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Abstract: Urban rail transit systems are highly prone to disruptions of various nature (e.g., accidental,
environmental, man-made). Railway networks are deemed as critical infrastructures given that a
service interruption can prompt adverse consequences on entire communities and lead to potential
far-reaching effects. Hence, the identification of optimal strategies to mitigate the negative impact of
disruptive events is paramount to increase railway systems’ resilience. In this paper, we investigate
several protection strategies deriving from the application of either single asset vulnerability metrics
or systemic optimization models. The contribution of this paper is threefold. Firstly, a single asset
metric combining connectivity, path length and flow is defined, namely the Weighted Node Importance
Evaluation Index (WI). Secondly, a novel bi-level multi-criteria optimisation model, called the Railway
Fortification Problem (RFP), is introduced. RFP identifies protection strategies based on stations
connectivity, path length, or travel demand, considered as either individual or combined objectives.
Finally, two different protection strategy approaches are applied to a Central London Underground
case study: a sequential approach based on single-asset metrics and an integrated approach based on
RFP. Results indicate that the integrated approach outperforms the sequential approach and identifies
more robust protection plans with respect to different vulnerability criteria.

Keywords: critical infrastructures (CI); railway systems; protection to disruptions; optimisation

1. Introduction

Urban rail transit systems, and railway infrastructures more broadly, are extremely prone to a
variety of disruptions (e.g., accidental, natural, man-made). For example, the 7 July 2005 London
bombings consisted of suicidal bomb attacks that caused three explosions in the London Tube,
thus bringing the underground services to a halt, claiming more than fifty casualties and injuring
hundreds [1]. More recently, in December 2014, over-running engineering works, together with a
signalling issue at Finsbury Park, caused major disruptions at London King’s Cross station, one of
the busiest stations in the UK [2]. Finally, heavy rain in England in June 2019 resulted in widespread
disturbance due to flooded roads, railway infrastructures and hospitals. Network Rail, the railway
infrastructure owner in the UK, reported that the lines connecting Kent to London were flooded due to
one month’s worth of rain occurring in just 24 h. This led to disruptions to the trains’ power supply
and signalling equipment, thus bringing the system to a standstill [3]. These events highlight the
vulnerability of railway infrastructures to disasters and the need to identify cost-effective protection
strategies that can mitigate the negative impact of disruptive occurrences.
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Railway systems are typically modelled through a network structure where nodes are train
stations and links are tracks. Potential protection strategies depend on the type of threat. For example,
man made disruptions can be thwarted by installing Closed-Circuit TeleVision (CCTV), whereas
barriers can be built to prevent flooding. Assessing the vulnerability of railway assets is paramount
to allocate protection resources in a cost-efficient way ([4–8]). To this end, Starita, Esposito Amideo,
and Scaparra [9] provide two possible approaches aimed at identifying the most critical stations in
a railway network (i.e., those whose disruption may affect the system functioning the most): one
based on vulnerability metrics [10] and another one based on interdiction models [11]. Starita, Esposito
Amideo, and Scaparra [9] group vulnerability metrics into three main categories: connectivity (node
degree, network accessibility), path length (node vulnerability, node betweenness), and flow (passenger
flow influence). These metrics are used to obtain a ranking of the most critical stations of the Central
London Tube network and are compared with the solutions of two interdiction models, namely the
Path Interdiction Problem (PIP) and the Flow Interdiction Problem (FIP). The comparison of the two
approaches confirms that optimization programs, such as the proposed interdiction models, are
generally more reliable than metrics. In fact, a vulnerability assessment based on single asset measures
is static and, as such, fails to capture the interaction among system components after a disruption,
ultimately underestimating its effect. Conversely, interdiction models account for system components
interdependency, thus providing a more reliable framework.

Once network vulnerabilities have been assessed, protection strategies can be identified through
either a sequential or an integrated approach. A sequential approach is composed of two consecutive
steps: the former identifies the most critical network components, through either vulnerability
measures or interdiction models, while the latter consists of allocating fortification resources subject
to a budget limitation: resources are distributed by either following a ranking of the network
criticalities (as obtained from the application of vulnerability measures) or considering the optimal
set of interdicted network components (as obtained from the application of interdiction models).
Differently, an integrated approach combines vulnerability assessment and resource allocation together.
This is achieved through fortification models that are structured as bi-level programs [12–14]. Bi-level
programs [15] allow for mimicking a game between two players: the defender (e.g., the network operator
or the infrastructure owner) and the attacker (e.g., a natural disaster or a terrorist). The upper level
models the defender whose aim is to distribute protection resources over the network in an optimal
way so as to hedge against worst-case interdictions resulting from the attacker, who is modelled at the
lower level. Hence, a bi-level program captures the interaction between the defender and the attacker
thus addressing vulnerability assessment and protection strategies in a combined way.

In this paper, we argue that an integrated approach based on fortification models is a more
effective and accurate tool to allocate protection resources than a sequential approach based on
vulnerability metrics, thus extending the work of [9]. To prove our claim, we consider the most recent
measures recently proposed in the literature to assess rail transport systems’ vulnerability, in addition
to those identified in [9]. These include metrics belonging to the three aforementioned categories
(i.e., connectivity, path length and flow) and also metrics for each combination of two out of three of
these criteria. Additionally, we propose a new unified metric combining the three aspects together,
namely the Weighted Node Importance Evaluation Index (WI). We also contribute to the literature through
the introduction of a novel bi-level multi-criteria optimisation model, namely the Railway Fortification
Problem (RFP), which devises protection strategies based on stations’ connectivity, path length, or travel
demand, considered as either individual or combined objectives. Finally, we test both sequential and
integrated approaches on a case study based on the Central London Tube that has been built using
real data.

