K−1∑
k=0

(K − k)(2nj+k − nj+k+1) =
K−1∑
k=0

2(K − k)nj+k −
K∑
i=1

(K − (i− 1))nj+i

= 2Knj +

K−1∑
k=1

(K − k − 1)nj+k − nj+K .

Substituting
∑K

k=1 2Knj = (2K+1 − 2)nj we can revise (3.1) as:

∆ = (2K+1 − 2)nj −
K∑
k=1

nj+k − (2Knj +
K−1∑
k=1

(K − k − 1)nj+k − nj+K)

= (2K+1 − 2K − 2)nj −
K−1∑
k=1

(K − k)nj+k.

By noting that nj+k ≤ 2nj+k−1 for all k, we obtain:

∆ ≥
(

(2K+1 − 2K − 2)−
K−1∑
k=1

(K − k)2k
)
nj .

Noting that
∑K−1

k=1 (K − k)2k = 2K+1− 2K − 2 when K ≥ 2, we get that ∆ ≥ 0. Therefore,
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the size increase of the sequence is at least as large as the lower bound contribution at the

first step of Algorithm A3.3.

Now, consider the next step of Algorithm A3.3, from position l to some position L,

l < L ≤ N − 1. The sequence size increase overestimate stemming from swaps between

any elements at positions j, . . . , L is compensated by the underestimates due to the pre-

vious weight-changing sift. Overestimates due to the swaps involving elements l, . . . , j are

compensated by the underestimates due to the current weight-changing sift (by the ratio-

nale above). Repeating this logic for the consecutive weight-changing sifts establishes the

lemma.

Corollary 3.10

For AP(SA, SB;T ∗VS), the optimal objective

s∗ ≥ |SA|+ |SB|+
∑

(l,j)∈I(SA,var(SB))

min{2nSA
l − n

SA
l+1, 2nSB

iSB
(aj) − n

SB

iSB
(aj)+1}.

Proof. Consider an optimal alignment v. For each pair of indices (l, j) such that al ≺SA
aj

and aj ≺SB
al, define δlj = 1 if al ≺v ak and δlj = 0 otherwise. Applying Lemma 3.9 twice:

|T ∗[SA,v]| ≥ |SA|+
∑

(l,k)∈I(SA,var(SB))

(1− δlk)(2nSA
l − n

SA
l+1),

|T ∗[SB,v]| ≥ |SB|+
∑

(l,j)∈I(SA,var(SB))

δlj(2n
SB

iSB
(aj) − n

SB

iSB
(aj)+1).

Taking the sum of the two inequalities, we conclude that

s∗ = |T ∗VS[SA,v]|+ |T ∗VS[SB,v]| ≥ |SA|+ |SB|

+
∑

(l,j)∈I(SA,var(SB))

[(1− δlj)(2nSA
l − n

SA
l+1) + δlj(2n

SB

iSB
(aj) − n

SB

iSB
(aj)+1)]

≥ |SA|+ |SB|+
∑

(l,j)∈I(SA,var(SB))

min{2nSA
l − n

SA
l+1, 2n

SB

iSB
(aj) − n

SB

iSB
(aj)+1},

regardless of specific δlj values.
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3.5 Numerical experiments

We test the proposed approach in a series of numerical experiments carried out using

the Clemson University Palmetto high-performance computing cluster infrastructure. The

algorithms were implemented in Python and incorporated into a computational pipeline

created with GNU make.

The core dataset comprises 10, 048 random fifteen-variable BDD pair alignment in-

stances, which is generated as discussed in Section 3.5.1.

In a preliminary experiment presented in Section 3.5.2 we define a metric and nu-

merically compare the performance of different approaches to calculating lower bounds for

the simplified problem. This motivates our choice of a specific lower bound that we use in

the further experiments.

Then, for each instance, we construct a simplified problem instance as per Defini-

tion 3.4, obtain a solution, and revise BDDs to the target variable order derived from the

simplified problem. We discuss the experiments related to simplified and original problems

in Sections 3.5.3 and 3.5.4, respectively. Finally, we consider structural properties of the

solutions to the original problem that were obtained with the proposed heuristic in Sec-

tion 3.5.5.

3.5.1 A dataset of random instances

To generate each instance, we define the desired number of layers and diagram growth

parameter p ∈ (0, 1] (shared by all instances), start from the root node, and process each of

the outgoing arcs as follows. If there are no nodes in the next layer, we create the tail node

for the arc. Otherwise, we create a new tail node with probability p, and use a (uniformly)

random existing node in the next layer as a tail with probability (1− p).

This procedure is repeated for each node in each consecutive layer, until we reach

the layer corresponding to the last variable. Then the terminal nodes, T and F, are created,

and all nodes in the previous layer are connected randomly to T or F. After the diagram
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Algorithm A3.5. BB-search for AP(SA, SB;T ∗VS)

Input: weighted variable sequences SA and SB

Output: v – an optimal variable order, T ∗VS[SA,v], and T ∗VS[SB ,v]
1: function search(SA, SB)
2: Initialization:
3: Initialize O to be an empty heap of open search tree nodes (lower bounds as keys)
4: rootNode ← create node(S1 ← SA, S2 ← SB , Nf ← |SA|)
5: O.push(lowerBound(rootNode), rootNode)
6: ŜA, ŜB ← heuristic(rootNode) // current solution candidate
7: UB← |ŜA|+ |ŜB | // global upper bound
8: while |O| > 0 do
9: LB, nextNode = O.pop() // Pick a node with the smallest objective lower bound
10: // process nextNode as follows:
11: if LB ≥ UB then goto line 33
12: S1, S2, Nf ← nextNode
13: for j = Nf , . . . , 1 do
14: a← xS1

j

15: if CS1,a ∩ CS2,a ∩ {x
S1
1 , . . . , xS1

Nf
} = ∅ then

16: S′1 ← sift(S1, iS1
(a), Nf )

17: S′2 ← sift(S2, iS2 (a), Nf )
18: reorder elements of S′2 and S′1 with labels in CS1,a and CS2,a (respectively) as per Corollary 3.7
19: newNode ← create node(S1 ← S′1, S2 ← S′2, Nf ← (Nf − 1))
20: QA, QB ← heuristic(newNode)
21: node_UB ← |QA|+ |QB |
22: node_LB ← lowerBound(newNode)
23: if UB > node_UB then
24: ŜA ← QA, ŜB ← QB

25: UB← node_UB
26: end if
27: if node_LB < UB and var(S′1) 6= var(S′2) then
28: O.push(node_LB, newNode) // add the new node to the heap
29: end if
30: end if
31: end for
32: end while
33: return (var(ŜA), ŜA, ŜB);
34: end function

35: function heuristic(node)
36: S1, S2, Nf ← node
37: S′1 ← align_to_target(var(S2))
38: S′2 ← align_to_target(var(S1))
39: if |S1|+ |S′2| < |S′1|+ |S2| then
40: return (S1, S′2)
41: else
42: return (S′1, S2)
43: end if
44: end function

45: function lowerBound(node)
46: A,B,Nf ← node
47: Compute LB based on Corollary 3.10.
48: return LB
49: end function
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is generated, we process the layers from the last to the first one to make the BDD quasi-

reduced: we perform two swaps for each layer, starting from the last one (two swaps for the

same index do not change the order of variables, but due to the implementation of swap

removes all redundant nodes). Finally, unless stated otherwise, the layer labels are assigned

randomly. We also ensure that instances are unique (re-creating the diagram from scratch

if it is not the case).

The parameter effectively determines the diagram size: Setting p = 0 would result in

a single deterministic diagram with one node per layer, and setting p = 1 yields a determin-

istic diagram of exponentially growing layer sizes. For intermediate values of p, we would

have a random diagram with layer sizes growing depending on p. Figure 3.11 illustrates

the resulting distribution of layer sizes for different values of p. Each panel in the figure

corresponds to a BDD layer, each column within a panel corresponds to a specific value

of p: 0.2, 0.5, or 0.8. Note how the lower values produce relatively compact BDDs, while

for p = 0.8 layer widths grow exponentially up to a point when the enforced quasi-reduced

property becomes binding (e.g., enforcing the last layer to have effectively always four nodes,

because there are 22 = 4 distinct ways to point two types of outgoing arcs to two terminal

nodes).

Unless stated otherwise, we considered instances of two BDDs generated with p = 0.6

comprising 15 variables, labeled 1, . . . , 15 for the first diagram, and a random permutation

of the labels for the second one.

3.5.2 Analyzing lower bounds for the simplified problem

We examined several choices for computing lower bounds on the simplified problem

objective. The competing methods are described below, where A and B are the current

states of sequences SA and SB in the course of alignment.

• Current size: a naive bound of current size before the alignment, s0 = |A|+ |B|.

• Minimum size / first element aligned: a bound based on Lemma 3.8. Given that
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Figure 3.11: Align-BDD dataset: layer widths summary
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Note. Layer widths for a set of 1,000 random quasi-reduced 15-variable binary decision diagrams for each
value of p.
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v1 ∈ {a1, b1} in an optimal target alignment, we derive the bound s1 = min{|A| +

|sift(B, iB(a1), 1)|, |sift(A, iA(b1), 1)|+ |B|}.

• Minimum size / last element aligned: a bound based on aligning the last element.

We simply iterate through all possible elements as candidates for the N -th position

and pick the smallest size after the alignment of the last element only. That is,

sN = mini{|sift(A, i,N)|+ |sift(B, iB(ai), N)|}.

• Inversions-driven bound: a bound based on Corollary 3.10, computed as sI =∑
(i,j)∈I(A,var(B)) min(2nAi − nAi+1, 2n

B
iB(aj) − n

B
iB(aj)+1).

We chose our lower bound calculation approach based on a separate numerical ex-

periment that compared the options above. In particular, we calculated the current size

before the alignment, s0, and the true optimal objective, s∗. For each of the lower bounds

s′, we calculate the following characteristic:

LB score(s′) =
s′ − s0

s∗ − s0
.

A score of 100% would correspond to the exact optimal objective (a perfect lower bound),

while 0% would indicate a naive bound performing no better than the “current size” estimate.

We present histograms of scores for lower bounds corresponding to our main dataset of

random align-BDD instances in Figure 3.12. The first-element-aligned heuristic performs

poorly, barely exceeding the current size bound. The last-element-related bound performs

better that the inversions-driven one, but due to significantly lower runtimes we use the

latter.

3.5.3 Solving the simplified problem

We solved the simplified problem with several heuristics and compared them to the

exact branch-and-bound method described in Section 3.4.2.
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Figure 3.12: Lower bounds benchmarking (simplified problem)

Min size
first

element
aligned

Min size
last

element
aligned

Inversions-
driven LB

0 25 50 75 100

0

2500

5000

7500

0

2500

5000

7500

0

2500

5000

7500

LB tightness score, percent

0.1 1.0 10.0

0

2500

5000

7500

0

2500

5000

7500

0

2500

5000

7500

Wall-clock time per instance, msec

N
u

m
b

e
r o

f in
s
ta

n
c
e

s
, o

u
t o

f 1
0
0
4

8

• Best of A and B: calculate the objectives for var(SA) and var(SB) as the target

orders, and pick the best one.

• Greedy swaps: start with the target order obtained by the “Best of A and B”

heuristic. At each step, calculate the objective resulting from swapping each pair

of adjacent labels in the target order. Implement a swap that maximally decreases the

objective, and reiterate. Stop when no swaps improve the objective.

• Greedy sifts (inspired by Rudell 1993): adjust the previous procedure introducing

sifts instead of swaps. At each iteration (which we call a “pass”), consider moving

a variable to all possible positions (without affecting the relative positions of other

variables). We implemented variants of this heuristic that terminate after one pass,

two passes, or when no further improvements are possible (which we call “all passes”).

• Best of five random orders: pick a random order and calculate the objective value

from aligning the sequences to this target. Repeat five times and choose the best one.
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Table 3.3: Heuristic performance (simplified problem).

Heuristic Optimal solution Within 10%
Best/five random orders 0 1
Best of A and B 0 7
Greedy sifts (one pass) 4 191
Greedy sifts (two passes) 44 1,075
Greedy swaps 891 2,933
Greedy sifts (all) 8,960 10,045
Branch-and-bound 10,048 10,048

Note. Number of times (out of 10,048) each heuristic achieved the objective performances listed by column.

The performance of these strategies in terms of objective values are summarized

in Table 3.3. We calculate the number of instances when the objective provided by each

heuristic was optimal or exceeded the optimal value by at most 10%. The two naive heuristics

(“Best of A and B” and “Best of five random orders”) performed poorly. The two-passes

version of the greedy sifts heuristic yielded an objective value within ten percent of optimal

in about 10% of the instances, while the all-passes version gave near-optimal solutions on

a consistent basis. However, the runtimes of these approaches are significantly different.

Figure 3.13 depicts the runtime versus objective quality trade-off. Although the all-passes

greedy sifts heuristic provided near-optimal solutions, its runtime was excessive, sometimes

exceeding that of the exact method. Greedy swaps and restricted greedy sifts heuristics

provided a reasonable compromise between objective quality and runtime.

