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Abstract 

Smarter manufacturing decisions need to be made in order to meet the increasing demand of specialty 

products. Batch processes are ideal in this context, as their flexibility is an attractive property to meet 

changing market conditions. Scheduling and control are key in the enterprise wide optimization problem, 

their connection links decisions that occur at the management and production level. This motivates a 

rethinking of the sequential-based decision making, commonly found in operations management. An 

integrated decision approach has been shown to provide better quality solutions. Integrated methods are 

generally casted as mixed-integer dynamic optimization problems (MIDO), which may become 

computationally intractable for large-scale applications. Moreover, the presence of uncertainty can cause 

deviation from nominal plant operation. Efforts from the process systems engineering (PSE) community 

aim to tackle this challenging problem; however, there is still a gap in the literature for integrated methods 

between the scheduling and control that account for parameter uncertainty.  

A novel decomposition algorithm for the integration of scheduling and control of multiproduct, multiunit 

batch processes under stochastic parameter uncertainty is presented in this thesis. This iterative algorithm 

solves a scheduling and dynamic optimization problem around a nominal point while approximating 

uncertainty through back-off terms, embedded in the process constraints. Monte Carlo simulations are 

performed to propagate uncertainty and to evaluate dynamic feasibility; statistical information is drawn 

from these simulations to update the back-off terms. Convergence of the algorithm results in a set of 

scheduling and control decisions that aim to keep the plant dynamically feasible under the effect of 

uncertainty up to a user-defined tolerance criterion. The performance of the back-off approach is gauged 

against a fully-integrated approach, with multiscenario-based uncertainty. This integrated method serves as 

a benchmark, both in solution quality and computational efficiency.  Results show that the proposed 

decomposition algorithm remains computationally attractive, without compromising the quality of the 

solution. Important interactions between scheduling, control and uncertainty are observed, thus justifying 

the need for their integration. 
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Chapter 1: Introduction 

As global competitiveness increases, industries are driven to meet increasingly restrictive constraints, such 

as product quality, environmental, or productivity restrictions. When facing a highly volatile and uncertain 

market, industries seek to operate under robust, optimal manufacturing conditions. For this purpose, batch 

processes are typically used in conditions where varying product properties and manufacturing flexibility 

is required1. Optimization is then performed to improve the overall efficiency and revenue of the plant while 

assuring a set of process constraints are met. It has been shown that there are extensive benefits to consider 

model-based optimization of chemical production plants, such as an overall increase in profitability or more 

attractive operative decisions.  

Traditionally, the layers in enterprise-wide optimization (i.e. supply chain management, production 

planning, scheduling, control, process dynamics, and design) have been considered separately, i.e. a set of 

sequential problems are solved one after the other. However, it has been shown that this approach although 

computationally attractive, may result in suboptimal or even infeasible solutions, as it ignores important 

interactions co-dependent between layers2. Consequently, the process systems engineering (PSE) 

community has focused on the development of solution approaches, which can be categorized into 

integrated and decomposition algorithms, providing high-quality solutions by considering key linking 

variables between the different layers. The merit of considering reliable first principles models for 

flexibility and resilience of a process was discussed in Morari and Grossmann3. In that work, case-studies 

where common rules of thumb for the design of chemical plants fail to provide attractive solutions have 

been presented. Particularly for the case of large-scale plants, it is not always intuitive the identification of 

the worst-case condition for operation, which may highly depend on design considerations and would also 

affect upper manufacturing layers such as scheduling and planning decisions. Therefore, it is of interest to 

consider comprehensive approaches that combine process control and optimization decisions to identify 

optimal and controllable design and operation management policies for chemical processes4 The general 

idea in the integrated approach is to formulate a single comprehensive model, where decisions encompass 
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multiple layers, regardless of their complexity. A decomposition-based approach seeks to identify 

complicating variables so as to effectively generate master and primal problems, with the goal of reducing 

the computational burden of the algorithm 5. 

Despite the advances in computer science, obtaining a computationally tractable, globally optimal solution 

to the integrated problem of large-scale multi-unit, multi-product batch plants is still an open challenge, as 

it often requires the specification of nonconvex mixed-integer dynamic optimization (MIDO) formulations6. 

As a result, studies that seek to address the integration problem seek to optimize only for a particular 

combination of the manufacturing layers. A review of the state-of-the-art techniques are presented in several 

papers 7–9.  