The outline of this paper is as follows. Section 2 reviews the literature on single asset measures
and fortification models, based on multi-level programming, with specific focus on railway systems.
Section 3 describes the newly proposed sequential and integrated approaches: the WI metric and the
RFP model. Section 4 presents the case study of the Central London Tube network. Section 5 offers
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a discussion on the results obtained from the application of the sequential approach, the integrated
approach, and their comparison. Finally, Section 6 wraps up the discussion and offers some
conclusive remarks.

2. Literature Review

This section offers two different review outlooks: one focused on single asset vulnerability
measures, the other on fortification models. The first sub-section is structured according to four
different threads: connectivity, path length, flow, and the combination of the above. The second sub-section
offers an overview of optimisation models that have been devised to assess critical infrastructure
vulnerabilities due to worst-case dirsuptions. It also reviews multi-level programs developed for
critical infrastructure protection with a specific focus on railway systems.

2.1. Single-Asset Metrics for Fortification

Connectivity-driven metrics

Node Degree (ND). Given an undirected network, the node degree is the number of edges incident to
that node [16]. Hence, being A the incidence matrix of the network, ND(i) can be defined as the sum on
the columns (rows) of the incidence matrix in correspondence of row (column) i, calculated as follows:

ND(i) =
n

∑
j=1

Aij. (1)

In the case of a directed network there are two different metrics: the indegree (i.e., number of arcs
entering the node) and the outdegree (i.e., number of arcs leaving the node). These two metrics are equal
in case of undirected networks and, as such, only the node degree is used. This metric measures the
influence that an individual node has on its neighbours. Within the railway infrastructure protection
field, the node degree is used to evaluate the importance of a single station in comparison to the others.
In fact, nodes with a high degree represent hubs or interchange stations which are critical to the overall
transportation system.

Path length-driven metrics

Harmonic Centrality (HC). Similarly to the node degree, the harmonic centrality provides a measure
of node importance. However, HC highlights the station that can be more easily reached by all the
remaining stations. HC is a variation of the closeness centrality (CC) index. The closeness centrality of a
node i is defined as the ratio between the number of network nodes minus 1, and the sum of all the
shortest paths connecting node i to node j, dij [17]:

CC(i) =
n− 1

∑j 6=i dij
. (2)

However, the CC index works for connected networks but may yield problems when dealing
with unconnected networks. The harmonic centrality (HC) can be seen as an evolution of CC which
accounts for unconnected networks. The harmonic centrality of a node i is defined as the sum of the
reciprocals of all the shortest paths connecting node i to node j, dij [17]:

HC(i) = ∑
j 6=i

1
dij

. (3)

Node Vulnerability (NV). Due to the inoperability of a node following an interdiction, the network
efficiency (i.e., the network ability to exchange information [18]) decreases. The node vulnerability
measures this variation in network efficiency thus providing an insight on how the network is
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susceptible to incidents. Specifically, the network efficiency is defined as the average of the reciprocals of
the length of each shortest path connecting node i to node j, dij, and is calculated as follows [19]:

e =
1

n(n− 1)

n

∑
i,j=1

1
dij

. (4)

Hence, the node vulnerability can be computed as [19]:

NV(i) = e(o)− e′(i), (5)

where e(o) is the value of network efficiency at the initial stage (i.e., when no disruption occurs), and
e′(i) is the value of network efficiency after station i is interdicted and removed from the network.

Node Betweenness (NB). As both node degree and harmonic centrality, the node betweenness is another
measure of node importance. However, rather than being a local measure, this is a global measure.
In fact, the node betweenness of a node i is defined as the ratio between all the shortest paths connecting
node j to node k passing through node i, djk(i), and all the possible shortest paths connecting node j to
node k, djk [20]:

NB(i) = ∑
j 6=k

djk(i)
djk

. (6)

Hence, NB(i) measures how node i is critical in keeping effective communication across the
network. Within the railway infrastructure protection field, NB(i) provides an insight on the stations
passengers are more likely to use.

Flow-driven metrics

Passenger Flow Influence (PF). Given an interdiction affecting node i, the total amount of flow
(hence of railway passengers) that is affected as a result of the breakdown of station i is defined as the
sum of three different types of passengers: (a) those whose journey starts at station i (OFi); (b) those
whose journey ends at station i (DFi) and (c) those who traverse station i as part of their journey (TFi).
The passenger flow influence of a node i is calculated as follows [19]:

PF(i) = ∑ OFi + DFi + TFi. (7)

Combined metrics

Strength (ST). The strength of a node i is the weighted version of the node degree of node i.
Specifically, the weight that is used is the passenger flow influence of node i. Hence, this metric allows
for combining connectivity and flow aspects together and accounts for the role fulfilled by different
stations (e.g., the flow-based weight allows for capture the difference between an interchange point
and a small station). The strength of a node i is computed as follows [16]:

ST(i) =
n

∑
j=1

PF(i)Aij. (8)

Station Vulnerability (SV). The station vulnerability of a station i accounts for the variation in network
serviceability (i.e., the ability of the network to provide its service), R(i), and the likelihood of station i to
be interdicted, p(i). Specifically, the station vulnerability of a station i is equal to [19]:

SV(i) = Ri pi = [(NV)iPF(i)]pi. (9)



Sustainability 2019, 11, 6322 5 of 21

SV(i) accounts for node vulnerability and passenger flow influence together thus allowing for
combining path length and flow perspectives.

OD-Flow Weighted Nodal Accessibility (WA). The OD-Flow Weighted Nodal Accessibility of a station i
captures the ability that passengers have in completing their journey departing from a station i to a
station j [21]:

WA(i) =
n

∑
j=1,i 6=j

PF(i)
dij

. (10)

Hence, WA(i) integrates path length and passenger flow influence together, thus providing an
additional combination of path length and flow perspectives.