3.5.4 Solving the original problem

For each align-BDD instance, we generate and solve a simplified problem instance

(to optimality, with the branch-and-bound method). Then the original BDDs are revised

to the variable order obtained from the simplified problem to calculate the objective to

AP(A,B;T ∗). We benchmark the proposed approach against the following heuristics.

• Best of five random orders: generate a random order, align both diagrams. Repeat

five times and pick the best objective.

• Best of A and B: align both BDDs to A and to B, and pick the best objective.

• Greedy BDD sifts (inspired by Rudell 1993): start with var(A) as a target variable
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Figure 3.13: Runtime and objectives (simplified problem)
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Figure 3.14: Aligned BDD sizes summary
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Note. Histogram of the aligned BDD sizes for different heuristics, original problem.

order, and try to improve the objective as follows. For each variable, try sifting it

to each possible position and pick one with the best objective. Repeat with the next

variable, and stop when all variables are processed. Re-run the procedure using var(B)

as the initial target variable order, and choose the best solution out of the two.

To make the results comparable across multiple instances with different optimal

objectives, we divide the objective values by the baseline objective value obtained by the

greedy BDD sifts heuristic (for each particular instance). An objective of 100% would imply

performance similar to the baseline heuristic, and 50% would suggest that the heuristic

found a solution with the objective being half of the one obtained by the baseline. The

resulting objective value distributions are presented in Figure 3.14.

Our simplified-problem based heuristic outperformed the greedy BDD sifts (base-

line) on about 20% of all instances, while being at most 30% worse than the baseline at
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about 60% of instances. However, a problem involving O(N)-sized variable sequences scales

differently than the original problem (see Figure 3.15). We generated 200 instances for each

problem size, from 5 to 25 variables. We solved each instance with the simplified-problem

based heuristic and the baseline, greedy BDD sifts heuristic. Runtimes in logarithmic scale

are presented in Figure 3.15a. Each solved instance is denoted by a point (for BDD sifts

heuristic) or a cross (for the simplified problem-based heuristic). Logarithms of median val-

ues are depicted with line plots. Labels in the boxes indicate the share of instances when the

proposed heuristic outperformed the baseline both in terms of time and objective. Figure

3.15b presents histograms of objective values for the proposed heuristic, relative to the BDD

sifts, for different problem sizes. (Instances within the top 1% of their relative objective val-

ues are omitted for figure readability.) The number of variables is indicated in gray boxes

to the left of each panel.

Note that the heuristic we propose often escapes local optima. Thus, it yields better

objectives than the baseline, and this effect is stronger as the problem size grows. For

five-variable instances the simplified is worse than the greedy BDD sifts heuristic both in

terms of time and the objective value. However, as the instance grows, the greedy BDD

sifts heuristic becomes far slower and possibly impractical to use. We therefore recommend

the proposed simplified-problem based heuristic on instances containing more than twenty

variables. In our numerical experiment depicted in Figure 3.15, our heuristic outperformed

the greedy sifts heuristic on instances containing more than twenty variables both in terms

of time and objective on more than half of the instances.

3.5.5 Simplified problem solution structure

Note that our proposed heuristic solves the simplified problem to obtain a variable

order for the original problem. The foregoing analysis examines the objective quality of

these solutions to the original problem, compared to the optimal objective function value of

the original problem.

It is also interesting to consider whether optimal solutions to the simplified and the
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Figure 3.15: Runtime scaling (original problem)
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original problems share structural properties. Despite the fact that our heuristic can yield

arbitrarily poor solutions as per Remark 3.5, we executed a numerical experiment showing

that our solutions are usually more than 75% similar to an optimal solution for the original

problem. We describe this experiment and our measure of solution similarity in this section.

First, note that the weighted variable sequence model can yield bounds on the BDD

size that are arbitrarily tight. For instance, consider two arbitrary BDDs with a shared set

of variables (that allow for some variation in sizes depending on the order of variables), and

align them both to a worst possible shared order of variables. Then, the simplified problem

generated from these two diagrams after the alignment would imply no changes in an optimal

solution. (The diagrams are already aligned, and no swap decreases the size of a variable

sequence, per Remark 3.4.) So, even if we solve the simplified problem AP(SA, SB;T ∗VS)

to optimality, no (strictly) worse solution to AP(A,B;T ∗) is possible for such instance, by

construction.

At the same time, the heuristic can be arbitrarily tight in some cases, depending on

the problem structure. As pointed out in Remark 3.5, we might just start with an optimal

alignment. Less trivial cases are possible as well. Consider, for instance, the diagram in

Figure 3.16. Assume we are seeking to align two (quasi-reduced) diagrams having this exact

structure, but different layer labels: var(A) = (1, 2, 3, 4) and var(B) = (3, 2, 1, 4). In fact,

any change in the order of the first three layers does not change the diagram size, which is

13 nodes, and layers indexed 1–3 already induce an exponentially weighted subsequence in

the corresponding weighted variable sequences. Hence, the weighted variable sequence will

yield a tight bound of 13 for this instance.

Although the heuristic might perform well for the instances we discuss, this perfor-

mance depends on the structural properties of the problem. We provide several insights in

this regard.

Here we seek to analyze how similar solutions that optimize the simplified problem

are to solutions that optimize the original problem. To conduct this analysis, we introduce

a measure of “distance” of the solution obtained from the simplified problem to an optimal
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Figure 3.16: Example BDD: on variable sequence tightness
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solution to the original problem. Define a similarity score between two length-N sequences,

A and B, as follows:

simscore(A,B) = 1− |{(a, b) : a ≺A b, b ≺B a}|/
(
N

2

)
.

This score equals 100% if A and B are aligned, 0% if one is the reverse of the other, and

50% if half of all pairs of elements in A are inverted in B. (This is a property of var(A) and

var(B), so it does not depend on the element weights.)

To discuss the deviation of the solution obtained by the proposed heuristic and a

true optimum to the original problem, we generated 1,000 random seven-variable align-BDD

instances, enumerated all optima of the original problem by a brute-force algorithm, and

calculated the minimal and maximal similarity scores between the obtained solution and any

true optimum. The results are presented in Figures 3.17–3.20. Note that there are usually

several optima for our instances (e.g., out of 1,000 instances included in Figure 3.17, 979

had more than one optimum and 607 had more than five). These optima are usually quite

different: 60-70% of the instances have the smallest similarity score between optima of no

more than 25% (see Figure 3.18).

We see from Figure 3.19 that in more than half of the cases, the obtained solution
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Figure 3.17: Histogram for the number of
optima
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Figure 3.18: Histogram for the optimal
set “diameter”
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was similar to a true optimum (with simscore of 75% or more). Also, the more similar

the initial sequences are, the more likely the heuristic will find a solution close to a true

optimum, as suggested by Figure 3.20.
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Figure 3.19: Similarity scores
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Figure 3.20: Effect of the initial BDD orders
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Chapter 4

A BDD-based Approach to a Facility
Location Problem

We next illustrate the performance of the algorithms presented in the previous chap-

ter in the context of a specific application. This chapter is organized as follows. We start by

introducing the problem and show the corresponding mixed integer program. Sections 4.1

and 4.2 present an alternative formulation of the same problem, in which each group of con-

straints corresponds to a BDD, and the whole problem is reformulated as a Consistent Path

Problem (CPP). We will design algorithms that build two diagrams that together represent

the original problem instance. The remainder of the chapter is devoted to numerical exper-

iments. In particular, Section 4.3 presents several ways to solve the problem (including one

based on the results of Chapter 3), and benchmarks the solution times for different meth-

ods against a dataset of random instances. Section 4.4 demonstrates the runtime breakdown

into the key steps of the proposed computational pipeline, and Section 4.5 concludes with an

empirical discussion of the performance of the algorithms presented in the previous chapter

depending on the problem structure.

We will consider the following variant of the uncapacitated facility location problem

(see, e.g., Owen and Daskin 1998, ReVelle et al. 2008), which we call the “typed uncapacitated

facility location problem” (t-UFLP). The t-UFLP considers a set ofM points. At each point
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i, we can locate a facility at a cost given by fi, covering all points in a set given by Si, where

i ∈ Si. (Set Si might refer to customers that are sufficiently close to location i according

to some specified metric, like distance or travel time.) Furthermore, there exists a set of K

“types,” such that a point is classified by exactly one type. Let Tt be the set of points of type

t, for t = 1, . . . ,K. The set of all points is partitioned into non-empty sets T1, . . . , TK . For

each type t, there exists a type budget constraint, which states that the maximum number

of facilities located at type-t points must be no more than some positive integer parameter

kt. The t-UFLP minimizes the sum of facility location costs required to cover every point

at least once, subject to the given budget constraints. (The t-UFLP subsumes the UFLP

and is thus NP-hard.)

We introduce the decision variables xi ∈ {0, 1} corresponding to locating a facility

at point i = 1, . . . ,M . The objective minimizes the sum of the corresponding costs, and the

following binary program models the t-UFLP.

min
M∑
i=1

fixi (4.1a)

s.t.
∑
j∈Si

xj ≥ 1 for all i = 1, . . . ,M, (4.1b)

∑
j∈Tt

xj ≤ kt for all t = 1, . . . ,K, (4.1c)

xi ∈ {0, 1} for all i = 1, . . . ,M. (4.1d)

Constraints (4.1b) ensure every point is covered at least once, while (4.1c) ensure

that the available budget kt for each type t is not exceeded.

Alternatively, we could formulate the problem as a CPP with two diagrams: a cover

diagram enforcing constraints (4.1b), and a type diagram enforcing constraints (4.1c). Both

diagrams have variables xi associated with their layers (perhaps, in different order). We first

discuss construction of the diagrams and the difference in their order of variables, and then

move on to the solution of the resulting CPP instance.
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4.1 Building the cover diagram

We build the cover diagram layer by layer, each one corresponding to a point in the

original t-UFLP and the decision whether to locate a facility at this point. We associate an

M -dimensional binary state vector with each node of the diagram (indicating whether each

corresponding point is covered). Covering a point j necessitates locating a facility from Sj .

Therefore, if we have made all the decisions regarding points from Sj and j is not covered,

the solution must be infeasible. We start with a simple illustration of the procedure, followed

by the formal presentation of an algorithm based on this idea.

Example 4.1. Consider the construction of a cover diagram starting with some point j

as the first candidate for locating a facility, with the following relevant adjacency lists:

Sj = {j, 1, 2, 3}, S1 = {j, 1, 3, . . .}, S2 = {j, 2, 3, . . .}, S3 = {j, 1, 2, 3, . . .}. (Here the el-

lipses stand for arbitrary points excluding any combinations of j, 1, 2, and 3.) Figure 4.1

illustrates the corresponding network. An edge between points indicates that a facility at

either of the two points can cover the other one. The resulting part of the cover diagram

is presented in Figure 4.2. To build it, we associate a state with each BDD node, de-

noted by (. . . , cj , c1, c2, c3, . . .), where ci is a binary variable accounting for whether or not

point i was covered by any facility (i = j, 1, 2, or 3). We start from a root-node state,

marked (. . . , 0, 0, 0, 0, . . .), where none of the points are covered. Then, if we decide to lo-

cate a facility at j (corresponding to a one-arc emanating from the root node), we cover all

four of those points, leading to state (. . . , 1, 1, 1, 1, . . .). Otherwise, we preserve the state

(. . . , 0, 0, 0, 0, . . .) in the next layer. Assuming xj = 0, if we further decide to locate a facility

at point 1, then we will traverse the solid arc to state (. . . , 1, 1, 0, 1, . . .), because we covered

points j, 1, and 3. After the decision related to x3 is taken, it is certain that there can be no

subpath starting at state (. . . , 0, 0, 0, 0, . . .) and ending at the T terminal (because there is

no way to cover j anymore). We call such states infeasible. The other states (marked by a

box in Figure 4.2) are compatible with some set of feasible location decisions. Adding layers

corresponding to points in the adjacency list in arbitrary order and merging the very last
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layer into two nodes (feasible and infeasible), we can build the whole diagram encoding a

single constraint from constraint (4.1b). We then pick another cover constraint and proceed

by building the diagram using the previous feasible node as the new root. Note that once

we fix point j, we process its entire adjacency list (we describe our ordering strategy in

detail further). The resulting diagram has a certain fixed order of variables, which we call a

natural variable order for the cover diagram. �

We denote the creation of a new BDD node as: “add node to D: X
hi/lo−→ (new) Y,”

which would mean that a new node, Y , is created as a child node of X, and that they are

connected with an arc of type HI (one-arc), or LO (zero-arc), respectively. Creation of an

arc between nodes X and Y is denoted by “add arc to D: X
hi/lo−→ Y .”

Using this notation, construction of the cover BDD is presented in Algorithm A4.1.