In addition of the beforementioned challenges, many of the methods proposed in the literature assume 

process model parameters to be deterministic in nature; however, this assumption does not hold when 

considering a real process, as uncertainty has been shown to have important effects on process operation. 

This is even more stressed when considering the existence of substantial interactions between layers; 

therefore uncertainty may propagate between them, turning a previously obtained optimal production 

sequence into a sub-optimal or infeasible operation10. Efficient robust methods must, therefore, be 

developed in order to incorporate uncertainty on the already computationally taxing integrated methods. 

 Notable contributions that seek to fill that purpose are presented, particularly in the area of integration of 

design and control 11–13. A review of challenges in this field are presented in several papers 4,11,14. However, 

there is still a gap in the literature regarding integrated methods for scheduling and control when considering 

model uncertainty. Scheduling and control are key aspects to consider in the enterprise wide optimization 

problem, their importance stems from the fact that their connection links decisions that occur at the 

management and production level.  Consequently, this thesis develops two distinct methods for considering 

scheduling and control decisions, the multi-scenario integrated approach and the back-off method, which 

are expanded upon on the following chapters.  
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1.1 Research Objectives 
 

The aim of this study is to expand upon the literature by presenting a novel back-off decomposition 

methodology for the integration of scheduling and control of multi-unit, multi-product batch plants, subject 

to the effects of stochastic-based process uncertainty. 

This thesis explores two different approaches for optimization under uncertainty, an integrated multi-

scenario-based approach and a new decomposition-based back-off method. The multi-scenario approach, 

optimizes an integrated scheduling and control problem for a discrete number of scenarios, so that all 

realizations considered are accommodated by the solution. The back-off method has the purpose of 

converging to a robust solution by iteratively solving a decomposition of the scheduling and control 

problems, stochastic simulations are performed to generate back-off terms. These back-off terms are 

incorporated into the process operational constraints to approximate the effect of fully stochastic uncertain 

model parameters.  

 The novelty of this work is that the proposed back-off algorithm avoids the solution of a computationally 

expensive stochastic Mixed Logic Dynamic Optimization (MLDO) problem by decomposing scheduling 

and control decisions. The quality of the obtained solution is validated against a fully integrated problem. 

The presented methods consider the full non-linear dynamic models, along with parameter uncertainty. 

Multiple distributions in the uncertain parameters and their effects on the solution were explored in this 

research. To the authors’ knowledge, this is the first study that presents a back-off decomposition algorithm 

for scheduling and control of batch plants. Previously published works on batch plant scheduling and open-

loop optimization have rarely considered stochastic-based parameter uncertainty.  

 A novel feature of the current work is that the proposed decomposition method is to be compared against 

a fully integrated problem, obtained from a large scale multi-scenario-based MLDO formulation. The 

expected contribution is to provide an algorithm capable of obtaining a computationally tractable solution, 
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while retaining its quality. Both, the proposed back-off and fully integrated methods are to be tested on a 

multi-product, multi-unit batch plant, subject to operational constraints and model parameter uncertainty.  

1.2 Structure of Thesis 
 

This thesis is organized into the following chapters:  

Chapter 2: This chapter presents a general review of the current state of the art in the integration of 

scheduling and control, highlighting the different approaches, their advantages, disadvantages and areas for 

research interest. This latter section emphasizes the contributions made by the presented study. A special 

focus is placed on methods that incorporate process uncertainty into their optimization framework. 

Introductory concepts to process scheduling, dynamic optimization and Generalized Disjunctive 

Programming are also presented in this chapter for completeness.    

Chapter 3:  In order to gauge the performance of the decomposition algorithm, a simultaneous based 

approach for the integration of scheduling and control of batch plants is presented.  The conceptual 

definition of a general scheduling and control problem under stochastic uncertainty is presented, outlining 

limitations and challenges involved with obtaining a globally optimal solution of the problem. Subsequently, 

the conceptual formulation of the multi-scenario-based optimization problem is described. The content in 

this chapter has been published to Industrial & Engineering Chemistry Research (I&EC) Journal15.  

Chapter 4: In this section, the back-off decomposition algorithm is presented. The conceptual formulation 

is explained and a general flowchart of the algorithm is presented, highlighting the definition of the linking 

variables, assumptions, and characteristics for convergence. This work has been partially presented at the 

12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS-

CAB,2019)16.  