Node Importance Evaluation Index (IM). This index integrates two different aspects of node
importance: node degree, which is a local measure, and node betweenness, which is a global measure.
Yang et al. [20] assume that a combination of these two metrics, one based on connectivity and the other
on path length, is able to evaluate the role of a node from both global and local perspectives. Hence,
the node importance evaluation index (IM) is a weighted sum of the two aforementioned indicators:

IM(i) = n1NBi + n2NDi, (11)

where n1 and n2 are real coefficients assuming values between 0 and 1 and whose sum is equal to 1.

2.2. Systemic Approach to Fortification

The literature on optimisation models assessing critical infrastructure vulnerabilities due to
worst-case disruptions has grown rapidly in the past decades. These are the so-called interdiction
models, also known as Attacker-Defender (AD) models, as they are used to identify the assets that would
be disrupted by an intelligent attacker to maximise the negative impact on a system. Solving these
problems allows for assessing the extent to which a system is vulnerable to worst-case disruptions
and identify its most critical components. Building on a few seminal papers [22,23], interdiction
models have been applied to distance-based [24–27], flow-based [11,28–30], and connectivity-based
networks [31].

However, when the objective is to find the optimal distribution of protection resources so as to
fortify the system, it can be demonstrated that the solution of interdiction models leads to sub-optimal
protection plans [12]. Hence, further decision level modeling protection decisions need to be added
to interdiction problems. Brown, Carlyle, Salmeron and Wood [32] discuss the general structure of
fortification problems, modeling them as tri-level Defender–Attacker–Defender (DAD) programs
and provide an application to electric power grids. Currently, the vast majority of published works
focuses on the fortification of supply-chain systems. Scaparra and Church [12] define the R-Interdiction
Median problem with Fortification (RIMF). The aim is to identify the optimal distribution of limited
resources among existing facilities of a vulnerable supply chain system so as to minimize the effect
of worst-case disruptions arising from the loss of a certain amount of unprotected facilities. Several
papers extend RIMF by incorporating other features such as capacity expansion [33], uncertainty [34],
and recovery [35]. Focusing on transportation networks, the literature on fortification is growing at a
somewhat slower pace. Cappanera and Scaparra [13] introduce the Shortest-Path interdiction Problem
with Fortification (SPIF). SPIF aims at optimally distributing fortification resources across network
arcs so as to minimize the length of the shortest path connecting a supply and a demand node after
worst-case disruptions affecting some unprotected network connections. Sadeghi et al. [36] extend
SPIF by considering partial fortifications while Lozano, Smith and Kurz [37] apply fortification to the
Traveling Salesmen Problem.

Posing specific attention to railway systems, disruption management is a popular topic and many
studies investigate operational planning techniques such as timetabling and rescheduling to reduce
the impact of disruptions ([38–42]). Conversely, when it comes to railway system strategic planning
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against worst-case disruptions, the literature is still scarce. In fact, not many studies developing
fortification models for railway infrastructure protection can be found. Jin et al. [43] propose a tri-level
model whose ultimate goal is to harden train stations so as to minimize the travel delay resulting
from multiple targeted attacks while modelling passenger flow as a multiple origin–destination
commuter flow. Sarhadi, Tulett and Verma ([44,45]) investigate the fortification problem applied to
rail-truck intermodal transportation networks. Scaparra, Starita and Sterle [46] introduce the Railway
Protection Investment problem (RPI), a bi-level model whose aim is to identify the allocation of
protective resources that minimizes the disruption of passenger flow due to worst-case interdictions.
Starita and Scaparra [47] extend the RPI by assuming that protective resources are available over time,
thus adding the time perspective to the RPI and defining the Dynamic Network Protection (DNP)
model. More recently, Starita and Scaparra [48] further expand the two aforementioned works by
introducing the Network Protection Problem with Variable Demand Loss (NPVDL), which accounts
for post-disruption passenger behaviour by modelling the post-disruption passenger demand as a
function of the travelling times of the alternative available paths.

As emerges in the literature review, fortification models developed so far have been focusing only
on one specific aspect, be it connectivity, path length or flow. This paper aims to overcome this issue
by contributing to the literature with a flexible formulation that allows for accounting for the three
aforementioned aspects simultaneously, as detailed in the next section.

3. Methodology

This section briefly describes the two protection strategy approaches deployed in this paper:
a sequential approach based on vulnerability metrics and an integrated approach based on fortification
models. A novel single asset measure, the Weighted Node Importance Evaluation Index (WI), and a novel
fortification model, the Railway Fortification Problem (RFP), are introduced within the sequential and
the integrated approach sub-sections, respectively.

3.1. Sequential Approach

The sequential approach deployed in this paper is composed of two consecutive steps: the former
identifies the most critical network components through single asset measures. Specifically, network
assets are ranked in decreasing order according to each of the metrics described in Section 2.1. Then,
protection resources are distributed based on that ranking by sequentially adding the top stations as
long as the budget is available. Annual passenger flow is used to break ties among stations having
the same metric values. Several fortification strategies are to be provided, as many as the available
vulnerability metrics, allowing for comparing different perspectives (i.e., connectivity, path length,
and flow) as well as their combination. Based on the reviewed metrics, we propose a novel single asset
measure that combines together connectivity, path length, and flow. Specifically, we define a weighted
version of the Node Importance Evaluation Index (IM), namely the Weighted Node Importance Evaluation
Index (WI), where the strength replaces the node degree. Hence, WI is calculated as follows:

WI(i) = m1NBi + m2STi, (12)

where m1 and m2 are real coefficients assuming values between 0 and 1 and whose sum is equal to 1.