We start by initializing the diagram with a single node (r) and the associated state (0, . . . , 0)

(meaning no points are covered in the beginning). For each point i, we also track the number

Fi of adjacent points that have not yet been added to the diagram as decisions (initialized

in line 3). When this number drops to zero for some point (we will call such point critical),

there will be no further opportunities to cover it. Hence, if it has not been already covered,

then no feasible solution is reachable from this state. The set of points to add to the diagram

is denoted by P (initialized in line 2 with the set of all points). In the main loop (spanning

lines 5–47) we process the next point as follows. We pick the point that has fewest adjacent

points to be added to the diagram (in line 5), and iterate over its adjacency list (ordered by
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Algorithm A4.1. Build-cover-BDD
Input: Adjacency lists Sj and facility location costs fj for j = 1, . . . ,M
Output: Cover diagram, D.
1: create D with a single node, r
2: initialize P ← {1, . . . ,M}
3: initialize Fi ← (|Si|+ 1) for all i = 1, . . . ,M .
4: initialize next-layer← {state = (0, . . . , 0) : r}
5: for i ∈ P do
6: for j ∈ {i} ∪ Si ∩ P do
7: P ← P \ {j}
8: current-layer← next-layer
9: create an empty layer next-layer and assign label xj to it.
10: critical-nodes← ∅
11: for q ∈ Sj do
12: Fq ← Fq − 1
13: if Fq = 0 then
14: critical-nodes← critical-nodes ∪ {q}
15: end if
16: end for
17: if exists infeasible-node then
18: add node to D: infeasible-node hi−→ (new) infeasible-node′

19: add arc to D: infeasible-node lo−→ infeasible-node′

20: infeasible-node← infeasible-node′

21: end if
22: for state ∈ current-layer do
23: if state ∈ next-layer then
24: add arc to D: current-layer(state) lo−→ next-layer(state)
25: else
26: if any stateq = 0 for q ∈ critical-nodes then
27: if exists infeasible-node then
28: add arc to D: current-layer(state) lo−→ infeasible-node
29: else
30: add node to D: current-layer(state) lo−→ (new) infeasible-node
31: end if
32: else
33: add node to D: current-layer(state) lo−→ (new) next-layer(state)
34: end if
35: end if
36: next-state← (0, . . . , 0)
37: for q = 1 to M do
38: next-state(q)← 1 if q ∈ Sj , or state(q) otherwise
39: end for
40: if next-state ∈ next-layer then
41: add arc to D: current-layer(state) hi−→ next-layer(next-state) (with edge length fj)
42: else
43: add node to D: current-layer(state) hi−→ (new) next-state (with edge length fj)
44: end if
45: end for // iterating over states in current-layer
46: end for // iterating over the adjacency list Sj

47: end for // iterating over i ∈ P
48: merge nodes in next-layer into a single node and mark it as T node in D.
49: mark infeasible-node (if exists) as F node in D.
50: return D.
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point number) creating a new layer for each point in the list. Then we calculate the set of

critical points (lines 10–16), i.e., those points that necessarily need to be covered after we

have added the current point to the diagram. If we had an infeasible state in the previous

layer, we create it in the current layer as well (lines 17–21). Then, we process each node

corresponding to a feasible state in the current layer, and create its children nodes in the

next layer as necessary. For zero-arcs, we make sure all critical points are covered (lines 26–

31; otherwise we link the node to an infeasible state in the next layer). For one-arcs we

just create children nodes as necessary. Finally, in the last layer we merge all feasible nodes

into a single T node, and mark infeasible-node as the F node (if it exists). Note that

all one-arcs are associated with costs of the respective facility locations, and zero-arcs have

zero costs.

4.2 Building the type diagram

After the cover diagram is created we build the type diagram. We will again start the

presentation with an example that will serve a foundation of the algorithm. We structure

the diagram in K blocks, one for each facility type. Consider the first such block, which

encodes a constraint
∑

j∈Tt xj ≤ kt for some t. Starting from the root node, we associate

each node of the diagram within a layer with the number of facilities of type t located at

the corresponding state.

Example 4.2. Consider an example diagram encoding a condition
∑

j∈T xj ≤ k for T =

{1, 3, 5, 7, 9, 11} and k = 2. For an arbitrarily chosen order (1, 3, 5, 7, 9, 11), the resulting

diagram is presented in Figure 4.3. Every path corresponds to some assignment of variables

xi, for i ∈ T . Every node is associated with the number of facilities of the given type located

so far. For example, choosing x1 = x3 = 1 and x5 = 0 implies that two facilities have

been located; since k = 2, we cannot locate any more facilities this type. These decisions

correspond to a part of the path starting from the root node (marked with stars in the

figure), and the resulting node is marked with a rectangle. Nodes marked “3+” correspond
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to infeasible states (no subpaths originating from them and ending at T exist). Then, we

can choose another budget constraint, and continue building the diagram starting from the

T node of the previous one, and so on. Note that while the order of variables within each

block does not matter, it is desirable to process all variables in some set Tt at once. In our

implementation we use this freedom to minimize the number of inversions between the type

and cover diagrams (making the alignment problem easier), and call the resulting order of

variables a natural variable order for the type diagram. �

The main logic of building the type diagram is formally presented in Algorithm A4.2.

We create the diagram layer by layer, in blocks. Each block (created with a loop in lines 3–

35) corresponds to a single facility type. Within each one, we assign an integer state to

each BDD node, representing the number of facilities of the given type located by the

moment. We start with a layer containing the single “0” state and the associated root

node, r (initialization in line 2). We also keep track of the infeasible state: Once created,

we update the corresponding node in each layer (lines 7–11) in a way so that there is no

subpath from any such node to the T terminal. Any arcs emanating from an infeasible node

end either in the infeasible node of the next layer, or in the F terminal. The core procedure

is implemented in lines 12–32. We iterate through each state in the current layer, and for

each state we make sure the tail nodes are created for a zero-arc (lines 13–17), and for a

one-arc (lines 18–30). That is, we create them if they do not exist, or link to existing nodes

if they do. Note that if the budget for the current type is exceeded, we do not create another

state in the next layer, but link to the infeasible state (by either creating an infeasible node,

or linking to an existing one if the infeasible state has been created before, lines 21–30).

After processing each layer, we assign it a corresponding label in line 31.

After we process a type, we merge all nodes corresponding to a feasible state into

a single node (line 34) to either repeat the same procedure for the next type, or mark the

resulting two nodes as T and F (line 36) if all facility types are processed. Note that all

arcs assume zero costs in a type diagram.

As a final remark, note that we have a freedom to choose the order of facility types
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Algorithm A4.2. Build-type-BDD
Input: Facility types Tt and budgets kt for t = 1, . . . ,K
Output: The type diagram, D.
1: create D with a single node, r.
2: next-layer← {state = 0 : r}
3: for t = 1 to K do
4: for j ∈ Tt do
5: current-layer← next-layer
6: next-layer← ∅
7: if exists infeasible-node then
8: add node to D: infeasible-node hi−→ (new) infeasible-node′

9: add arc to D: infeasible-node lo−→ infeasible-node′

10: infeasible-node← infeasible-node′

11: end if
12: for state ∈ current-layer do
13: if state ∈ next-layer then
14: add arc to D: current-layer(state) lo−→ next-layer(state)
15: else
16: add node to D: current-layer(state) lo−→ (new) next-layer(state)
17: end if
18: if state + 1 ∈ next-layer then
19: add arc to D: current-layer(state) hi−→ next-layer(state+1)
20: else
21: if state + 1 > kt then:
22: if exists infeasible-node then
23: add arc to D: current-layer(state) hi−→ infeasible-node
24: else
25: add node to D: current-layer(state) hi−→ (new) infeasible-node within next-layer
26: end if
27: else
28: add node to D: current-layer(state) hi−→ (new) next-layer(state+1)
29: end if
30: end if
31: assign label xj to layer current-layer in D.
32: end for // iterations over state ∈ current-layer
33: end for // iterations over j ∈ Tt
34: merge nodes with state ≤ kt in next-layer.
35: end for // iterations over t = 1, . . . ,K
36: mark infeasible-node (if exists) as F node, and the other node in next-layer as T node in D.
37: return D.
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(in the loop starting at line 3) and facilities within a type (in the loop starting at line 4). In

our implementation we choose these orders to minimize the number of inversions between

the order of variables of the type and cover decision diagrams, and call this a natural variable

order for the type diagram.

4.3 Solving the CPP representation of t-UFLP

Having two diagrams encoding the feasibility set allows us to state the t-UFLP as

a CPP, which can then be formulated as another mixed integer program, as follows. We

introduce (continuous) variables vDab to denote the flow between nodes a and b of diagram

D and binary variables xi to correspond to the decisions of the original t-UFLP. Using this

notation, (4.1) can be reformulated as follows.

min
∑

fiv
C
i,HI(i), (4.2a)

s.t.
∑

i:HI(i)=u or LO(i)=u

vCiu =
∑

j:HI(u)=j or LO(u)=j

vCuj for all u ∈ LC
2 ∪ . . . ∪ LC

(M−1), (4.2b)

∑
j:HI(r)=j or LO(r)=j

vCrj = 1, (4.2c)

∑
j:HI(j)=u or LO(j)=u

vCju = 1 for u ∈ {TC,FC}, (4.2d)

∑
i:HI(i)=u or LO(i)=u

vTiu =
∑

j:HI(u)=j or LO(u)=j

vTuj for all u ∈ LT
2 ∪ . . . ∪ LT

(M−1), (4.2e)

∑
j:HI(r)=j or LO(r)=j

vTrj = 1, (4.2f)

∑
j:HI(j)=u or LO(j)=u

vTju = 1 for u ∈ {TT,FT}, (4.2g)

∑
j∈LC

q

vCjHI(j) = xq for all q = 1, . . . ,M, (4.2h)

∑
j∈LT

q

vTjHI(j) = xq for all q = 1, . . . ,M, (4.2i)

vpq ≥ 0 for all valid p, q, (4.2j)
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where index T corresponds to the type diagram, and C corresponds to the cover diagram. In

the objective function we have a sum of all flows along one-arcs of the cover diagram weighted

by the corresponding facility location costs. Constraints (4.2b)–(4.2d) are flow continuity

constraints at every node of the cover diagram (with the last two groups corresponding to the

first and the last layer of the diagram, respectively). Constraints (4.2e)–(4.2g) are similar

constraints for the type diagram. The last two groups of binary constraints, (4.2h) and (4.2i),

link the two shortest-path instances using shared variables xq.

An alternative to this approach is to align these two diagrams and build an intersec-

tion BDD (e.g., see an illustration in Figure 4 by Lozano et al. 2020). The latter constitutes

the focus of this chapter. Then, if we have the feasibility set encoded by a single BDD,

the solution can be obtained by solving a shortest-path problem through the diagram. As

pointed out before, this can be done efficiently (since this is an acyclic layered graph) in

terms of the BDD size, and does perform well in practice as we illustrated with numerical

experiments, although the size of the diagram itself can be exponential in the parameters of

the original t-UFLP.

In terms of aligning BDDs, we will compare the baseline “Greedy sifts” and “Best of A

and B” strategies mentioned in Section 3.5.4 to the proposed approach based on the simplified

problem. We thus have four approaches to solve the t-UFLP: “Naive MIP” (involving no

diagrams), “CPP MIP,” “CPP+SP with Greedy sifts,” and “CPP+SP with variable sequences

(VS).”

To illustrate the relative performance of different approaches to align the diagrams we

run the following experiment. We vary the number of points from M = 5 to 15, generating

200 instances of t-UFLP for each value. We then solve each of these instances using the

different heuristics described above. Note that all methods yield the same objective value:

we build an intersection BDD that exactly encodes the feasible set (and solving shortest-path

over such diagram gives an exact optimum).

To generate a random t-UFLP instance of the given size M , we first generate adja-

cency lists by creating the underlying network of points using Erdős-Rényi-Gilbert random
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graph model (Gilbert 1959) with parameter p = 0.3. Location costs are chosen as ran-

dom integers between 5 and 10. Number of types is generated randomly between 2 and

min{10,M}, type budget kt is taken at random from 1 to 5, and we ensure that there is at

least one point associated with each type. If the problem happens to be infeasible (which

we check using an MIP formulation), we discard the instance and repeat the procedure.

We summarize the solution times in Figure 4.4. First, as expected, solving a simple

binary program with a state-of-the-art solver outperforms CPP-based approaches. This

may or may not be the case for other problems and specific t-UFLP instances. From the

CPP-based methods, CPP MIP and the simplified-problem based approaches are very close

in terms of runtime, and both outperform greedy-sifts approach. However, it is worth

noting that building intersection BDDs allows for sensitivity analysis, since the shortest-

path problem is a linear program. This approach also facilitates easy re-solving of the

problem if its structure remains the same, because solving the shortest-path problem over

the intersection BDD is comparable in runtime with applying the state-of-the-art solver to

tackle the whole problem, which we consider in more detail further.

4.4 Breakdown of the proposed heuristic runtime for t-UFLP

As solution approaches to t-UFLP based on CPP (involving BDDs) comprise several

steps, we highlight the computational intensity of each step by discussing the corresponding

runtimes. In particular, we generate 1, 000 t-UFLP instances and solve each one with the

following three methods, reporting the histograms in Figure 4.5 for runtimes in logarithmic

scale.

• CPP+SP with variable sequences (VS) is described with the first six panels.

The first panel corresponds to building the type and cover diagrams. The second

panel describes the simplified problem solution (a branch-and-bound process presented

in Algorithm A3.5). The next three panels characterize runtimes for aligning the

diagrams to the found order of variables, building the intersection BDD, and solving
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Figure 4.4: Runtimes for t-UFLP
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the shortest-path through this BDD, respectively. The sixth panel corresponds to the

total runtime for the mentioned steps. For reference, we also present histograms of

runtimes for the following alternative solution approaches.