Chapter 5: This chapter presents the case study and results used to assess the performance of the methods 

covered in this thesis. A detailed overview of the batch plant is provided. Moreover, this section will discuss 

in length computational performance of the methods, interaction between scheduling and control decisions 
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and the effects of uncertainty upon them. For illustrative purposes both global and local solvers are 

implemented for the solution of the resulting optimization problems. 

Chapter 6:  This section summarizes the key outcomes obtained from the present study and suggest future 

improvements that can be explored for the present methodology. Furthermore, possible research 

opportunities in the area of integrated plant operations are provided. 
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Chapter 2: Literature Review  

As mentioned in the previous chapter, methodologies that seek to integrate model-based optimization with 

scheduling are of high interest to the PSE community due to their benefits upon performance. As such, this 

chapter presents the current state-of-the-art approaches to accomplish that goal. Furthermore, special 

emphasis is given to those methods that have incorporated uncertainty into the problem, as it has been 

shown that their effects have a significant impact upon the performance of chemical manufacturing plants.  

The difficulty in determining optimal scheduling and control decisions for a process can vary greatly 

depending on the approach that is followed. Two common methods (i.e. sequential method and the 

integrated method) are explained in this section, and the contributions of relevant works are summarized.  

A focus on studies that have considered a multi-scenario and stochastic based approaches to the uncertainty 

is given, highlighting their differences, benefits and limitations for their application to the integration of 

scheduling and control. With this information, the scope of the presented study and its contribution to the 

literature is exemplified.  

2.1 Enterprise Wide Optimization 
 

Uncertain market conditions, continuous process improvement, consideration of environmental constraints 

and a significant increase in competition are some of the justifications that have pushed the industries and 

the PSE community to develop novel robust methods that meet the increasingly restrictive constraints upon 

operations. In consequence, the combined efforts of industries and academia aim to solve the 

beforementioned challenges through the development of Enterprise Wide Optimization, providing software 

and computational tools that can serve as means for the maximization of process profitability, 

responsiveness to demands and optimal assignation of assets17. 

Enterprise-wide optimization combines the knowledge from PSE and operations research. The main 

purpose of it is to obtain a set of decisions that result in optimal operations in a company. A key major 
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feature of enterprise-wide optimization is the emphasis on maintaining the full non-linear models for the 

description of the mechanistic manufacturing layers (i.e. control/dynamic optimization and the processes)1. 

As shown in Figure 1, the classic top-to-bottom decision-making hierarchy consists of six decision layers, 

i.e. supply chain management, planning, scheduling, control/real time optimization and the process 14. 

 

As shown in Figure 1, typically information flow goes top-to-bottom, while the time scale and frequency 

of the decisions increase accordingly18. At the top, supply chain management, planning and scheduling are 

long-term decisions. The two layers at the bottom can be considered as short-term decisions.  

A brief explanation of the production layers is expanded upon in this section, as defined by Shobrys and 

White19. 

 

Figure 1: Layers in decision hierarchy in EWO 
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• Supply chain management define desired changes to the current overall business. Typical decisions 

found in this layer might relate to contracts, selection of raw material providers, production and 

distribution capacity. The extension of this layer may encompass global or nation-wide markets. 

• Planning is used to create distribution, sales and inventory plans based on customer and market 

information, thereby setting a target for operating performance. This layer encompasses individual 

sites, however, industries with multiple manufacturing plants can incorporate regional planning to 

coordinate activities. 

• Scheduling assigns limited resources (process units, materials, utilities, etc.) in a given production 

facility to create manufacturing sequences for products based on a demand. Typical decisions made 

in this layer are the time an operation should be initialized, its duration, the equipment which will 

process said operation and its corresponding amount of material.  

• Control/Dynamic optimization involves the manipulation of state variables to reject a form of 

process disturbances and to meet key manufacturing and product constraints while ensuring that 

those decisions do not violate the set bounds on the manipulated variables. It may be responsible 

for keeping an economic production through the determination of optimal operating set-points.  

• The process itself is governed by mechanistic models, which are formulated by initially making 

educated assumptions on the properties of the system in question. The result is the formulation of 

highly detailed physical and mathematical models to replicate the dynamic behavior of the real 

phenomenon.  