3.2. Integrated Approach

The integrated approach deployed in this paper relies on a novel bi-level multi-criteria
optimisation model, namely the Railway Fortification Problem (RFP). As reported in Section 2.2,
previous models have typically focused only on one specific network feature (i.e., connectivity, path
length, and flow) [9]. RFP combines these features, thus generating robust solutions with respect to
multiple criteria.
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In the following, the railway network is represented as a directed graph G(N, A), where N is the
set of n = |N| stations and A is the set of a = |A| connections among them. The notation used in the
formulation is given below:

Sets, Indices and Parameters
• N is the set of network nodes, indexed by i, s or d,
• A is the set of network arcs,
• P(sd) is the set of paths connecting nodes s and d, indexed by p,
• N(p) ⊆ N, is the set of nodes in path p,
• lp is the length of path p,
• LPsd is the length of the longest path connecting nodes s and d,
• fsd is the amount of passenger flow travelling from node s to node d,
• D is the maximum number of nodes that can be disrupted simultaneously,
• B is the amount of budget available for protection,
• φsd is a penalty cost incurred when nodes s and d are disconnected,
• ηp, η f are constants used to normalise path and flow objectives, respectively,
• αC, αP, αF ∈ [0, 1] are real coefficients used to weight connectivity, path and flow objectives,

respectively, whose sum is equal to 1.

Variables
• Wi is equal to 1 if node i is protected, 0 otherwise,
• Xi is equal to 1 if node i is disrupted, 0 otherwise,
• Ysd is the length of the shortest non-disrupted path from node s to node d,
• Zsd is equal to 1 if there is no connection between nodes s and d, 0 otherwise.

The Railway Fortification Problem (RFP)

RFP(αC, αP, αF) min g(W), (13)

s.t. ∑
i∈N

Wi ≤ B, (14)

Wi ∈ {0, 1} ∀i ∈ N, (15)

where g(W) = max ∑
s∈N

∑
d∈N

(αCZsd + αP Ysd
ηp + αF fsdZsd

η f ), (16)

s.t. ∑
i∈N

Xi ≤ D, (17)

Xi ≤ 1−Wi ∀i ∈ N, (18)

Ysd ≤ ∑
i∈N(p)

φsdXi + lp ∀s, d ∈ N, p ∈ P(sd), (19)

Zsd ≤ ∑
i∈N(p)

Xi ∀s, d ∈ N, p ∈ P(sd), (20)

Xi ∈ {0, 1} ∀i ∈ N, (21)

Ysd ∈ [0, φsd] ∀s, d ∈ N, (22)

Zsd ∈ [0, 1] ∀s, d ∈ N. (23)

The objective of the fortification level (13)–(15) is to minimise g(W) by allocating protection
resources. Constraints (14) represent the budget limitation on the protection expenditure.
Constraints (15) define the binary requirements for variables Wi. The interdiction level (16)–(23)
has the opposite aim of maximising function g(W), defined as a linear combination of: (1) the number
of disconnected s–d node pairs, (2) the overall length of the shortest non-disrupted paths connecting
s–d node pairs, and (3) the total amount of disrupted flow across all the s–d node pairs. Parameters
ηp and η f are used to normalize the objective functions, since they would normally take values of
different orders of magnitude. Parameter ηp is set equal to the largest penalty cost available in the
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network (i.e., ηp = maxsdφsd), and η f is set equal to the maximum flow between any two pair of nodes
(i.e., η f = maxsd fsd). Consequently, for any s–d pair, the three objectives take values between 0 and 1.
Constraints (17) limit the number of disrupted nodes to D. Inequalities (18) enforce that protected
nodes cannot be disrupted. Constraints (19) enforce upper bounds on variables Ysd. Specifically, if
a given path p connecting s to d is not disrupted, then Ysd cannot exceed the length of such path
(i.e., lp). However, if the path is disrupted, these constraints account for this through a penalty factor,
φsd. Constraints (20) state that an s–d pair is disconnected only if all paths connecting it are disrupted.
Constraints (21) are the binary restriction for the interdiction variables. Constraints (22) limit variables
Ysd to take only values between 0 and φsd. This guarantees that, when a pair s–d is disconnected, Ysd is
set to the penalty cost. Finally, constraints (23) force variables Zsd to take values between 0 and 1.

4. Central London Underground: A Case Study

This section offers some details on the Central London Underground case study. The origin–destination
flow matrix and the travelling time data are publicly available on the Transport for London (TfL)
website. All the possible paths for each origin–destination pair are pre-computed as in [48] by
considering an average 10-min interchange delay to account for a possible line change. Figure 1
shows the Central London Underground network as reported on the TfL website [49]. Overground
lines and other forms of transportation are disregarded since no demand data are currently available.
The network carries a total of 1.3 billion passengers per year with an average of 5 million per day [49].
Because of its importance and its recent history of disruptions, it is an interesting case study to analyse.

Figure 1. Central London Underground network.

The network is composed of 62 stations, 202 directed arcs, and 11 different lines. Some stations
allow for interchanging among lines (identified with at least one white circle such as Oxford Circus),
to railway services (marked with a red double arrow such as Liverpool Street), and to nearby river
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bus piers on the River Thames (identified with a small boat symbol such as London Bridge). Lines are
identified through color coding. Specifically, the lines are as follows: Bakerloo (brown), Central (red),
Circle (yellow), District (green), Hammersmith and City (light pink), Jubilee (light grey), Metropolitan
(purple), Northern (black), Piccadilly (dark blue), Victoria (turquoise), and Waterloo and City (light blue).
Stations are grouped into three size categories (small, medium, and large) according to their annual
passengers. These sizes are used to estimate the cost of protection. Namely, we assume that the larger
stations (more than 40 millions annual passengers) require three times the resources needed to protect
the smallest ones (less than 10 millions annual passengers). A more thorough protection cost estimation
would incorporate the specific structural features of each station (e.g., square meters, number of entry
points, etc.). However, these data are currently unavailable and could not be featured in this analysis.