• CPP MIP runtimes are characterized by the seventh panel. They comprise building

the diagrams (the same as the first step above), building an integer program for the

CPP, and solving this MIP with Gurobi solver.

• naive MIP runtimes are presented in the last panel, which include building and

solving a mixed integer program without constructing any diagrams at all.

We report these results for three of the four methods mentioned in Section 4.3, since

the fourth one, based on the “Greedy sifts” alignment strategy, takes significantly more time

(as evident from Figure 4.4).

The initial steps of CPP+SP (VS) approach (building the initial diagrams, solving

the simplified problem, and aligning the diagrams) take a relatively long time. However,

the process of building the intersection decision diagram is faster, and the overall time is

comparable to the CPP MIP approach. Moreover, the final step of solving the shortest-

path problem over the intersection diagram takes very little time, and is comparable to

the baseline of solving a simple MIP formulation. (Unlike the baseline, the shortest-path

problem is a convex optimization problem that yields valuable sensitivity information.) This

observation reveals that re-solving the t-UFLP with different cost data is very practical

using the CPP approach. If only the cost data changes, then the intersection BDD network

topology remains the same. Therefore, we can replace cost values directly on the intersection

BDD, and the re-solve requires only the very fast step of solving a shortest-path problem

over a binary decision diagram.
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Figure 4.5: Breakdown of the runtimes into solution steps for a CPP
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4.5 On performance of the BDD alignment

Finally, the t-UFLP also provides insight into the efficiency of the proposed BDD

alignment strategy depending on the structural properties of the problem. The “variable

sequence” model we propose assumes an increase in BDD size with every swap (as far as

possible in a binary diagram). Its ability to find good variable orders suffers if some swaps

do not yield such changes. For example, consider a type diagram used in solving a t-UFLP

instance. By construction, that diagram consists of several blocks (one per type), and the

position of any two blocks can be exchanged without any changes in the diagram size.

Moreover, within each such block the variables corresponding to points of the t-UFLP can

be ordered arbitrarily. Therefore, there must be many potential swaps where our heuristic

would overestimate the corresponding change in the objective.

To illustrate this dependence on the problem structure, we compared the resulting

intersection diagram sizes obtained from the heuristic based on the simplified problem to
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a simple baseline of “Best of A and B” (see Section 3.5.4) over several different types of

instances, in a separate numerical experiment. The results are summarized in Figure 4.6.

First, we performed this comparison over 2, 048 random t-UFLP instances, each

having 20 points. Figure 4.6a shows that the simplified problem only occasionally helps to

reduce the intersection diagram size as compared to a naive heuristic. As discussed above,

this is partially due to a special structure of our diagrams. In particular, there are potential

consecutive swaps that do not actually change the diagram size; however, corresponding

swaps in related weighted variable sequences might yield an increase in the objective. This

includes swaps within a block in the type diagram and swaps corresponding to points in

the same adjacency list in the cover diagram. We designed another set of instances in

a way to break this special structure of the diagrams. This experiment used the same

number of t-UFLP instances of the same size, but with the layers of both diagrams shuffled

after their construction before formulating the align-BDD problem. The performance of

both heuristics decreases as compared to the initial setup, but the relative objective of the

proposed alignment strategy improves. Figure 4.6b shows that our heuristic provides better

results for about 30% of the instances (instead of 15–20% in the previous set up).

Note, however, that the diagrams still possess some structural properties that are

difficult for our simplified problem to capture. Because we only shuffle the order of the

layers, but do not actually change the nature of the instances, there still must be swaps for

which our heuristic overestimates the effect on the objective. To quantify this effect, we

generated the same number of align-BDD instances with the same number of layers, but

comprising random diagrams generated as per Section 3.5.1 of the previous chapter, instead

of the ones constructed from t-UFLP instances. The relative performance of the proposed

heuristic is presented in Figure 4.6c. These results show that the heuristic outperformed

the baseline on more than 70% of the instances (as compared to about 30% in the previous

setup with t-UFLP instances).

Therefore, the proposed heuristic appears to be sensitive to symmetries in the prob-

lem structure. Those symmetries can induce swaps that do not change the BDD size, but
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Figure 4.6: Intersection diagram size (tUFLP vs. random diagrams)
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are modeled to do so by our weighted variable sequence bound.

While the proposed heuristic does prove to be valuable in some settings, there are

also other situations in which there is a certain structure in the problem (when we know a

priori that certain swaps do not yield the diagram growth) that might significantly decrease

the relative performance of a heuristic based on the variable sequence concept. In these

cases leveraging the problem structure might yield significant computational benefits and

outperform many general-purpose approaches.
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Chapter 5

Monte Carlo Tree Search Framework
for DSPI

This chapter is devoted to another network optimization problem, and a significantly

different approach to building a decision diagram. After briefly introducing the problem

in Section 5.1, we present the proposed framework as applied to the DSPI problem in

Section 5.2, outlining the key conceptual details of the implementation in Sections 5.2.1–

5.2.3. We then formally present our recommended algorithms in Section 5.3 and discuss

their correctness in Section 5.4, concluding with the numerical experiments in Section 5.5.

5.1 Problem formulation

Dynamic Shortest-Path Interdiction (DSPI) is one of the more complicated variants

of the widely studied problem of the Shortest-Path Interdiction. It is a dynamic, two-player

game over a directed graph G, introduced by Sefair and Smith (2016). An instance is

parameterized by a graph with sets of nodes N and arcs A, two special nodes s and t (called

source and terminal, respectively), and a budget b ∈ N. Each edge (i, j) ∈ A possesses a

cost cij and an interdiction cost increment dij .

One player, the Evader seeks to traverse the graph moving from the source to the
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terminal at the minimum possible cost. The other player is the Interdictor, who seeks to

maximize the Evader’s minimum cost by attacking (interdicting) the arcs. The game starts

with the Evader’s position at the source and unfolds in turns. The Interdictor moves first

and is allowed to attack any subset of arcs (including the empty one); then the Evader

traverses an arc, and the players keep making turns until the Evader reaches the terminal.

The Interdictor has a cardinality constraint (the budget b > 0) on the number of arcs it

can interdict during the game, but any number of arcs within this limit can be interdicted

during each particular turn (including none).

The cost for the Evader to traverse arc (i, j) is defined to be cij if not interdicted,

and cij + dij otherwise. We will denote the set of interdicted arcs by S and the cost of the

arc traversal as:

c̃ij(S) =


cij + dij , if (i, j) ∈ S,

cij otherwise.

Sefair and Smith (2016) demonstrated that there exists an optimal solution in which the

Interdictor only attacks a (possibly empty) subset of arcs incident to the current Evader’s

position. Therefore, given the Evader’s current position i and the interdiction set S, and de-

noting the optimal game cost as z∗(S, i), the Interdictor’s problem can be formally described

with the following recursive formula (Sefair and Smith 2016):

z∗(S, i) = max
S′⊆FS(i)\S : |S∪S′|≤b

{
min
j∈FS(i)

{z∗(S ∪ S′, j) + c̃ij(S ∪ S′)}
}
,

where FS(i) = {(i, j) : (i, j) ∈ A} denotes the forward star of node i.

Sefair and Smith (2016) have demonstrated that the decision variant of this problem

is NP-hard and proposed an exact dynamic programming (exponential-time) algorithm to

obtain a solution for the case of a general graph G, a polynomial-time algorithm for a

Directed Acyclic Graph (DAG), and several approaches to find upper and lower bounds on

the optimal objective. We build upon these results by designing a heuristic algorithm based

on the Monte Carlo Tree Search (MCTS) approach, and demonstrating its performance on
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a set of randomly generated and pre-defined instances. We will parameterize the MCTS

with a computational budget, in order to obtain feasible solutions (valid sequences of player

turns) even for relatively large instances.

5.2 Monte Carlo Tree Search framework

The Monte Carlo Tree Search (MCTS) is a randomized algorithm that uses rela-

tively simple play-out heuristics to estimate the value for game states (e.g., Monte Carlo

simulations in the form of random moves for both players) and to focus the search on more

promising states using the obtained information. More detailed discussion of this approach

can be found in many sources, e.g., see Sutton and Barto (2018) for a general presentation

(along with many other techniques and ideas on reinforcement learning) and Browne et al.

(2012) for an overview on the MCTS literature. Here we present the method as applied to

the DSPI.

The algorithm builds a game tree that incorporates the information known about

the different states of the game (corresponding to both players’ turns). It can be classified

as a Decision-time algorithm, as pointed out by Sutton and Barto, in the sense that it is

designed to start from some current state that happened in the game, and recommend the

next action to be taken by the corresponding player. Of course, we reuse the information

obtained between the turns, but updating the root node of the tree narrows the search

and discards large parts of the state space as the game unfolds. Informally speaking, the

procedure mimics a human when playing a game: Starting from the current situation, try

to predict good turns for both players until a certain depth is reached, and then assess the

situation using some computationally cheap procedure. People tend to use more complicated

heuristics to assess the situation than random play-outs (usually described along the lines of

developed game intuition). However, even such a simple approach yields some success, see,

e.g., a discussion by (Sutton and Barto 2018). Improving such heuristics, e.g., via simulation

enhancements (Browne et al. 2012) can further improve the quality of this approach. Note
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that, for example, AlphaGo Zero used a dedicated neural network to guide its simulations,

as discussed by Silver et al. (2017).

More formally, as applied to DSPI, each game tree node (indexed by j here) includes

the following information.

Information associated with a game tree node:

• p(j) ∈ N : Current Evader’s position, where the game is concluded if p(j) = t,

• Sj ⊆ A, 0 ≤ |Sj | ≤ b: interdiction decisions taken up to this point (b − |Sj |

gives the residual budget available to the Interdictor),

• τ(j) ∈ {Interdictor, Evader}: the player taking the next action at node j,

• Q̂j : an estimate of the cost-to-go of the game (starting from the state implied

by node j, assuming the first turn by player τ(j)),

• LB(j), UB(j): lower and upper bounds on the cost-to-go of the game,

• Nj ∈ N: number of times the node was visited in the course of analysis,

• children(j): a list of child nodes, corresponding to actions taken by player τ(j)

at game state implied by j,

• actions(j): actions available to player τ(j) that do not correspond to any

existing child nodes.

Strictly speaking, available actions can be determined from the game state, which

comprises the interdiction decisions S, current Evader’s position p(j), and the current turn

τ(j) (along with the graph information). We keep track of this explicitly to simplify the

notation.

Note that to avoid enumerating all possible subsets of arcs, we introduce virtual

turns for the Interdictor. That is, we allow the Interdictor to attack only one arc at each

game tree node, but the turn switches to the Evader only after the Interdictor decides to
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attack no further arcs (i.e., passes). Therefore, all child nodes of an Evader’s node are

Interdictor’s nodes, but there is exactly one child Evader’s node for every Interdictor’s node

(the rest, if present, are also Interdictor’s nodes).

The algorithm is parameterized by a computational budget parameter K, which

limits the number of iterations of the game tree updates. Until this limit is reached we keep

updating and refining the the data contained within nodes, adding and removing nodes.

Then, the algorithm performs the best action assuming the current game state defined by

the root node. When a player makes the next turn (as recommended by MCTS or, in fact,

any other algorithm), we update the root node of the game tree, prune the tree as necessary

to remove the information regarding the states that are unreachable from the new current

one, and run the procedure again to generate the next recommendation. This high-level

procedure is formally presented in Algorithm A5.5, which is essentially a loop calling the

procedure that performs a single iteration of the game tree update.

Figure 5.1 outlines the core of the algorithm, presented in several connected proce-

dures and comprising four phases, which we together call a learning episode.

During the first phase, Selection, we start from the root node and recursively choose

child nodes that are more promising according to our estimates, until we reach a leaf node of

the game tree. Note that such leaf node is not necessarily a final node in the game (in which

the Evader has reached the terminal), but instead just represents a point on the frontier of

the information about the game the algorithm has collected so far.

After a leaf node is selected, the Expansion phase is started, with the aim of creating

child nodes corresponding to all possible actions the current player can take starting from

the selected node. Since every action restricts the accessible state space, we try to update

lower and upper bounds on the objective for each new game tree node (as compared to the

parent node).

Bounds alone do not always allow us to assess which of the child nodes are most

promising. Accordingly, we build an estimate for the future game cost for each of the new

nodes during the Roll-outs phase. Starting from each node created during the Expansion
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phase, we simulate a simple game by choosing player actions uniformly at random and record

the resulting objective as the cost-to-go estimate, Q̂.

Finally, we propagate this new information back from the leaf node we selected

towards the root during the Backpropagation phase. We traverse the tree backwards and

update the cost-to-go estimates along with the bounds for each parent node, to make them

consistent with the information contained in the child nodes.

Before we proceed with the formal description of the algorithm in more detail, let

us briefly touch two key problems that necessitate the complication of this general and

relatively simple approach. The first (in Section 5.2.1) regards balancing exploration and

exploitation, and the second (in Section 5.2.2) deals with tree pruning.

5.2.1 Exploration-exploitation trade-off

Building cost-to-go estimates by simple simulated games has inherent drawbacks.

For example, consider a tree node that has five child nodes, only one of which is optimal,

and the other four entail very poor objective values. Roll-outs passing though this node

will converge to the average objective across the child nodes, which is poor by assumption.