 

2.2 Sequential vs Integrated Approach 
 

Traditionally, the layers in enterprise-wide optimization have been considered separately, such that a 

sequential problem is solved for each layer, one after the other. Although this approach is computationally 

attractive, it has been shown that it may result in suboptimal or even infeasible solutions, as it ignores 

important interactions co-dependent between layers 2. Consequently, the PSE community has focused on 
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the development of integrated solution approaches that can provide high-quality solutions by considering 

key linking variables between the different layers2,9,14. The basic idea in the integrated approach is to 

formulate a single comprehensive model, where decisions encompass multiple layers, regardless of their 

complexity. Decisions made at each one of these levels differ in terms of time horizon, complexity and 

objectives. Significant efforts have been done to develop methods that seek to integrate multiple decision 

layers, recognizing the inherent interconnectivity between them 18,20. Accordingly, different methodologies 

can be categorized into two main solution approaches to the complex integrated problem: a simultaneous, 

fully integrated approach and a decomposition-based approach. 

 Advantages of the simultaneous decision-approach include the avoidance of infeasibilities or sub-optimal 

solutions by solving a sparse system. However, a challenge attributed to this methodology comes from 

addressing the differing time scales of the different models considered in the integrated problem. This 

previous consideration results in highly complex large-scale optimization problem, which may become 

computationally intractable18. On the other hand, decomposition-based approaches are often developed with 

the purpose to address the previous challenges. Generally, these methods aim to identify key complicating 

variables, exploiting certain problem properties to effectively generate a master and primal optimization 

problem. The purpose is to reduce the computational effort of solving a complex integrated problem without 

compromising on solution quality21.  

Despite these efforts, obtaining a computationally tractable, globally optimal solution to the integrated 

problem of large-scale multi-unit, multi-product batch plants is currently an open challenge, as it often 

requires the specification of nonconvex mixed-integer dynamic optimization (MIDO) formulations 6,22–24. 

As a result, studies that aim to address the integration problem seek to optimize only for a particular 

combination of the manufacturing layers. More recently however, contributions have been made toward 

the consideration of multiple layers, mainly design, scheduling and control 25–28 or planning, scheduling and 

control 29–31. The integration of planning, scheduling, and control results in complex large-scale MINLPs. 

Due to this complexity, direct solution methods by out-of-the-box MINLP solvers are time-consuming and 
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intractable for large-scale applications30. Obtaining solutions to tackle such problems typically require the 

specification of key linking variables, such that a decomposition framework can be implemented31. A recent 

contribution which presents a comprehensive review of state-of-the-art integrative techniques is presented 

by Burnak et al.20, additional assessment of different integration methods are presented elsewhere 7–9,20,32,33. 

2.3 Scheduling  
 

In this thesis, the main focus of the decision-making hierarchy is given to scheduling and dynamic 

optimization. For that end, a brief, introductory explanation to process scheduling is provided.  

Scheduling is an important class of optimization problem in the PSE community. In general, they are 

formulated to determine when, where and how to produce a set of given products subject to particular 

constraints, such as a make-span or time horizon, consideration of limited resources, capacity or specific 

manufacturing sequences34. Scheduling problems can generally be considered combinatorial in nature due 

to the discrete decisions involved (i.e. assignment and allocation constraints); hence, they may be 

challenging from the computational complexity point of view35. For this reason, the need to develop 

efficient solution methods is apparent. Significant efforts have been done to accomplish this goal35–37.  

Scheduling models for the representation of a chemical production plant can have multiple structures. 

Common classifications include, but are not limited to: time-representation and process-representation 36. 

Each of these categories can have significant effects on both computational performance and solution 

quality of the schedules. In this section, a brief review on important concepts and solution approaches 

developed for optimal process scheduling is presented. 

2.3.1 Time Representation 
 

Time representation is a key classification used to describe a scheduling model. There exist two main 

categories for approaching the discretization of time in a scheduling formulation, they are the discrete and 

continuous time representations.  
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The discrete time representation partitions the scheduling horizon into a known and equidistant number of 

periods, defining a common time grid for all variables and constraints that may be encountered in a 

scheduling problem, i.e. assignation of tasks/equipment material balance constraints, etc. The start or end 

of an event can occur only on a period as determined by the discretization. Moreover, processing times are 

assumed to be constant and generally, are integer multiples of the unit slot duration 35,38 . An important 

feature of the discrete-time representation is its ease of modeling and interoperability. Moreover, a very 

fine discretization allows for a high degree of flexibility in the quality solutions. However, a small 

discretization in turn will require larger number of variables, resulting in larger problem, which may become 

intractable for large-scale applications or minute discretization periods38.  