The proposed approaches to devise protection strategies are implemented using the following
parameters’ setting. On the sequential approach side, weights for IM and WI metrics are set as follows:
n1 = m1 = 0.4; n2 = m2 = 0.6; moreover, the value of ST in (12) is scaled down by a 100 factor to obtain
the same order of magnitude of NB. As for the integrated approach, penalty cost for each s–d pair φsd is
set equal to twice the length of the longest path. RFP is solved using a popular decomposition approach
based on so-called Super-Valid Inequalities (SVIs) [24,50]. For the sake of brevity, we omit the details of
the algorithm. Examples of SVI decomposition applied to similar problems can be found in [35,47,48].
The algorithms have been implemented in Visual Studio 2019 (Microsoft, Redmond, WA, USA), using
CPLEX 12.7 callable libraries (IBM, Armonk, NY, USA). The experiments are carried out on a PC with an
AMD Ryzen 7 1700 processor (Santa Clara, CA, USA) and 8 GB of RAM.

5. Discussion

This section provides an analysis of fortification strategies for the Central London Underground
case study, identified by using the sequential approach based on vulnerability metrics (Section 5.1) and
the integrated approach based on RFP (Section 5.2). Finally, a comparison between the plans selected
by the two approaches is provided in Section 5.3.

5.1. Sequential Approach Analysis

Several insights can be inferred from the direct application of single-asset metrics to design
protection strategies. Specifically, Figure 2 displays the number of times stations appear among the top
ten across all metrics, giving an indication on what are the most vulnerable assets which should be
considered in fortification plans. Similarly, Figure 3 shows the number of times stations have appeared
in the bottom ten.

As expected, the metrics display a plurality of perspectives. However, some common aspects and
trends can be identified. King’s Cross is the only station that is always ranked among the most critical
across all the metrics. This clearly highlights the importance of such station from a connectivity, path
and flow point of views. On the other side, no station appears to be the least critical according to all
the metrics. Moreover, only Leicester Square station appears in both the top and bottom rankings.

Focusing on the most critical stations, let us consider those that appear more than 50% of the time
(i.e., the upper-half of Figure 2): Baker Street, Oxford Circus, and Green Park are present nearly in
all cases (i.e., 9 out of 10 times); Bank and Waterloo are considered 80% of the time; and Moorgate,
Embankment, Liverpool Street and Victoria are selected 6 out of 10 times. Specifically, Baker Street
is not selected from a path perspective based on NB while both Oxford Circus and Green Park are
not considered based on the flow perspective (i.e., PF). Similarly, both Bank and Waterloo stations
are not vulnerable according to NB. In fact, they do not appear either in NB or IM rankings despite
being top ranked from both connectivity and flow perspectives. Finally, Moorgate, Liverpool Street
and Victoria stations are not identified among the most critical from a path perspective given that they
do not appear in HC, NV, NB and IM rankings. Differently, Embankment does not seem critical from a
flow perspective as it is not ranked in the top of any of the flow-oriented metrics. However, all of the
above stations have been taken into account through the overarching metric WI, thus suggesting that a
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combined metric covering all features may be used effectively to address several aspects that would be
otherwise discarded.

� � � � � � � � 	 
 ��

���������

��������

������������

������ ��� 

���

!� ��"��

#$%��$� 

&�'��(��"� ��� 

)����� �

*�� ����

&����� ���+����

&���������

,�  �-�$���� .���

�-���������

/�"%��

������ �

�������""0������

!����� ��� 

!�� $�� ��

1"��� �

���� ��� 

2�������

Figure 2. Number of times a station is in a metric top ten.
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Figure 3. Number of times a station is in a metric bottom ten.

Let us now consider those stations that appear more than 50% of the time among the ten least
critical (i.e., those in the upper-half of Figure 3): Borough, Lambeth North, and Edgware Road from the
Bakerloo line (i.e., Edgware Road (Bak)) are present nearly in all cases (i.e., 9 out of 10 times); Aldgate
East has been considered 80% of the time; and Vauxhall and Bayswater have been selected 6 out of
10 times. Specifically, Borough and Lambeth North are considered as low-risk from the connectivity
perspective (they are not relevant based on ND) while Aldgate East, Vauxhall and Bayswater are not
deemed critical based on the flow perspective (the former is in the bottom rankings of PF and WA
while the latter two are in the bottom rankings of SV and ST). This is most likely due to the fact that
these stations lie on the borders of the network and, as such, they intercept fewer passengers. Probably
their significance would increase if the network is extended to include London Zone 2 (i.e., Vauxhall is
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on the boundary of the two zones). A more detailed description of top/bottom stations can be found
in Tables 1 and 2, respectively.

Table 1. Station metrics-based ranking: Top ten critical stations.

ND HC NV NB PF

King’s Cross OxfordCircus GreenPark GreenPark Bank
Bank GreenPark OxfordCircus OxfordCircus King’s Cross

BakerStreet Bank Bank LeicesterSquare Waterloo
Waterloo BakerStreet BakerStreet PiccadillyCircus Victoria

OxfordCircus Embankment King’s Cross Embankment LiverpoolStreet
Moorgate King’s Cross Embankment TottenhamCourtRoad BakerStreet
GreenPark LeicesterSquare Victoria CharingCross Moorgate

Embankment Holborn BondStreet King’s Cross LondonBridge
LiverpoolStreet TottenhamCourtRoad Waterloo Westminster Paddington

Aldgate Waterloo Holborn WarrenStreet Farringdon

ST IM SV WA WI

Bank GreenPark Bank Bank King’s Cross St Pancras
King’s Cross OxfordCircus King’s Cross King’s Cross Bank

Waterloo LeicesterSquare Waterloo Waterloo Waterloo
BakerStreet PiccadillyCircus Victoria Victoria BakerStreet
Moorgate Embankment BakerStreet BakerStreet GreenPark

LiverpoolStreet TottenhamCourtRoad Moorgate LiverpoolStreet OxfordCircus
Victoria CharingCross GreenPark Moorgate Moorgate

GreenPark King’s Cross OxfordCircus OxfordCircus Victoria
OxfordCircus Westminster LiverpoolStreet GreenPark Embankment
Paddington WarrenStreet LondonBridge LondonBridge LiverpoolStreet