Because of that, the optimal node might be never selected for expansion. As a result, the

algorithm would never refine the corresponding cost-to-go estimates and learn that the node

is, in fact, optimal. Hence, we need a mechanism that considers nodes that are not the best

ones in terms of our imperfect cost estimates, from time to time. This is an example of

well-documented exploration vs. exploitation trade-off (see, e.g., Sutton and Barto 2018).

Following the literature, we employ two ideas to alleviate this problem.

The first of these ideas is ε-greedy selection. During the selection phase, with some

small probability ε we just pick a node uniformly at random. However, with (large) proba-

bility (1 − ε) we choose a node having the best cost estimate. The latter incorporates the

cost for moving from one node i to another node j, i.e., c̃ij + Q̂j , not just Q̂j . This allows

the algorithm to potentially consider any node for exploration within the game tree.

The second idea uses Upper Confidence Bounds (Kocsis and Szepesvári 2006, Kocsis
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Figure 5.1: Summary of the key steps of MCTS–DSPI algorithm

Phase 1: Selection. Starting from the root node, a tree
policy is used to choose the next node for further consid-
eration (simulating a player’s choice), until a leaf node is
reached.

Implementation: Algorithm A5.1, lines 2–19.

Tree updates: Best objective estimates for both players
(α and β), child nodes can be pruned at each selection step
(see Section 5.2.2 for details).

Phase 2: Expansion. All possible actions from the se-
lected node are considered and instantiated as game tree
nodes for further consideration.

Implementation: Algorithm A5.1, lines 20–39; Algo-
rithm A5.3 (upper bound), Algorithm A5.4 (lower bound).

Tree updates: New nodes are created, respective upper
and lower bounds on the further game cost are calculated
for each new node. Some inconsistensies between parent and
child nodes bounds can be introduced.

... ... ...

Terminal nodes

Phase 3: Roll-outs. A simple heuristic, random actions
for both players, is used to build an estimate for further
game cost from each of the new nodes until the end of the
game. Game states encountered during the simulation are
not recorded (only the resulting total costs are).

Implementation: Algorithm A5.2; Algorithm A5.1, line
40.

Tree updates: Cost-to-go estimate Q̂m for each new node
m is determined, and the best node is chosen for the back-
propagation.

Phase 4: Backpropagation. The new information from
the leaf nodes are propagated back to the root node.

Implementation: Algorithm A5.1, lines 41–52.

Tree updates: Lower and upper bounds of each parent
node along the selected path are made consistent with these
of the child nodes. The expected cost-to-go Q̂ of each node is
updated with the best achievable cost given the child nodes
(adjusted for the turn cost for Evader’s turns).
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et al. 2006). Even in presence of this randomness, our algorithm would ideally explore,

at least minimally, some of the nodes that so far have received the least investigation. To

incorporate the degree of our certainty about the given objective estimate, we seek to select

a node that maximizes the following score (assuming parent game tree node i and child node

j):

Rj = σj(C̃ij + Q̂j) + Cp

√
log(Ni)/Nj ,

where the first term corresponds to our cost estimate, and the second term captures our

uncertainty stemming from the finite number of simulations. The notation used here is as

follows.

The cost C̃ij is a shorthand for c̃p(i),p(j)(Si), i.e., cost of traversing arc (p(i), p(j)), if

moving from node i to j implies any arc traversal at all. An auxiliary variable σj takes the

value of 1 if τ(j) = “Interdictor”, and −1 otherwise, and is used to accommodate the fact

that the Evader minimizes the game cost, while the Interdictor maximizes it. Therefore, the

first term is just our estimate for the additional game cost if we start from node i and pick j

as the next one (taking with the appropriate sign, so that maximizing the score would make

sense).

The second term is designed to make under-explored nodes more attractive. Note

that as the total number of visits for the parent node Ni increases, if children other than

j are disproportionately selected, log(Ni)/Nj will increase, making node j relatively more

attractive. The square root is inspired by research concerning the multi-armed bandit prob-

lem, as it captures the variance (due to uncertainty) in the estimate of the action’s value

(see also a brief discussion by Browne et al. (2012) and Sutton and Barto 2018). The con-

stant parameter Cp regulates the degree of exploration (to what extent we are interested in

expanding the tree as compared to choosing the nodes with the best cost estimates) and is

chosen empirically.

Therefore, the selection procedure can be summarized as follows.
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Node selection criteria

• At random, with (some pre-defined) probability ε: pick a child node uniformly

at random.

• Otherwise, pick a one that maximizes the score including the cost-to-go esti-

mates and the exploration term governed by parameter Cp:

j∗ ∈ argmaxj∈children(i) σj(C̃ij + Q̂j) + Cp

√
log(Ni)/Nj .

5.2.2 Tree (alpha–beta) pruning

The second problem that significantly deteriorated the performance of our early

experiments was the size of the tree for larger instances. It turns out to be relatively easy

to adapt practically strong bounds developed by Sefair and Smith (2016) to prune our

search tree in many cases, using an idea similar to alpha–beta pruning (see, e.g., Knuth and

Moore 1975). To illustrate the concept consider a simple game tree presented in Figure 5.2.

Interdictor’s nodes are marked with “I”, and Evader’s ones with “E”. Assume we have just

expanded node (A) on the left branch, and assume further that we have an extensive subtree

developed after (B). Observe that if the best child of (A) from the Evader’s perspective

implies a game cost no more than that of (B), then it is safe to prune (A). Indeed, in this

case the Interdictor is better off choosing (B) as opposed to (A) at the root node, while it has

the power to choose, without giving the Evader this choice at (A) in first place. Following

the existing literature, we implement this idea as follows. We maintain two running bounds,

α and β: the worst alternative game costs available to the Interdictor and the Evader,

respectively. Initializing these values at the root as α = −∞ and β = +∞, we perform the

update after selection of each next node n (denoting the accumulated game cost up to node

n, inclusively, as π):

• Evader’s turn: β ← min
{
{β} ∪ {π + C̃nj + UB(j) | j ∈ children(n)}

}
,
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Figure 5.2: An illustration: alpha–beta pruning
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• Interdictor’s turn: α← max
{
{α} ∪ {π + LB(j) | j ∈ children(n)}

}
.

The intuition behind these is just the definition of α and β as the guaranteed costs.

Returning to the example in Figure 5.2, if β gets updated at node (A) due to some child

node j′ of n, it would mean that the best game cost that the Evader can guarantee, including

past and future costs relative to (A), corresponds to the choice of j′ at (A). Now, in the

subtree rooted at (A), any node implying total game cost larger than this value of α we

have just calculated can be safely pruned, because we know that it would be optimal for the

Evader not to come to that point at all and just choose j′ at (A). We can summarize this

pruning rule as follows:

Alpha–beta pruning concept

Maintain two running numbers, representing bounds, during the selection process:

• α: the worst (minimum) alternative cost achievable by the Interdictor,

• β: the worst (maximum) alternative cost achievable by the Evader.

Pruning: any child node j (of n) with β ≤ α̂j or β̂j ≤ α, where

• α̂j = πn + LB(j) for the Interdictor’s turns, and

• β̂j = πn + C̃nj + UB(j) for the Evader’s turns.
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5.2.3 A note on backpropagation and the cost-to-go estimate

The specific rule for backpropagating the cost information from the leaf nodes to the

root significantly affected the performance of our algorithm. In many sources (e.g., Browne

et al. 2012) the MCTS is presented in a way so that the cost-to-go estimate Q̂j represents the

mean game costs for all play-outs starting from node j or any of its child nodes. However,

we found that this approach required relatively many iterations, because discovery of even

very promising child nodes was not immediately affecting cost-to-go estimates of the parent

nodes. We instead implemented a potentially less stable method (as pointed out by Browne

et al. 2012) that propagates the newly obtained estimates faster, even if the quality of such

estimates is imperfect. In particular, we update the cost-to-go estimate using the best child

node, according to the current information. For instance, for an evader node i we update

its cost estimate Q̂i as follows:

Q̂i ← min
j∈children(i)

{
C̃ij(Si) + Q̂j

}
,

which potentially updates the recommended path through the game tree after a single iter-

ation of the backpropagation phase.

We also update the bounds of all parent nodes during the backpropagation phase

using the information in corresponding interdiction sets Sj and the bounds of the child

nodes. The intuition here is that for the Evader parent node m the upper bound can be

constructed as the smallest upper bound given the child nodes information and arc traversal

costs:

UB(m)← min
j∈children(m)

{C̃mj + UB(j)}, LB(m)← min
j∈children(m)

{C̃mj + LB(j)}. (5.1)

Respectively, for the Interdictor parent node m, the player can execute its power to
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choose the child node in order to maximize the lower bound on the game cost:

LB(m)← max
j∈children(m)

{LB(j)}, UB(m)← max
j∈children(m)

{UB(j)}. (5.2)

Unfortunately, the respective second bounds, lower bound for the Evader in (5.1)

and upper bound for the Interdictor in (5.2), are just the least tight ones among the child

nodes, adjusted for turn costs as necessary.

Backpropagation implementation

Both cost-to-go Q̂ and bounds of the parent node are updated assuming the choice

of the best child node (for the current player).

Therefore our algorithm is closely related to minimax search (from the perspective

of backpropagation), uses the ideas of Monte Carlo simulations to estimate game costs and

drive the search through the game tree, and leverages alpha–beta pruning to decrease the

search tree size when possible.

5.3 Algorithm presentation

The core of the implementation is presented in pseudocode in Algorithm A5.1. It

takes a tree with root node root, performs K episodes of the four phases described above

in the outer for loop, and then recommends the best action for the root node given the

cost-to-go estimates of the child nodes Q̂. In the beginning of each episode, we re-initialize

α and β to infinite values and point the current node n at root. We keep track of the nodes

selected with ordered list P (which initially contains only root), and a cumulative cost of

the selected path in π, which corresponds to setting π =
∑|P |−1

l=1 C̃Pl,Pl+1
.

Selection phase spans lines 2–19. We calculate α and β for the parent (current)

node and then the respective values α̂ and β̂ for candidate child nodes in lines 5–11, which

might allow us to prune some of the branches early with line 10. The rest of the process
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assumes children(n) is free from obviously suboptimal nodes (given the bounds information

available at the start of the episode). We then either pick a child node randomly (in a fashion

of ε-greedy selection), or utilize the information on the cost-to-go estimates and the number

of visits to particular nodes as discussed in Section 5.2.1. We keep track of these choices by

updating the selected path P along with its respective cost, and updating the current node

n to always point to the last selected node.

Expansion phase is given by lines 20–39. This code creates all the child nodes

accessible from the selected one. The bounds are calculated by separate procedures presented

in Algorithms A5.3 and A5.4. Both use the same scheme: First, an auxiliary DSPI instance

is built that incorporates interdiction decisions corresponding to the game tree node into a

new instance’s arc costs (assuming zero interdiction increments). Then, a bound for this

new instance is calculated using the dynamic programming (polynomial-time) algorithms

presented by Sefair and Smith (2016). The key idea behind these procedures is restricting

the players to make the instance easier to solve, while ensuring that the optimal objective will

constitute a valid bound for the original instance. To obtain the lower bound, the Interdictor

is restricted by assuming that its attacks expire after the next Evader’s turn (therefore, arc

costs are reset to their original state). The expiration of these attacks implies that we need

not keep track of the specific interdiction decisions S (from an exponential-size collection

of all subsets of the arcs), but just the residual budget. We rely on the corresponding

polynomial-time algorithm developed in the aforementioned paper and denoted DP-DSPI-EXP

here. For the upper bound, we follow the idea to restrict the Evader by removing arcs from

the graph until it becomes a DAG. The removal of these arcs allows us to use the polynomial-

time algorithm (which we denote DP-DSPI-DAG) developed by Sefair and Smith to solve the

resulting auxiliary instance. The expansion phase results in a list of newly created nodes E

with the correct bounds, but so far undefined cost-to-go estimates Q̂.

Roll-outs procedure is called in line 40, which is formally described in Algorithm A5.2.

This procedure plays out a game with uniformly random turns of both players, keeping track

of the changing state of the game during the play-out in temporary variables, including cur-
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rent Evader’s position p, current budget b, interdiction decisions S incorporated into variable

C̃, and turn τ . Note that we also discount roll-out costs with factor γ.

Finally, note that because the algorithm is focused on a single episode, it is possible to

set up a competitive play between the MCTS agent and another algorithm or even a human

player. We would just need to substitute MCTS-next-move in Line 4 of Algorithm A5.5 to a

call for another function or reading the user’s input.

5.4 On the algorithm correctness

The proposed algorithm obviously does not guarantee optimality, but it does pos-

sess some asymptotic properties stemming from the Monte Carlo Tree Search logic with

Upper Confidence Bound and ε-greedy selection strategy. This section presents a brief note

concerning correctness of the algorithm. First, we will show that the tree generated by Al-

gorithm A5.1 is finite even as K →∞, in absence of zero-cost cycles. Moreover, informally

speaking, any game tree produced by the algorithm can be further expanded to comprise

a part of the exact minimax game tree containing an optimum. The implication is that

Algorithm A5.1 finds an optimal solution with probability one as K →∞.