The second representation is referred to as the continuous time approach, which as its name implies, 

introduces a time grid where events (scheduling decisions) can occur at arbitrary time points in a given 

horizon. The scheduling horizon is then partitioned into periods of unequal and unknown length and tasks 

can have variable processing times. Often, the continuous time representation requires fewer grid 

discretizations when compared to the discrete time approach. Continuous-time representation can be further 

classified into global grid, which adopt a unique time grid for all processes35 and unit-specific time 

representation, which considers multiple asynchronized time grids for every unit, allowing different tasks 

to start at different moments in different units for the same event point39. Since the timing and duration of 

events is not defined a priori a smaller optimization problem may result, owing to the fact that no fine 

discretization is required. Therefore, accurate processing times can be obtained without increasing the size 

of the problem. However, this formulation may become more challenging to model, leading to a 

complicated model structure when compared against a discrete-time formulation35,38, particularly for large-

scale applications. Although efforts have been made to extend algorithms for their application to large-scale 

scheduling of industrial plants34,40–43.  
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As per the discussion above, each representation has their own advantages and disadvantages. It is noted 

that in reality their computational performances are highly problem dependent. Although industry 

practitioners seem to have mainly adopted the practical discrete-time representation38,44.  

2.3.2 Process Representation 
 

The second method for representing scheduling models is through process representation. In this case, the 

methods can be divided into two categories45: 

- Sequential processes: Where multiple products are manufactured using one processing sequence. 

For this type of process, it is not necessary to consider mass balances explicitly. 

- Network processes: This corresponds to a more general case where materials can merge and/or 

split; therefore, mass balance constraints are required. Two well-known formulations are expanded 

upon on the section below. 

o State-Task Network (STN): Originally formulated by  Kondili et al.46 as a general 

framework for representing processes. The STN of a chemical plant can be visualized as a 

graph with two types of connecting nodes; circles, which represent state nodes (i.e. 

materials, intermediates or products). Rectangles, which represent task nodes (i.e. 

equipment operations). The fraction of a state consumed or produced by a task, if not equal 

to one, is given beside the arch linking the corresponding state and task nodes. 

o Resource-Task Network (RTN): Originally formulated by Pantelides47 as an extension to 

STN. The main feature is that equipment, storage, material and utilities are represented in 

a unified fashion, and are denominated as resources that can be consumed by tasks. 

An in-depth discussion on computational performance of both representations, advantages and 

disadvantages can be found elsewhere45,48.  
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2.4 Dynamic Optimization 
 

Dynamic optimization problems arise in many areas of PSE such as batch plant optimization, optimal grade 

transition, optimal process control and parameter estimation. It can be defined as an optimization problem, 

which requires the solution of a system whose behavior is dictated by a set of differential-algebraic-

equations, usually in the domain of space or time. These types of systems usually require the definition of 

an initial value or boundary value problem. The algebraic equations are typically derived from mechanistic 

equations, where the degrees of freedom available to the system are control and time-independent variables. 

The solution of these dynamic optimization problems is formally explored by applying concepts from 

optimal control theory, however this is only viable for relatively simple problems, for larger more complex 

systems efficient numerical methods are required. For the purpose of this thesis, the direct transcription 

approach is preferred. This numerical approach deals with the full discretization of state equations and 

control paths. A common discretization method is orthogonal collocation on finite elements, a method that 

has attractive properties, such as, a numerically stable behavior on stiff problems (A-stable) and can handle 

non-smooth events the boundaries between elements. The resulting discretized set of equations and 

constraints may be solved with a commercial NLP solver. Extended information on convergence properties, 

stability and how to exploit the resulting structure of the large NLP problem for good quality and efficient 

solution may be found elsewhere49. 

2.5 Integration of Scheduling & Control 
 

A traditional approach to solve the problem of scheduling and control is to consider them separately. 

However, it has been shown there exists key linking variables that interconnect information between the 

scheduling and control layer.  In consequence, to obtain an economically and operationally attractive 

solution one must consider this problem in an integrated fashion 50. Consequently, a single optimization 

formulation that can solve the beforementioned problem simultaneously is desirable. A number of major 

advantages of the integrated approach are noted by Engell and Harjunkoski14. 
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• Reduce maintenance needs and improve equipment life-time.  

• Improve the feasibility of schedules for operation.  

• Exploit the degrees of freedom of control in plant designs.  

• Use more precise and timely information in scheduling. 

Although the integrated approach is attractive for the quality of the obtained solution, it has been shown 

that methods which implement this approach found difficulties on the computational cost22. This is mainly 

because a fully integrated simultaneous approach requires the specification of a sparse MIDO problem23,51. 