Table 2. Station metrics-based ranking: Bottom ten critical stations

ND HC NV NB PF

GoodgeStreet Barbican Southwark EdgwareRoad(Bak) LeicesterSquare
EdgwareRoad(Bak) LambethNorth Angel Aldgate Queensway

CoventGarden EdgwareRoad(Cir) LambethNorth TowerHill RussellSquare
ChanceryLane SloaneSquare Borough LambethNorth LambethNorth
CannonStreet Bayswater TowerHill Borough Borough

Blackfriars Borough EdgwareRoad(Bak) Elephant-Castle GoodgeStreet
Bayswater Pimlico Elephant-Castle Pimlico RegentsPark

Angel EarlsCourt Vauxhall EarlsCourt CoventGarden
Vauxhall Vauxhall EarlsCourt Vauxhall Bayswater

AldgateEast AldgateEast AldgateEast AldgateEast EdgwareRoad(Bak)

ST IM SV WA WI

Queensway EdgwareRoad(Bak) GoodgeStreet HydeParkCorner Southwark
AldgateEast Aldgate Queensway RussellSquare TowerHill

RussellSquare TowerHill AldgateEast GoodgeStreet EdgwareRoad(Bak)
LambethNorth LambethNorth RussellSquare Queensway Pimlico

Borough Borough CoventGarden LambethNorth Elephant-Castle
GoodgeStreet Elephant-Castle RegentsPark RegentsPark LambethNorth
RegentsPark Pimlico LambethNorth CoventGarden Borough

CoventGarden EarlsCourt Borough Borough EarlsCourt
Bayswater Vauxhall Bayswater Bayswater Vauxhall

EdgwareRoad(Bak) AldgateEast EdgwareRoad(Bak) EdgwareRoad(Bak) AldgateEast

5.2. Integrated Approach Analysis

This section summarises the results obtained by solving the RFP model under four scenarios:

1. connectivity-based model (αC = 1, αP = 0, and αF = 0), referred to as RFPc;
2. path-based model (αC = 0, αP = 1, and αF = 0), referred to as RFPp;
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3. flow-based model (αC = 0, αP = 0, and αF = 1), referred to as RFP f ; and
4. multi-criteria model with equal weights model (αC = 0.33, αP = 0.33, and αF = 0.33), referred to

as RFPm.

Each of the aforementioned scenarios is tested letting the number of stations to be interdicted
(i.e., D) range from 1 to 3. Let us denote with Btot the budget to protect the full network. We consider
that the available budget B is a percentage q of Btot (i.e., B = qBtot). In the analysis, q ranges from 0%
to 30% with step increments of 5%.

Figures 4–6 display, for every disruption scenarios, the impact of increasing the protection budget
on connectivity loss, path length, and flow loss, respectively. Each bar represents the value of the
optimal objective function for a given combination of q and D. The figures also display for each bar a
label reporting the relative gap between the post-disruption and no-disruption scenarios.
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Figure 4. Post-disruption connectivity loss for different values of D and q.
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Figure 6. Post-disruption flow loss for different values of D and q.

RFPc aims at minimizing the connectivity loss due to station interdictions. Figure 4 shows the
serious impact that disruptions can have if the network is unprotected. For example, almost half (49%)
of the station pairs are disconnected when D = 3 and q = 0. The graph also shows that, for a fixed
value of D, there is a significant reduction in the connectivity loss when moving from total absence of
protection (i.e., q = 0) to the maximum budget considered (i.e., q = 0.30). For example, when D is equal
to 1, the number of disconnected pairs drops by 46% (from 529 to 284) as the budget increases. Even
larger improvements can be noticed when D is equal to 2 and 3 , i.e., 57% and 56%, respectively.

Similarly, RFPp focuses on minimizing the path length after interdiction. Figure 5 shows that
large disruptions (i.e., D = 3) result in the total path length more than doubling, with an increment
of 119%. The figure also displays the benefit achieved through increasingly expensive fortification
measures. Specifically, path length reductions of about 11%, 24%, and 28% when D is equal to 1, 2,
and 3, respectively.

On a similar note, RFP f targets passenger flow disruption. Figure 6 highlights that, for a fixed
value of D, there is a remarkable improvement in the post-disruption flow as q increase to 0.30. In fact,
flow loss decreases of about 73%, 71%, and 67% when D is equal to 1, 2, and 3, respectively. These
large improvements are also a consequence of the network being highly vulnerable to flow loss. In fact,
the three disruptive scenarios considered result in the loss of 23%, 50% and 65% of the demand, if no
protection strategy is carried out.

Figures 7–9 report the objective function of the multi-criteria model as decomposed into
connectivity loss, path disruption, and flow interdiction plotted against all the possible combinations
of D and q, respectively.

Accounting for multiple criteria by solving RFPm results in far less predictable trends. Specifically,
the expected trend previously observed where objectives consistently decrease as q increases is replaced
by variable results. This is a consequence of the model achieving the minimal objective by trading-off
among the three objectives. For example, when D = 1, connectivity loss worsens by about 3% when
q ranges from 0% to 5% (Figure 7). However, there is a reduction in connectivity loss of around 3%
when q is further increased to 15%. Similar patterns can be appreciated with other values of D and
focusing on path and flow as well. For example, when D = 3, increasing the budget from 15% to 20%
results in a 11% increment in the path length (Figure 8).
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Figure 7. Post-disruption connectivity loss for different values of D and q—multi-criteria model.
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Figure 8. Post-disruption path increment for different values of D and q—multi-criteria model.

Another aspect worth mentioning is the difference in the optimal protection plans selected by the
models. Figures 10 and 11 display both disrupted (red dots) and protected stations (green squares) for
RFPc (a), RFPp (b), RFP f (c) and RFPm (d) for the combinations D = 1, q = 15% and D = 2, q = 15%,
respectively. The dimension of both dots and squares identifies the size category of each station.

