8,959 research outputs found

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Digital twin-driven real-time planning, monitoring, and controlling in food supply chains

    Get PDF
    There needs to be more clarity about when and how the digital twin approach could benefit the food supply chains. In this study, we develop and solve an integrated problem of procurement, production, and distribution strategies (PPDs) in a medium-scale food processing company. Using the digital twin approach, the model considers the industrial symbiosis opportunities between the supplier, manufacturer, and customer using interval and sequence variables operating in a constrained environment using mixed-integer linear programming (MILP) and agent-based simulation (ABS) methodology. The study optimizes the make-span and lead time, simultaneously achieving a higher level of digitalization. The analysis demonstrates how digital twin accelerates supply chain productivity by improving makespan time, data redundancy (DR), optimal scheduling plan (OSP), overall operations effectiveness (OOE), overall equipment effectiveness (OEE), and capacity utilization. Our findings provide compelling evidence that the seamless integration PPDs enormously enhance production flexibility, resulting in an excellent service level of 94 %. Managers leverage real-time simulation to accurately estimate the replenishment point with minimal lead time, ensuring optimized operations. Furthermore, our results demonstrate that implementing PPDs has yielded considerable benefits. Specifically, we observed a remarkable 65 % utilization of the pasteurizer and aging vessel and an impressive 97 % utilization of the freezer. Moreover, by applying the DT model, the present model found a notable 6 % reduction in backlog, further streamlining operations and enhancing efficiency

    A Novel Back-Off Algorithm for the Integration Between Dynamic Optimization and Scheduling of Batch Processes Under Uncertainty

    Get PDF
    This thesis presents a decomposition algorithm for obtaining robust scheduling and control decisions. It iteratively solves scheduling and dynamic optimization problems while approximating stochastic uncertainty through back-off terms, calculated through dynamic simulations of the process. This algorithm is compared, both in solution quality and performance, against a fully-integrated MINLP

    Optimization-Based Power and Energy Management System in Shipboard Microgrid:A Review

    Get PDF

    Supervisory model predictive control of building integrated renewable and low carbon energy systems

    Get PDF
    To reduce fossil fuel consumption and carbon emission in the building sector, renewable and low carbon energy technologies are integrated in building energy systems to supply all or part of the building energy demand. In this research, an optimal supervisory controller is designed to optimize the operational cost and the CO2 emission of the integrated energy systems. For this purpose, the building energy system is defined and its boundary, components (subsystems), inputs and outputs are identified. Then a mathematical model of the components is obtained. For mathematical modelling of the energy system, a unified modelling method is used. With this method, many different building energy systems can be modelled uniformly. Two approaches are used; multi-period optimization and hybrid model predictive control. In both approaches the optimization problem is deterministic, so that at each time step the energy consumption of the building, and the available renewable energy are perfectly predicted for the prediction horizon. The controller is simulated in three different applications. In the first application the controller is used for a system consisting of a micro-combined heat and power system with an auxiliary boiler and a hot water storage tank. In this application the controller reduces the operational cost and CO2 emission by 7.31 percent and 5.19 percent respectively, with respect to the heat led operation. In the second application the controller is used to control a farm electrification system consisting of PV panels, a diesel generator and a battery bank. In this application the operational cost with respect to the common load following strategy is reduced by 3.8 percent. In the third application the controller is used to control a hybrid off-grid power system consisting of PV panels, a battery bank, an electrolyzer, a hydrogen storage tank and a fuel cell. In this application the controller maximizes the total stored energies in the battery bank and the hydrogen storage tank
    corecore