Complexities appear with the combination of integer scheduling decisions with highly non-linear dynamic 

models. A trend is then to develop decomposition based-approaches to improve performance. Nystrom et 

al.52 originally proposed an iterative method to solve the integrated problem, sharing key information 

between layers; Terrazas- Moreno et al.53 presented a Lagrangean-based decomposition approach for the 

integration of scheduling and control. Solution to this problem was obtained by iterating between a primal 

control problem and a master scheduling problem More recently, Generalized Benders Decomposition 

algorithms were explored by Yisu et al.54 and  Chu and You5, effectively lowering computational time while 

maintaining solution quality. Recent state-of-the-art approaches focus on the development of surrogate55 

and multi-parametric26,56 approaches for the solution of the integrated problem. A recent study by Simkoff 

and Baldea57 solved the integrated problem through a novel implementation of complementarity constraints, 

fully incorporating control decisions into the scheduling model. 

Integrated methodologies for scheduling and control were originally applied to case studies that dealt with 

optimal grade transition of continuous processes. For instance, Nystrom et al.52 proposed a decoupling 

method for polymerization processes and parallel polymerization lines with multiple units58. Flores-

Tlacuahuac and Grossmann 51,59 tested their approach on cyclic productions with CSTR and PFR reactors; 

Terrazas-Moreno et al.60 solved the integration of cyclic scheduling and control of two polymerization 

systems. Zhuge and Ierapetritou61 explore two case studies, a CSTR and an isothermal tubular reactor when 

considering closed loop control. The development of integrated methods for scheduling and control were 
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mainly applied to continuous processes, rather than batch processes. This is mainly due to modelling and 

solution complexities54.  

 As stated earlier, a key objective of the integrated method is to be flexible to changing market conditions 

and customer requirements. Consequently, dynamic batch processing provides additional transient 

operating freedom, that can stretch the limits of profitability under strict market, facility, and time 

constraints62. Hence, batch processes are typically used in conditions where changing product properties 

and manufacturing flexibility is required63. In addition, batch processes are able to handle unpredictable 

events from external markets. For the reasons discussed above, this thesis will focus on the development of 

methods for the integration of scheduling and control of multi-purpose batch plants. 

 Among the first contributions to this area of research was the work by Bhatia and Biegler62, which 

considered the effect of incorporating the non-linear process models to enrich a special formulation of a 

scheduling problem. That study showcased the merit of considering the optimization of batch plants. Mishra 

et al.22 performed a comparison between a fully integrated and a recipe-based approach, which considered 

fixed control decisions. That study highlighted the merit of considering a fully integrated simultaneous 

approach, but also outlines the challenges of solving a complex MINLP. 

 Subsequently progress in this area is observed in the works by Nie et al.54,64 and Chu and You21, which 

showcase a trend for the development of tailored decomposition-based algorithms to solve the complex 

integrated problem. A study by Capón-García et al.65 considers full process dynamics, comparing a nominal 

indirect and direct approach for a multiproduct single stage batch plant.  More recently, Zhuge and 

Ierapetritou66 developed a method for integration of scheduling and control of batch processes, through the 

consideration of a multi-parametric scheme, showcasing the potential of the method for on-line applications. 
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2.6 Model Parameter Uncertainty  
 

In addition of the challenges mentioned above, many of the methods proposed in the literature assume 

perfect knowledge of the process model parameters; however, this assumption does not hold when 

considering a real process, as uncertainty has been shown to have important effects on process operation.  

This is even more stressed when considering the existence of substantial interactions between layers; thus 

uncertainty may propagate between them, turning a previously obtained optimal production sequences into 

sub-optimal or infeasible solutions when implemented online 10. Therefore, there is a need to develop 

efficient robust methods that incorporate uncertainty on the already computationally taxing integrated 

methods. Also, scheduling and control approaches that deal with uncertain process operations and 

disturbances in real-time have been reported in the literature29,30,67,68. Other notable contributions that seek 

to incorporate uncertainty have been presented, particularly in the area of integration of design and control 

under uncertainty 12,69–72. However, there is still a gap in the literature regarding integrated methods for 

scheduling and control of batch processes when considering model parameter uncertainty, as indicated in    

Table 1: Overview of integration of scheduling and control, for both continuous and batch processes when 

considering deterministic and uncertain realizations in the model parameters 

Plant type Approach Author(s) 

Continuous Without uncertainty Zhuge and Ierapetritou 50,67, Baldea et al. 8,57, Dias et al.99, 

Flores-Tlacuahuac and Grossman51,59,100 

With uncertainty Dias and Ierapetritou18, Zhuge and Ierapetritou101, 

Terrazas-Moreno et al.102, Burnak et al.103 

Batch Without uncertainty Mishra et al. 22, Bhatia and Biegler 62, Nie and 

Biegler64,104, Chu and You21,68,105, Capón-García 65 

With uncertainty Bhatia and Biegler73, Chu and You5 
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.   