Figure 10a,c show that RFPc and RFP f , despite having different fortification plans, result in
the same station (Moorgate) being disrupted. South Kensington and Liverpool Street are disrupted
by RFPp and RFPm, respectively. Hence, it seems that the path perspective (b) differs from the
connectivity, flow and multi-criteria ones. As for the protection decisions, there are a number of
stations that appear in all plans, such as King’s Cross, Baker Street, Victoria and Bank. Green Park
station is present in Figure 10a,b,d but discarded by RFP f . Similarly, Waterloo station can be found in
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Figure 10a,c,d but is not considered by RFPp. Finally, Oxford Circus and Liverpool Street are the only
stations appearing in only one fortification plan (RFPp and RFP f , respectively).
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Figure 9. Post-disruption flow loss for different values of D and q—multi-criteria model.
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Figure 10. Optimal interdiction and fortifications when D = 1 and q = 15%.

The differences in the disrupted stations increase when a more disruptive scenario is considered
(i.e., D = 2), while maintaining the same budget (q = 15%). In fact, the worst case disruption sets
are all different. The only overlap is the London Bridge station, selected by both RPFc and RPF f .
Focusing on fortification, RFPp returns the same plan as for D = 1. Furthermore, RFP f and RFPm

protect the same stations while identifying different worst-case disruptions. South Kensington is only
selected by RFPc, while Oxford Circus is now protected by all models but RFP f . King’s Cross, Baker
Street and Bank are again featured in all plans, whereas Victoria is dropped by RFPc. Overall, these
examples consistently show that some stations are more critical than others while also highlighting
some differences when different perspectives are taken into account.
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Figure 11. Optimal interdiction and fortifications when D = 2 and q = 15%.

To assess the benefit of a multi-criteria approach, we provide a robustness analysis where
fortification plans returned by a given model are evaluated with respect to the objectives of the
other models. Specifically, for every optimal plan W̄, we compute the value of g(W̄) for all the other
models. Results are measured in terms of gaps between the obtained value of objective function and
the optimal solution. Average results across all values of D and q are listed in Table 3. For example,
the table indicates that protecting the stations selected by RFPc leads to an average 41% increase in
the worst-case flow loss. Results suggest that the strategies identified by RFPc and RFPp perform
poorly when flow loss is considered. Overall, RFPm returns the smallest average and maximum gaps.
However, the balance between these gaps is still biased against the flow loss which is significantly
larger than the other gaps. This issue can be addressed by empirically changing the weights of
the objectives.

Table 3. Model performance: Objective function cross-comparison.

Model Connectivity Path Flow Multi AVG Max

RFPc 0% 1% 41% 6% 12% 41%
RFPp 6% 0% 52% 10% 17% 52%
RFP f 22% 7% 0% 9% 10% 22%
RFPm 6% 2% 20% 0% 7% 20%

5.3. Comparing Sequential and Integrated Approaches

In this section, we compare the quality of the protection plans built with the sequential and
integrated approaches. To provide a fair comparison, we test metrics only against their counterpart
model. For example, connectivity metrics, such as ND, are compared against RFPc only and similarly
for path, flow and multi-criteria models. Comparisons are made by identifying the protection strategy
suggested by a given metric-based ranking and solving the relevant RFP model while setting the Wi
variables according to the chosen strategy. Results are shown as percentage gap between the objectives.
For instance, focusing on the connectivity problem when D = 1 and q = 5%, the fortification strategy
identified by IM results in 18% more disconnected pairs compared to RPIc.

Table 4 summarises the comparative analysis by listing the percentage objective gap between
sequential and integrated approaches. A positive non-zero gap indicates the extent to which a given
metric is performing worse than RFP. It is evident that all connectivity metrics (IM, ND, ST and
WI) result in worse performing protection plans compared to RFPc. Among them, ND is the metric
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that differs the least from the model and, as such, seems more trustworthy with a gap of 20%, 21%,
and 15%, when D is set equal to 1, 2, and 3, respectively. On the other hand, the worst-performing
metric is IM whose gaps are equal to 48%, 52%, and 37%. The other two metrics, ST and WI, provide
average performances close to ND. Focusing on path-driven metrics (HC, IM, NB, NV, SV, WA and
WI), the fortification strategies are always sub-optimal when compared to RFPp plans. Specifically, the
NV is the metric that differs the least from the model and, as such, seems more trustworthy. In fact,
the path interdiction gap is equal to 3%, 4%, and 5% when D is set equal to 1, 2, and 3, respectively.
Conversely, the worst-performing metrics are IM and NV whose objectives’ gaps are equal to 7%, 14%,
and 13% when D is set equal to 1, 2, and 3, respectively. Thirdly, let us compare flow-driven metrics
(PF, ST, SV, WA and WI) with RFP f . As for the previous cases, it can be noted that the metrics overall
do not match the plans selected by RFP f . However, some differences arise. Specifically, when D = 1,
PF provides a perfect match with RFP f . ST, SV and WA also sporadically identify optimal plans and,
on average, provide the best overall performance with a flow disruption gap of about 11%.

Table 4. Metrics vs. RFPc, RFPp and RFP f : Relative objective increment.