Proposition 5.1

If G does not contain cycles of zero cost, the size of the tree produced by Algo-

rithm A5.1 (MCTS-next-move) is bounded from above at any episode k ≤ K, and this

bound does not depend on parameter K (maximum number of iterations).

Proof. First, observe that in a DAG, the algorithm produces a finite tree. Indeed, there

are at most m = |A| − 1 turns for the Evader, since every turn implies visiting a node,

and no node is used twice in a DAG. This gives at most O(m!) different paths, assuming

the nodes can appear in any order in a path (which is already too permissive for a DAG).

The Interdictor’s turn effectively multiplies the number of nodes in the subtree by some

expression depending on b and m, so, the game tree size is at most m!f(b,m). For example,
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Algorithm A5.1. MCTS-next-move
Input: root; algorithm parameters: K, Cp, ε, γ
Output: Recommended action. Side effect: search tree is modified.
1: for k=1,. . . ,K do // Repeat while the computational budget is not exhausted
2: n← root, P ← (root), π ← 0 // Current node, selected path, and its cumulative cost
3: α← −∞, β ← +∞ // Max (min) cost achievable for the Evader (respectively, Interdictor)
4: while actions(n) = ∅ and children(n) 6= ∅ do
5: if τ(n) = Evader: β ← min

(
{β} ∪ {π + C̃nj + UB(j) | j ∈ children(n)}

)
6: else: α← max

(
{α} ∪ {π + LB(j) | j ∈ children(n)}

)
7: for j ∈ children(n) do
8: α̂← max{α, π + C̃nj + LB(j)}
9: β̂ ← min{β, π + C̃nj + UB(j)}
10: if β̂ < α̂: prune node j.
11: end for
12: with probability ε
13: j ← random node from children(n)
14: otherwise
15: if τ(n) = Evader: j ← random from argmax

{
C̃ni + Q̂i + 2Cp

√
2 logN(n)/N(i) | i ∈ children(n)

}
16: else j ← random from argmax

{
(−1)(C̃ni + Q̂i) + 2Cp

√
2 logN(n)/N(i) | i ∈ children(n)

}
17: end
18: π ← π + C̃nj , P ← P ∪ {j}, n← j
19: end while
20: E ← ∅ // A set of nodes to roll-out from
21: while p(n) 6= t and actions(n) 6= ∅ do
22: j ← create node for a random action among actions(n)

23: Nj ← 1; set p(j), bj , and C̃nj according to the selected action.
24: remove the action corresponding to j from actions(n).
25: if (τ(n) = Evader) or (τ(n) = Interdictor and j is not pass) then
26: τ(j)← “Interdictor”
27: if bn > 0 then
28: actions(j)← {“pass”} ∪ {“interdict (p(j),m)” | m ∈ FS(p(j)) and (p(j),m) /∈ Sj}
29: else
30: actions(j)← {“pass”}
31: end if
32: else
33: τ(j)← “Evader”
34: actions(j)← {m | m ∈ FS(j)}
35: end if
36: LB(j)← MCTS-LB(j, instance), UB(j)← MCTS-UB(j, instance)
37: E ← E ∪ {j}
38: end while
39: if E = ∅: E ← {n}
40: for m ∈ E: Q̂m ← MCTS-roll-out(m)
41: while P 6= ∅ do
42: m← pick and remove the last element from P
43: if τ(m) = Evader then
44: Q̂m ← min{C̃mj + Q̂j | j ∈ children(m)}
45: UB(m)← min{C̃mj + UB(j) | j ∈ children(m)}
46: LB(m)← min{C̃mj + LB(j) | j ∈ children(m)}
47: else
48: Q̂m ← max{Q̂m | j ∈ children(m)}
49: LB(m)← max{LB(m) | j ∈ children(m)}
50: UB(m)← max{UB(m) | j ∈ children(m)}
51: end if
52: end while
53: end for
54: if τ(root) = Evader: return random from argmin{C̃root,j + Q̂j | j ∈ children(root)}
55: else: return random from argmax{Q̂j | j ∈ children(root)}
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Algorithm A5.2. MCTS-roll-out
Input: node n, assuming budget bn and position p(n), discount factor γ
Output: Discounted roll-out cost.
1: ∆← 0 // Total (discounted) roll-out cost
2: r ← 0 // Roll-out step number for discounting
3: p← p(n), b← bn, τ ← τ(n) // Current Evader’s position, Interdictor’s budget, and turn.
4: S̃ ← S̃n // Current arcs interdiction state
5: while p 6= t do
6: if τ is “Evader” then
7: p′ ← random(FS(p))
8: ∆← ∆ + γr c̃p,p′ (S)
9: p← p′

10: τ ← “Interdictor”
11: else // It is an Interdictor’s turn
12: a← random

(
{“pass”} ∪ {j | j ∈ FS(p) and (p, j) is not yet interdicted}

)
13: if a is “pass” or b = 0 then
14: τ ← “Evader”
15: else
16: S ← S ∪ (p, a)
17: b← b− 1
18: end if
19: end if
20: r ← r + 1
21: end while
22: return ∆

one can claim that f(b,m) ≤ (2bb!)m, because for every Evader’s position there are at most

2b possible interdiction actions, each of which generate at most b! distinct virtual turns (if

we do not employ some technique to alleviate this symmetry). Thus, there is a finite bound

on the tree size that does not depend on K.

However, in presence of cycles in G the number of turns in the game is not necessarily

finite, despite the finite number of distinct game states, as they can repeat in the course of

the game. (Note that negative cycles are not possible, because both cij ≥ 0 and dij ≥ 0 by

assumption.) Therefore, it is not immediately obvious if the tree produced by the proposed

MCTS procedure will be finite. The answer is clearly “not necessarily” if there is at least

one zero-cost cycle. Note that if the Interdictor does not spend its budget, infinitely many

nodes can be created for the same game state, none of which can be pruned, if the first one

is not pruned. Let us rather consider the simplest case with a cycle having strictly positive

cost. Consider graph G presented in Figure 5.3a. In the following, we denote nodes of G

as circled numbers, like 1○, to avoid confusion with the game tree nodes, which we will

denote with capital Latin letters in this section. A simple cycle is created by arcs 1○– 2○ and

89



Algorithm A5.3. MCTS-UB
Input: Search tree node n, instance data; parameter: NTRIALS
Output: Upper bound on the DSPI objective (starting from the current state)
1: for i = 1, . . . , |N | do
2: for j = 1, . . . , |N | do
3: if (i, j) is interdicted as per n then
4: c′i,j ← c̃i,j(Sn)

5: d′i,j ← 0

6: else
7: c′i,j ← ci,j
8: d′i,j ← di,j
9: end if
10: end for
11: end for
12: v∗(bn, p(n))←∞
13: for k = 1, . . . , NTRIALS do
14: G′ ← copy(G), assuming costs {c′ij : (i, j) ∈ A} and interdiction increments {dij : (i, j) ∈ A}
15: mark(1)← True, and mark(j)← False for all j = 2, . . . , |N |.
16: P ← {1}
17: while P 6= ∅ do
18: i← last element of P
19: for j ∈ FSG′ (i) do
20: if j ∈ P : remove edge (i, j) from G′

21: end for
22: let A← {j | j ∈ FSG′ (i)} and not mark(j)
23: if A 6= ∅ then
24: j ← random node from A
25: mark(j) = True
26: P ← P ∪ {j}
27: else
28: P ← P \ {i}
29: end if
30: end while
31: u∗ ← DP-DSPI-DAG(G′, bn)
32: if u∗(bn, p(n)) < v∗(bn, p(n)) then
33: v∗ ← u∗

34: end if
35: end for
36: if Interdictor’s turn at n then
37: return v∗(b, p(n))
38: else
39: return min{c̃p(n),j(Sn) + v∗(b, j) | j ∈ FS(n)}
40: end if
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Algorithm A5.4. MCTS-LB
Input: Search tree node n, instance data
Output: Lower bound on the DSPI objective (starting from the current state)
1: for i = 1, . . . , |N | do
2: for j = 1, . . . , |N | do
3: if (i, j) is interdicted as per n then
4: c′i,j ← c̃i,j(Sn)

5: d′i,j ← 0

6: else
7: c′i,j ← ci,j
8: d′i,j ← di,j
9: end if
10: end for
11: end for
12: G′ ← copy(G), assuming costs {c′ij : (i, j) ∈ A} and interdiction increments {dij : (i, j) ∈ A}
13: v∗ ← DP-DSPI-EXP(G′, bn)
14: if Interdictor’s turn at n then
15: return v∗(bn, p(n))
16: else
17: return min{c̃p(n),j(Sn) + v∗(b, j) | j ∈ FS(n)}
18: end if

Algorithm A5.5. MCTS-play-instance
Input: a DSPI instance
Output: Play-out score
1: p← 1,∆← 0
2: Create a game tree with root node root, initialize c̃ and broot accordingly.
3: while p 6= t do
4: a← MCTS-next-move(root), m← search tree node corresponding to a
5: ∆← ∆ + C̃nm

6: p← p(m)
7: root← m
8: end while
9: return ∆
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2○– 1○, having costs c12 > 0 and c21 > 0, respectively. Observe that the logic concerning the

Interdictor’s turns described above is still applicable here, and the tree size will be in class of

O(h(·)f(b,m)) for some function h. Thus, we can restrict our attention to the Evader’s turns

only, with the goal of showing that function h(·) does not depend on K. To simplify the

exposition, we will first consider the game tree as if the Interdictor were not present at all.

In this case, the alpha–beta pruning mechanism will be dealing with the worst (maximum)

alternative cost achievable by the Evader (β), and the minimum alternative cost achievable

by the Interdictor (α) will reduce to the best upper bound on alternative paths available to

the Evader.

Consider a snapshot of a tree after expansion of the first game tree node correspond-

ing to the Evader’s position at node 2○, depicted in Figure 5.3b. There are two child nodes,

one of which corresponds to traversing the cycle (returning to node 1○). We show that

expansion of this subtree according to the proposed algorithm will never yield unbounded

growth of the tree. First, if node (A) is pruned, then the result follows trivially, so let us

consider the other case. Expansion of game tree node (B) yields creation of new game tree

nodes describing the same possible actions from node 1○, as shown in Figure 5.3c. We show

that such repeated blocks will be created only a finite number of times (with the bound

not depending on K) due to the pruning mechanism. Recall that a node is pruned when

the corresponding values α̂ and β̂ for this node satisfy the condition β̂ ≤ α̂. This condition

implies that another decision was available before this point that would yield a strictly bet-

ter solution based on our available bounds. At the creation of nodes (B) and (C) we had

β̂B > α̂B and β̂C > α̂C by assumption. However, during the selection phase these values

are updated as follows:

α̂B ← max{α, π + c21 + LBB}, and β̂B ← min{β, π + c21 + UBB},

where π is cumulative cost corresponding to the path up to node 2○ in the graph (before

traversing the cycle for the first time), and α and β are carried over from the previous
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game tree nodes and can be disregarded further without loss of generality. Lower bounds

are maintained corresponding to the respective child nodes by backpropagation passes, so

that at the beginning of every selection phase, the bounds information for all child nodes is

correct and consistent with the respective parent nodes. Observe that after creating at most

M = d((UB0
C + c23)− (LB0

B + c21))/c21e repeated blocks of game tree nodes corresponding

to the cycle (Evader’s position 1○, 2○, and 3○ in our example), the whole subtree rooted

at (B) will be pruned (where UBkC denotes the upper bound at node (C) calculated for

the (k + 1)-th pass through this node). This number M is positive, since we assume node

(B) was not pruned in favor of (A). With each such block creation, the lower bound LBB

increases by at least c21. Therefore, after creation of M repeated blocks we would have:

β̂B ≤ β̂A ≤ π + c23 + UB0
C ,

α̂B ≥ π + c21 + LBMB ≥ π + c21 + (LB0
B +Mc21) = π + c23 + UB0

C ≥ β̂B, (5.3)

which satisfies the pruning condition of β̂B ≤ α̂A. Informally, if the subtree with repeated

actions grows beyond a certain limit (determined by the cost of the arc creating the cycle)

the algorithm will prune it in favor of alternative paths through the tree, e.g., node (C)

against node (B) in this example. Note that pruning does not eliminate all redundant

nodes. For example, several repeated blocks might be created before we hit condition (5.3),

and due to random roll-outs node (D) could be deemed better than (C). So, a good solution

might be found later in a subtree rooted at (D), but we would still have node (C) in the

game tree, representing exactly the same Evader’s position at 3○. (We will show in the next

proposition that given enough time (D) would be pruned in favor of (C).)

Therefore, a zero-cost cycle might create a large, but finite multiplicative increase

in the game tree size, with the bound not depending on the number of episodes K. If the

cycle contains more than two arcs, then we can modify this logic to accommodate for a

path cost instead of arc cost c21, and introduction of the Interdictor would yield another

finite multiplicative increase in the game tree size bound, not depending on K (as discussed
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Figure 5.3: An illustration: a case with a cycle
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above). The intuition that infinite paths along cycles of nonzero costs are ultimately pruned

in favor of finite alternative paths still applies to all complications of the situation depicted

in Figure 5.3.