 

An early work on the consideration of model parameter uncertainty for the solution of scheduling and 

control of batch plant was provided by Bhatia and Biegler 73, who formulated a dynamic optimization 

problem, where an economic objective function was subject to a dynamic high-fidelity model of the process 

described by differential algebraic system of equations. Those authors proposed a solution strategy based 

on discretizing the process model by orthogonal collocation over finite elements. Chu & You 5 presented a 

two-stage Generalized Benders Decomposition algorithm for considering uncertainty in the scheduling of 

sequential batch plants. This thesis has the goal of filling the gap in the literature by considering the effect 

of fully-stochastic uncertain parameters on scheduling and control decisions. 

The multi-scenario approach considers multiple different realizations of the process disturbance or 

parameter uncertainty in the optimization problem. A simple implementation of the multi-scenario approach 

considers every scenario simultaneously. The work by Chu and You5 solved the integrated problem with 

the goal to maximize the overall profit on average over all possible scenarios under  discrete realizations in 

the uncertain parameters. It is considered that as the number of realizations grow, the problem becomes 

increasingly difficult to solve.  

The second method developed in this thesis, the back-off method, is discussed next. The concept of the 

back-off framework was originally proposed and expanded upon by Perkins and co-workers74–77. Our 

research group has recently developed different implementations of the back-off method for the purpose of 

design and control under uncertainty69,78. The key idea in the back-off approach is to move away in a 

systematic, iterative fashion from a nominal operating point, which has the properties of being economically 

attractive but dynamically infeasible in the presence of uncertainty. Convergence of the algorithm results 

in a set of decisions that most surely remain dynamically feasible in the presence of stochastic uncertainty. 

The work proposed by Koller & Ricardez-Sandoval 27 successfully implemented the back-off method for 

design, scheduling and control of continuous multi-purpose production units. A single unit involving the 



18 

production of multiple products was used in that work to illustrate the main features of their back-off 

method. This research expands upon that work to consider the simultaneous scheduling and control of 

multiple units subject to stochastic realizations in the uncertain parameters. 

2.7 Generalized Disjunctive Programing  
 

A recent method for consideration of scheduling and control decisions simultaneously is a logical based 

reformulation of the problem. For this reason, a general overview of Generalized Disjunctive Programming 

(GDP) is presented next. 

The precursor to GDP was presented in a previous study by Balas79 where they presented a series of linear 

programming problems that define disjunctions, which are a type of constraints that allow a logical 

exclusive OR decisions to be performed, meaning that from a given set of constraints only a certain subset 

may be enforced. Raman and Grossmann80 expanded upon that work by generalizing the solution algorithm 

of mixed-integer type problems when considering logical disjunctions and prepositions. Several case 

studies were considered in that study, including a job-shop scheduling formulation.  A comprehensive 

formulation was presented in a study by Grossmann and Ruiz81. The framework is named Generalized 

disjunctive programming and allows for the representation of a mixture of logical or algebraic constraints. 

Boolean and continuous type variables may be specified, such that the resulting problem can have MINLP 

characteristics. GDPs are often reformulated by using either the Big-M or the Convex Hull relaxations, 

Grossmann and Ruiz81 compare the quality, size and tightness of the resulting continuous reformulations. 

In a work by Trespalacios and Grossmann82, an alternative formulation to the Big-M relaxation was 

presented. The method assigns more than one big-M term to each constraint involved in their respective 

disjunction thus resulting in a tighter relaxation.  Generally, algorithms employed to solve the resulting 

MINLP problem assume the function to be convex in nature. A solution algorithm for nonconvex GDP 

problems was explored by Lee and Grossmann83, where a lower bound for a global optimum solution may 
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be found initially with the solution from a local optimizer.  Recently, Ruiz and Grossmann84 presented a 

review for the challenge of finding a global optimal solution to highly non-convex disjunctive formulations.  