Connectivity Path Flow
Metric Metric Metric

D q IM ND ST WI HC IM NB NV SV WA WI PF ST SV WA WI

1

5% 18% 18% 18% 18% 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0%
10% 30% 10% 10% 10% 4% 4% 4% 4% 3% 3% 4% 0% 12% 0% 0% 12%
15% 54% 31% 31% 31% 7% 7% 7% 2% 2% 6% 7% 0% 27% 13% 0% 27%
20% 71% 46% 20% 20% 9% 9% 9% 2% 3% 3% 3% 0% 13% 13% 13% 68%
25% 55% 7% 28% 28% 11% 11% 11% 3% 3% 5% 5% 0% 23% 13% 9% 23%
30% 58% 9% 31% 31% 12% 12% 12% 4% 4% 6% 6% 0% 0% 34% 18% 52%
AVG 48% 20% 23% 23% 7% 7% 7% 3% 3% 4% 4% 0% 13% 12% 7% 30%

2

5% 27% 6% 6% 6% 7% 7% 7% 7% 3% 3% 3% 4% 4% 4% 4% 4%
10% 52% 27% 27% 27% 1% 11% 11% 1% 8% 8% 8% 0% 2% 0% 0% 2%
15% 65% 8% 19% 8% 6% 18% 18% 4% 10% 14% 6% 24% 7% 3% 24% 27%
20% 46% 20% 12% 12% 9% 13% 13% 1% 6% 6% 6% 59% 0% 0% 0% 28%
25% 72% 26% 32% 32% 12% 17% 17% 4% 5% 11% 11% 52% 15% 15% 15% 14%
30% 52% 36% 42% 42% 17% 17% 17% 8% 10% 15% 15% 26% 26% 26% 26% 24%
AVG 52% 21% 23% 21% 8% 14% 14% 4% 7% 9% 8% 27% 9% 8% 11% 17%

3

5% 16% 1% 1% 1% 5% 5% 5% 5% 2% 2% 2% 5% 5% 5% 5% 5%
10% 32% 16% 16% 16% 2% 11% 11% 2% 8% 8% 9% 14% 14% 14% 14% 14%
15% 48% 4% 26% 4% 3% 16% 16% 1% 11% 13% 3% 30% 5% 5% 30% 5%
20% 36% 11% 9% 9% 7% 16% 16% 5% 6% 6% 6% 40% 0% 0% 0% 9%
25% 42% 23% 23% 26% 13% 16% 16% 8% 10% 10% 11% 61% 20% 17% 17% 16%
30% 46% 36% 40% 43% 17% 17% 17% 12% 15% 15% 16% 21% 21% 27% 23% 27%
AVG 37% 15% 19% 17% 8% 13% 13% 5% 9% 9% 8% 29% 11% 11% 15% 13%

AVG 46% 19% 22% 20% 8% 11% 11% 4% 6% 8% 7% 19% 11% 11% 11% 20%

Finally, let us consider the combined scenario. For this purpose, the metric to be considered is the
weighted node importance (WI) and the model is RFPm. Table 5 reports the value of RFP objective
function against the number of stations to be disrupted (D), computed on average across all the
possible values of fortification resources. As for the previous cases, it can be noted that WI identify
worse performing protection strategies, leading to connectivity, path and flow deterioration. In fact,
the average gap is equal to 10%, 9%, and 10% when D is set equal to 1, 2, and 3, respectively.

In summary, this analysis highlights that the sequential approach underestimates the potential
losses due to worst-case disruptions and selects sub-optimal protection plans. Optimisation approaches
are therefore a more effective and reliable tool to estimate the impact of disruptions and allocate scarce
protection resources.
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Table 5. WI vs. RFPm: Relative objective increment.

Metric
q

D 5% 10% 15% 20% 25% 30%

WI
1 0% 8% 21% 12% 8% 9%
2 3% 15% 2% 2% 11% 20%
3 0% 13% 3% 2% 15% 29%

AVG 1% 12% 8% 5% 11% 19%

6. Conclusions

This paper addresses the strategic problem of fortification resource allocation so as to minimize
worst-case disruptions affecting railway systems. We provide two protection strategy approaches:
a sequential approach based on several single-asset metrics and an integrated approach based on
fortification models. Both approaches focus on railway systems features such as connectivity, path
length and flow, in either a separate or combined way. Novel vulnerability metric WI and fortification
model (RFP) are introduced and tested on a case study based on the Central London Tube that has
been built using real network traffic data.

Several findings have emerged. Single asset metrics are suitable to define protection plans only
if very limited fortification resources are available. In fact, results consistently show that, when
the budget is low, several metrics identify optimal or near-optimal plans. Among them, the WI is
the only metric that can be used to obtain suitable plans accounting for any of the three evaluated
perspectives (i.e., connectivity, path length, and flow). As the budget availability (hence the number
of possible protection strategies) increases, station interdependencies play a more significant role.
Metrics-based protection strategies completely overlook this aspect and result in highly sub-optimal
plans as a consequence. This indicates the necessity of shifting towards a systemic approach provided
by fortification models. RFP is firstly tested against individual criteria (single-scenario versions),
showing consistent and significant improvements in post-disruptions objectives as more resources are
depleted. A detailed analysis of the protection plans returned by the different versions of RFP shows
that the criterion chosen as target of the optimisation leads to diverse strategies. In fact, despite sharing
some stations (King’s Cross, for instance), protection plans focusing either on connectivity, path length,
and flow are different. This finding is reflected into sub-optimal results when fortification strategies
obtained from one perspective are applied to the remaining ones. Hence, this aspect further supports
the need for a multi-criteria approach where connectivity, path length, and flow are tackled together,
as in the combined-scenario version of RFP. In fact, in that case and specifically when connectivity, path,
and flow are weighted equally, more balanced and robust protection plans can be identified. Overall,
using RFP could benefit stakeholders so as to evaluate the trade off between different KPIs: it could be
that flow is more relevant than connectivity and path length and, as such, RFP could provide a pool of
protection strategies for different weigthing scenarios.

As for future research directions, the case study could be enlarged so as to account also for other
zones of the London Underground, which will probably require to pair the current exact algorithm
with a heuristic method so as to tackle the increasing computational complexity. Furthermore, an
in-depth sensitivity analysis could be carried out so as to evaluate the performance of RFP for different
combinations of the objective weights. Multi-objective optimisation modelling and solution techniques
(ε-constraints, for instance) could also be incorporated to better account for the different magnitudes of
the objectives. Finally, RFP might be also applied to other critical infrastructures such as communication
networks: connectivity could be the most relevant aspect in this case; however, both path length and
flow could be included to capture vulnerability issues related to hops count and amount of data
transmitted over the network, respectively.
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