Moreover, we can make another step and claim that if we let the algorithm run long

enough, the finite tree we obtain will point us to an optimal sequence of moves.

Proposition 5.2

Denoting the cost-to-go estimate at the root game tree node after k iterations as

Q̂kroot and the optimal objective as q∗, the MCTS-next-move procedure implemented

as per Algorithm A5.1 satisfies:

lim
k→∞

P{Qkroot = q∗} = 1.

Proof. First, note that game tree pruning never cuts off all optimal solutions. Then, observe

that if all game tree nodes are expanded, then Qkroot is in fact obtained by a procedure

equivalent to the minimax search algorithm. Because we never cut off all optima, the

probability of Qkroot = q∗ equals at least the probability of expanding all possible game
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tree nodes, which is sufficient, but not necessary to obtain an exact optimum. Now, given

a specific graph, it follows from Proposition 5.2 that there is only finite number of such

possible game tree nodes. Recall that with probability ε > 0 we select a node uniformly

at random. Consider a random walk from the root to a terminal node in a tree having a

finite number of nodes. Each possible node to expand will be selected with some positive

probability bounded from below by some p0 > 0. The probability that the algorithm will

sample paths to all nodes is bounded from below by the probability of having the necessary

(finite) number of successes (which we will denote X) in a Bernoulli scheme with success

probability p0. As the target number of successful episodes does not depend on k, the

probability of having at least X successes approaches 1 as k grows.

Therefore, with a slight modification (making the procedure stop when the tree

cannot be further improved), we see that this is a Las Vegas type of a randomized algorithm

(see, e.g., Sedgewick and Wayne 2011): It yields the optimal objective as Q̂root, but with

random runtime (note that we cannot strictly claim it is finite due to the randomness we

employ). We make two modifications to this procedure to improve its practicality.

First, we turn it into a Monte Carlo type of randomized algorithm by the standard

trick of stopping the procedure after the computational budget is exhausted (i.e., setting a

finite K). This budget guarantees a limited runtime, at the expense of guaranteeing that

the algorithm will yield optimal objective estimates. This trade-off is reasonable, because

no algorithm can provide a fully polynomial-time approximation scheme for DSPI, unless

P = NP, as shown by Sefair and Smith (2016).

Moreover, by actually making moves (as opposed to starting the selection process

from the Evader’s position at the source every time) we achieve a significant speed up. Also,

the convergence due to the random selection mentioned in the proof of the last claim is slow,

and guiding the selection process by cost-to-go estimates reduces the runtime in practice.

We illustrate these and other effects related to the proposed algorithm with quantitative

illustrations presented in the next section.
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5.5 Numerical experiments

To investigate the computational efficacy of the proposed algorithm in practice, we

performed a series of computational experiments over both randomly generated and pre-

defined instances.

We generated the first category of instances using the Erdős-Rényi-Gilbert model

(Gilbert 1959) with varying number of nodes and parameter p = 0.25. That is, a completely

connected graph was created, and then every edge was erased with probability q = (1− p).

Or, conversely, N isolated nodes were created and every edge out of the possible N(N −

1)/2 ones was created independently with probability p. Such graphs were not necessarily

connected, so we checked that every node was accessible from s, and that t was reachable

from every other node in the graph. Nodes that did not possess these properties were deleted

from the graph. Thus, we started with some specific number of nodes N , but provided no

guarantee that the generated instance would have exactly N nodes (even though few nodes

were deleted due to this check). Costs were generated as uniformly random integer numbers

between 1 and 10, and interdiction increments for every arc cost cij were generated uniformly

random from dij ∈ [0, 2cij ].

The foregoing approach is only one of many ideas for generating a DSPI instance.

Perhaps a more elegant one was proposed by Sefair and Smith (2016), which started from a

random directed in-tree having t as the root and proceeded with adding arcs randomly. We

do not study probabilistic properties of these graphs (or the corresponding solutions) rigor-

ously here, so we have picked the simpler procedure from the implementation perspective.

However, it does give rise to an important question of what a “complicated DSPI instance”

actually is. For example, consider graphs having the small world property (where there is,

informally speaking, a short path between every two nodes, and in particular between s

and t). Now, imagine the process of increasing the number of nodes and budgets b for such

instances. We would expect an increase in the state space of the DSPI game, but many new

s–t paths created would be longer (in terms of the number of arcs) and more expensive than
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the ones that existed before, assuming uniform distribution of the arc costs and interdiction

increments. Therefore, many game tree nodes corresponding to such paths could be easily

pruned. On the other hand, it might be possible to engineer especially difficult instances,

where adding nodes would create different s–t paths of comparable costs and interdiction

increments, making it hard to remove them from consideration. We leave this topic for

future research.

For the second category of pre-defined instances, we used a subset of instances gen-

erated in (Sefair and Smith 2016): fifteen 10-node instances and fifteen 20-node instances

of varying density, with the former having b = 1 and the latter implying b = 2. We pre-

processed these instances in a similar fashion to the randomly generated ones, to ensure all

nodes are connected to s and t as necessary.

Both the exact dynamic programming approach developed by Sefair and Smith and

the MCTS algorithm proposed in this work were implemented from scratch using Julia

programming language (Bezanson et al. 2017), the simulations were run on a laptop with a

four-core Intel i5 processor (3.1 GHz) and 8 Gb of RAM, with occasional use of the resources

available from the Clemson University Palmetto high-performance computing cluster (for

longer experiments). The software was exclusively based on GNU/Linux system with bash

and GNU make used to build a computational pipeline and R language ecosystem to produce

figures from the generated data (with most of the core components discussed by R Core

Team 2021, Wickham 2016, Wickham et al. 2019).

Unless stated otherwise, we assumedK = 10 episodes per move, Cp = 14.0, ε = 0.05,

and γ = 1.0 (no discounting). These values were chosen after brief preliminary computa-

tional experiments.

5.5.1 Pre-defined instances and scaling

First, we run the MCTS algorithm against the dataset of pre-defined instances.

Figure 5.4 depicts the known optimal value, calculated lower and upper bounds, and the

objective obtained by the MCTS play-out for each of the instances. We observe that the
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Figure 5.4: MCTS solutions (pre-defined instances)

Note. Shaded bars represent the gap between lower and upper bounds. Black dots denote the exact

optimum, while crosses represent the objective obtained in a play-out using our MCTS algorithm.

bounds proposed by Sefair and Smith are very tight: in fact, they close the gap immediately

for most of the instances. Although their bounds do not reveal the actual optimal policy,

they direct our algorithm to find either optimal or near-optimal solutions in just K = 10

iterations per move.

However, we note that these instances are easy to solve, and were in fact generated

to validate the exact dynamic programming approach proposed for the DSPI. That exact

algorithm typically solved each instance in under 10 seconds (under 1 second most of the

time), and was actually faster than the proposed heuristic on each instance. However, as one

might expect, the exact and heuristic approaches scale in fundamentally different ways. To

illustrate this fact, we modified each of the instances discussed above to consider the cases

of b = 1, 2, and 3. We solved each of these new instances with the exact DP algorithm and

using our MCTS procedure, keeping records of the runtime (in seconds) and the objective
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values obtained. The results are summarized in Table 5.1.

Table 5.1: Runtimes and objectives: MCTS vs. exact algorithms

Name |N | |A| Runtime, sec. Objective
b = 1 b = 2 b = 3 b = 1 b = 2 b = 3

H DP H DP H DP H DP H DP H DP

10_1_0.25_1 10 61 0.08 0 0.43 0.06 0.51 2.70 10 10 10 10 10 10
10_1_0.25_2 10 61 0.19 0 0.24 0.07 0.77 3.47 15 15 19 19 19 19
10_1_0.25_3 10 61 0.26 0 0.54 0.07 0.63 3.42 8 8 10 10 11 11
10_1_0.25_4 10 61 0.29 0 0.42 0.07 0.76 3.58 13 13 17 17 22 22
10_1_0.25_5 10 61 0.25 0 0.41 0.08 0.93 3.65 15 15 19 19 20 20
10_1_0.5_1 10 41 0.27 0 0.21 0.02 0.84 1.02 22 22 24 24 24 24
10_1_0.5_2 10 41 0.08 0 0.13 0.07 0.28 1.03 6 6 8 8 8 8
10_1_0.5_3 10 41 0.42 0 0.18 0.03 0.59 0.79 21 21 28 28 31 31
10_1_0.5_4 10 41 0.06 0 0.18 0.04 0.2 0.99 18 18 24 24 28 28
10_1_0.5_5 10 41 0.06 0 0.17 0.06 0.25 1.01 15 15 15 15 15 15
10_1_0.75_1 9 16 0.12 0 0.16 0 0.23 0.03 25 25 26 26 35 35
10_1_0.75_2 9 20 0.06 0 0.11 0 0.2 0.07 27 27 40 40 44 44
10_1_0.75_3 2 1 0 0 0 0 0 0 10 10 10 10 10 10
10_1_0.75_4 8 16 0.05 0 0.08 0 0.1 0.04 24 24 26 26 26 26
10_1_0.75_5 9 20 0.04 0 0.13 0 0.22 0.07 2 2 2 2 2 2

20_2_0.25_1 20 271 1.31 0.02 1.7 2.86 6.29 2004.43 11 11 12 12 14 14
20_2_0.25_2 20 271 1.27 0.01 2.89 5.08 5.6 1928.24 8 8 10 10 12 12
20_2_0.25_3 20 271 0.65 0 8.3 2.72 10.57 2642.78 8 8 10 10 14 13
20_2_0.25_4 20 271 4.86 0 4.56 2.7 6.08 1902.1 13 13 15 15 16 18
20_2_0.25_5 20 270 9.19 0 3.55 2.73 5.66 2863.08 10 10 12 13 14 14
20_2_0.5_1 20 181 0.63 0 1.3 0.92 3.99 296.59 10 10 12 12 12 12
20_2_0.5_2 20 181 1.43 0 5.32 1.01 2.93 337.89 18 18 20 20 27 27
20_2_0.5_3 20 181 0.65 0 0.99 1.87 2.19 242.36 14 14 17 17 20 20
20_2_0.5_4 20 181 1.26 0 1.54 2.3 2.22 301.79 17 17 18 18 19 19
20_2_0.5_5 20 181 0.98 0 2.76 1.01 3.97 347.13 15 15 18 18 20 20
20_2_0.75_1 20 91 0.17 0 0.9 0.19 0.75 16.57 2 2 2 2 2 2
20_2_0.75_2 20 91 0.21 0 0.62 0.34 0.68 14.78 9 9 11 11 16 16
20_2_0.75_3 20 91 0.13 0 0.51 0.16 1.05 15.93 17 17 17 17 17 17
20_2_0.75_4 20 91 0.45 0 0.5 0.32 2.14 14.74 11 11 19 19 19 19
20_2_0.75_5 20 91 1.3 0 1.97 0.2 6.14 15.96 27 27 40 40 43 47

Note. MCTS measurements denoted H (“heuristic”), and exact algorithm is denoted DP (“Dynamic Pro-
gramming”). Instances of different sizes are involved: |N | nodes, |A| edges; instance “Name” corresponds to
a unique graph topology, varying budget is denoted b = 1, 2, 3. Discrepancies between the obtained objective
values are highlighted with bold font. Instance names are provided in the format N_b_D_i as per Sefair and
Smith (2016), where N denote number of nodes before the preprocessing, b stands for the budget (in the
original instance), D is the graph density characteristic, and i is an instance number.

First, note that for almost all cases the objective values coincide for both methods

(except for four larger instances). Therefore, 10 episodes per move was enough for the

proposed algorithm to identify an optimal game play for both players most of the time on

our dataset. This confirms our intuition that for larger instances, it would be prudent to

allow larger computational budgets (number of episodes K) to obtain better solutions. Still,

surprisingly few iterations are necessary to solve most of these instances to optimality.
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Runtimes vary greatly, and exhibit a somewhat expected pattern: For smaller in-

stances (b = 1 and 2, first four columns in the “Runtime” section) the MCTS was almost

always significantly slower than the exact algorithm, sometimes by orders of magnitude.

However, even for b = 3 the situation is reversed, as the state space of the dynamic program

grows exponentially, while the MCTS limits the game tree size via pruning and strategic

move selection. Also as we would expect, these effects grow stronger as we move from

10-node (the top half of the table) instances to 20-node instances (the bottom one).

To further illustrate how the MCTS algorithm scales with the instance size, we

generated three random fifty-node instances and varied the budget from b = 1 to 10. The

results are summarized in Figure 5.5. We still see that the proposed approach often finds an

actual sequence of turns leading to the optimal (or near-optimal) objective. The runtimes for

these larger instances are under 100 seconds, which indicates that the MCTS-based approach

is scalable for instances of this size, as opposed to the exact algorithm. The figure also

suggests that for larger instances, we could trade off additional runtime for better solutions

by increasing the maximum number of iterations K, as the algorithm sometimes yielded

play-outs outside of the calculated bounds. Note that obtaining objective values outside of

the bounds is technically possible, because the algorithm chooses the actions based on our

cost-to-go estimates. The bounds are not tight enough to cut off all suboptimal solutions.

Also, note that the runtime does not grow as fast with the increase of b from 1 to

10 as it would be the case with the exact algorithm. The growth of the tree is evidently

highly dependent on the instance structure and is connected to the question of the instance

difficulty we briefly mentioned above.

5.5.2 MCTS convergence profile

Note that a naive implementation of our MCTS algorithm could ultimately construct

a full minimax tree, which would inevitably find an optimal strategy given enough time

and space. (In this case, there would be little value in the Monte Carlo approach itself.)

Accordingly, this section explores the ability of the MCTS heuristic to limit the exploration
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Figure 5.5: MCTS solutions and runtimes (randomly generated instances)

Note. Shaded bars in the top panel represent the gap between lower and upper bounds, while crosses
indicate the objective obtained in a play-out using our MCTS algorithm. Runtimes in the bottom panel
correspond to the instances solved for the top one. Runtimes are given per instance. Also, instances with
different budget are treated as completely unrelated (no information is transferred between the MCTS runs
besides the instance description).
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of the game tree while still obtaining high-quality solutions. To accomplish this analysis, we

constructed a convergence profile for solving a DSPI instance as follows.

We sought to generate one random instance having 50 nodes, b = 3, and an opti-

mality gap of zero using the bounds developed by Sefair and Smith (2016). The zero gap

ensured that we would know the true optimal objective without having to execute the ex-

act DP algorithm. (The generation scheme was executed as before, but we repeated the

procedure until an instance satisfying all our requirements was identified.) After obtaining

the DSPI instance, we executed our heuristic as before, but did not commit any moves by

either player. Instead, we performed learning episodes from the same root node, recording

how the game tree was developed. The results are summarized in Figure 5.6. The top two

panels show the dynamics of the tree size, where dots represent the number of nodes in the

tree after each learning episode and the bars show the number of node pruning or adding

operations. (Note that one pruning might cut more than one node, but one adding always

adds a single node.) The vertical dashed line across all panels represent the moment when

the cost estimate Q̂ at the root node reached the true optimal value of 5.

We see that tree dynamics changes over time. First, there is a period when the

tree grows very actively. Pruning happens frequently (see the panel with bars), but the net

effect on the number of nodes is significantly positive. Then, as we collect more information,

the pruning starts to dominate and the game tree starts to shrink, until its size hits a

plateau. In fact, we observe several plateaus interrupted by the moments when valuable

node discovery allows the algorithm to prune several game tree nodes. The tree size stops

changing frequently after approximately 300 episodes, and the number of nodes completely

stabilizes after the discovery of the true optimum approximately at the 500th episode.

The nature of backpropagation with the minimum or maximum function makes the

process unstable in terms of cost estimates: the cost-to-go at the root node (the bottom

panel) varies greatly, from 0 to 1000, until around 250th episode. Moreover, recommended

actions from the root node (“Best action” panel) also change significantly, until they stabilize

on jumping between several optimal moves after about the 500th episode. Note that this
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behavior immediately suggests a research line for improving our simple MCTS algorithm.

The concept of virtual turns for the Interdictor introduces an unnecessary symmetry to the

problem: The same interdiction set can be considered by the algorithm as several distinct

turns, if the arcs are interdicted in a different order. This symmetry is one of the reasons why

the algorithm recommends multiple different actions at the root node after the discovery

of the optimum. (Recall that the first turn is always made by the Interdictor.) This effect

also dilutes the valuable information across several branches. There are several ways to

alleviate this problem, for example, to artificially merge such turns into one using some sort

of hash table, or just pre-ordering the forward stars for the original graph to always consider

interdictions in some specific order. On top of this adjustment, one might want to record the

information (bounds and cost estimates) into several nodes at once, as we perform roll-outs.

This is along the lines of the All-Moves-As-First idea, which is discussed, along with many

other ones, in the survey by Browne et al. (2012).

Thus, for the prior example our proposed algorithm intensively grows the tree, then

prunes it effectively, and rapidly obtains a true optimal policy. We next explore a different

regime for the tree construction, leveraging the role parameter ε plays in the efficacy of

our algorithm. In particular, as ε grows, and the probability of selecting a node at random

increases, the cost-to-go estimates tend to become less accurate. Figure 5.7 depicts the

performance of our approach when we increase ε from 0.05 to 0.5 on the same instance as

discussed before. The maximum tree size dropped, and the process became more uniform.

Adding and pruning nodes happened longer: The “added / pruned” bars spread across

almost all 1,000 episodes as compared to approximately the first 300 episodes only in the

previous experiment. The optimum was discovered later (beyond the 800th episode), and,

interestingly, the algorithm did not recognize several of the optimal moves as such. (Note

that there are different numbers of dashed lines, representing alternative optimal actions for

the first turn, in the “Best action” panels for ε = 0.5 and ε = 0.05.) This behavior does not

prevent the Interdictor from playing optimally: in both these runs the cost-to-go estimate

stabilized on the true optimal value of 5.
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Finally, to provide an extreme case, we made the selection process completely random

by setting ε = 1.0 (see Figure 5.8). We do observe the tree growing and somewhat stabilizing,

but the algorithm never came close to the optimal value within 1000 episodes, and the process

did not converge, as it did after approximately the 500th episode for ε = 0.5 or from the

very beginning with ε = 0.05. Therefore, deliberately excluding the mechanism of heuristic

selection (and relying exclusively on bounds and pruning to find an optimum) significantly

deteriorated the performance of our algorithm.

To illustrate the fact that the difference in these convergence profiles is not mainly

due to the randomization employed in the algorithm, we performed three independent runs

for each set of parameters. The corresponding tree size dynamics are presented in Figure 5.9.

We see that while the trajectories are distinct, the algorithm behaves in different modes

depending on the value of ε. There is a clear growth and pruning in the first one, but a

steadier and more uniform growth pattern in the next two. The pattern of the cost-to-go

estimates also persisted across all three runs.

The previous analysis illustrates the benefits of the Monte Carlo component, but

leaves us with one important question. Note that even in the best case, our estimate Q̂root

stabilized around the optimum after approximately 250 iterations. However, in Table 5.1

and Figure 5.4 we have seen that the MCTS with just 10 iterations per move was able

to find the optimum quite often. Also, the 100-iteration version was able to quickly solve

the instance described in Figures 5.6–5.8. Clearly, total number of iterations per tree was

beyond 100; however, making turns and updating the root node itself introduces another

benefit of focusing the search process. We illustrate this effect in the following experiment.

5.5.3 The value of a play-out

Note that in convergence profiles illustrated in Figures 5.6 and 5.7 optimal actions

(corresponding to the dashed horizontal lines after the true optimal solution was found)

appeared very early among the recommendations. Actually committing to one of these

moves would have caused the algorithm to focus the analysis on a more promising alternative,
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Figure 5.6: MCTS convergence profile: ε = 0.05
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Figure 5.7: MCTS convergence profile: ε = 0.5
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Figure 5.8: MCTS convergence profile: ε = 1.0
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Figure 5.9: MCTS tree sizes before the first move

Note. Numbers to the right of the panels denote values for parameter ε. Different colors correspond to

different runs over the same input.
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ignoring the (now impossible) other moves. To investigate this effect, we generated 1, 000

random instances, mostly 17–20 nodes each (i.e., starting the generation from 20 nodes), with

b = 3. We discarded the 132 instances where the initial optimality gap was positive, so for

the remaining instances we would know the optimal objective (but not an optimal sequence

of moves). Each such instance was solved by the usual MCTS play-out algorithm, but this

time we recorded the total number of episodes (equal to the number of episodes per move

multiplied by the number of moves until the end of the game). After that, we re-solved the

same instance starting from an empty game tree, allowing the algorithm to run for exactly

the same number of episodes, but without making any moves. Therefore, in the latter case

the algorithm started the selection every time from the initial root node. The results are

summarized in Figure 5.10. The first row represents the full-tree approach, i.e., trying to

build an estimate for the best cost without making any moves. The bottom row represents

the play-out strategy, when we run ten learning episodes followed by a turn repeatedly until

the end of the game. The first column shows the histograms of the objective values obtained

by the algorithms, relative to the true optimum. For these instances both approaches almost

always yield the exact optimum. The right column presents the histograms of wall-clock run

times per instance, in seconds.

While objective estimates are very comparable, focusing the tree by making turns

(and switching the root node) allows the algorithm to reduce computational effort. The

runtime is decreased by about one second on average over this dataset. (Vertical dashed

lines represent respective mean values.) Also, the revised approach with play-outs results

in a maximum computational time of approximately 5 seconds (as opposed to 10 for the

full-tree approach)1.

1It is interesting to note how this aligns to the author’s experience with the game of Go: one of the
Go proverbs allegedly says “Lose your first 50 games as quickly as possible.” Apparently, this strategy
allows the algorithm to avoid building the whole (prohibitively large) game tree staring at the board in the
beginning. Therefore,the computational resource is spent on smaller situations which makes the “selection”
and “roll-out” neural networks train better. This is a topic for further research, more connected to machine
learning.
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Figure 5.10: MCTS: play-out vs. first-move strategies

F
u
ll tre

e
P

la
y
-o

u
t

0 100 200

0

250

500

750

1000

0

250

500

750

1000

Objective estimate (relative to the optimum)

F
u
ll tre

e
P

la
y
-o

u
t

0 5 10 15

0

100

200

300

0

100

200

300

Runtime per instance (seconds)

110



Chapter 6

Conclusions and Future Research

This work contributes to the growing body of literature on using decision diagrams

in various forms, and touches a topic of applying Reinforcement Learning techniques to solve

optimization problems.

The key contribution related to Chapter 3 is the idea of using simplified problems to

align two BDDs. We formulated such a simplified problem based on simple upper bounds

on the layer widths. We designed a heuristic that attained solution quality comparable to

the one from the baseline heuristic involving BDDs, while operating over O(N) (instead

of O(2N )) objects. In the context of optimization over collections of BDDs, this work

contributes to the literature a practical approach that enables the use of state-of-the art

methods that require aligned variable orders. Chapter 4 in fact provided a detailed case

study for applying the proposed computational approach.

These ideas can be extended and improved to create practically efficient domain-

specific algorithms. First, one could further explore the simplified problem formulations.

For example, we could either seek to improve the weighted variable sequences concept (e.g.,

introducing the possibility for size decrease during the swap, assuming the diagrams to

be quasi-reduced), or propose a fundamentally different model (such as embedding BDDs

into RN space with ML methods). Then, it may be possible to leverage interconnections
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between the simplified and original problems. We could solve several simplified problems

with the initial diagrams randomly shuffled in different ways, or even design a divide-and-

conquer type of algorithm where BDD transformations would be interleaved with solving

auxiliary problems. Finally, the branch-and-bound algorithm provided in this dissertation

can be improved by fine-tuning bound estimates, branching strategies, or picking a different

principle of branching.

From the methodological perspective, it would be interesting to consider how these

ideas of working with collections of BDDs could be mixed with the concepts of relaxed and

restricted decision diagrams (which are discussed, e.g., by Bergman et al. 2016a).

In terms of applications, one could look into other types of problems having several

groups of binary constraints that would be natural to represent with collections of diagram.

Having more types of problems might help us to formulate some constructive description of

what kind of structures captured by BDDs seem to yield most benefits from such represen-

tations.

In Chapter 5 we focused on the DSPI problem, a complex variant of the Shortest-

Path Interdiction problem. A decision variant of the problem is known to be NP-hard,

and an exact algorithm presented in the literature reduces to enumerating all the relevant

states in a dynamic programming fashion. While existing research discusses bounds for the

optimal game cost, no research has yet studied heuristics providing solutions (policies) for

the problem.

We have showed how several ideas from the game-playing and RL literature can

be applied to this problem, and presented a heuristic algorithm based on the Monte Carlo

Tree Search framework. After processing the instance data and formulating the game tree

(given a computational budget), the algorithm yields the next recommended action for both

players, and can be used to “play out” a DSPI instance. We demonstrate the practicality

of the proposed approach over a series of numerical experiments and show that several key

algorithmic components significantly contribute to the performance: guiding the search with

cost estimates, pruning, and focusing the tree with making actual turns.
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There are several lines of attack to improve the algorithm evident from the pre-

sented work. One idea is to cache the most frequently used states of the game and share the

information between the game tree nodes. Some of the relevant ideas discussed in the litera-

ture include “transposition tables” (when the most-visited game states share the information

across several nodes) and the ideas of all-moves-as-first roll-outs and its variations (Browne

et al. 2012). Then, the very selection and roll-out process can be improved. For the game of

Go, (Silver et al. 2017) neural networks were successfully used both for (randomized) node

selection and roll-outs. It might be worthwhile to employ the idea of neural networks that

are aware of the graph structure (such as Graph Neural Networks (GNN), see, e.g., Scarselli

et al. (2009), Wu et al. (2019), Zhang et al. (2018) and Almasan et al. (2020)). It would

be especially interesting to learn some patterns that would be persistent between different

DSPI instances (in fact, that would mean learning a heuristic algorithm). Finally, one could

try to generalize these ideas of Monte Carlo Tree Search to other complicated problems that

allow for representation as exponential-state dynamic programs, perhaps starting with other

variants of network interdiction problems.

As a final note, it would be interesting to look into possible connections between

MCTS frameworks and multi-stage stochastic programming, as the latter shares this core

component of a huge state space that is virtually impossible to sample in an exhaustive way.
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