Some of the efforts by the PSE community to solve the integrated problem by considering logical 

disjunctions have been presented. A study that developed a general framework for the consideration of 

disjunctive decisions was presented by Oldenburg and Marquardt85, addressing the modeling and optimal 

control of hybrid systems that can be described by systems of ordinary differential equations (ODEs). 

Flores-Tlacuahuac and Biegler86 presented a MIDO problem for the integration of design and control. Issues 

such as computational efficiency, quality and different solution characteristics from different GDP 

formulations were explored in that study. A work by Nie and Biegler64 presented a formulation that 

considers operating modes for an equipment as logical disjunctions, solving an integrated scheduling and 

control problem for multi-purpose batch plants.  

2.8 Chapter Summary 
 

In this chapter a comprehensive review of the literature is provided. A common approach to enterprise-

wide optimization is the sequential approach, while this method is computationally attractive, it ignores 

important interactions between the production layer. This consideration may result in sub-optimal or even 

infeasible solutions. Thus, there is a trend towards implementing an integrated approach to process 

optimization. This results in much more attractive solutions, with increased plant profitability and optimal 

operation. However, this method typically results in the definition of a large scale MINLP, which are 

complex to solve. For this purpose, studies have been focused on the development of decomposition-based 

approaches.  Moreover, a more realistic approach is to consider the effects of uncertainty, which is shown 

to have significant effect on the optimality of a solution. To that end, different methods have been developed 

to account for model parameter uncertainty. Often, stochastic uncertain parameter descriptions are not 

considered in previous publications due to their associated computational challenges. Instead, a small 

number of discrete realizations in the uncertain parameters have been considered in previous studies leading 
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to the formulation of multi-scenario-based optimization frameworks.  A gap in the literature is then noted, 

in the area of integration of scheduling and control of batch processes under stochastic-based uncertainty. 

To the author’s knowledge, the combination of these aspects has not been previously addressed.  This thesis 

serves the purpose of filling that gap in the literature, by presenting a novel back-off approach which is 

gauged in performance against an integrated method.   
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Chapter 3: Multi-Scenario Integrated Approach  

In this section, fully integrated scheduling and dynamic optimization algorithm for multi-product, multi-

unit batch processes is presented, based upon the methodology originally proposed by Nie & Biegler64. An 

expansion upon that work is presented by accounting for interactions when considering multi-scenario-

based model parameter uncertainty. The main purpose of this method is to use it as a benchmark for the 

decomposition back-off approach, both in computational efficiency and solution quality. 

3.1 General Scheduling & Control Formulation under Uncertainty 
 

The mathematical conceptual formulation of the optimization problem that considers the integration of 

scheduling and control under the effects of stochastic-based parameter uncertainty is presented in this 

section. The following considerations have been made to define the scope of the integration of scheduling 

and control problem addressed in this work. 

Consider a multi-product, multi-unit batch plant described by a total of 𝑁𝐿 mechanistic unit models (𝒇𝒍), 

𝑁𝑚 equality (𝒉𝒎) and 𝑁𝑃 inequality constraints (𝒈𝒑) affected by a set (𝜣), which includes deterministic 

parameters known a priori ( 𝜣𝒏𝒐𝒎 ∈ ℝ1×𝑁𝑛𝑜𝑚 ) and stochastic-based uncertain parameters ( 𝜣𝒖𝒏𝒄 ∈

ℝ1×𝑁𝑢𝑛𝑐). Each parameter 𝜽𝒌,𝝂 in 𝜣𝒖𝒏𝒄 is described by a user-defined probability density function (PDF) 

over an event space Ω, i.e. 𝜣𝒖𝒏𝒄 = {𝜽𝒌,𝝂|𝜽𝒌,𝝂 = 𝑷𝑫𝑭𝒌,𝝂(𝜴), ∀𝑘 ∈ 𝑲, 𝜈 ∈ 1,2… ,𝑁𝑘}, where 𝑲 is the set 

of units comprising the batch plant and 𝑁𝑘 is the total number of uncertain parameters considered for unit 

k. The plant is assumed to operate within a fixed makespan (𝐻), fixed task processing times, no pre-emptive 

operation, instant material transfer and unlimited intermediate storage. The aim is to seek for a set of 

scheduling decisions (SD) and optimal control trajectory profiles (𝒖), which result in the assignment of 

tasks, batch sizes and operating cost for each unit, such that an objective function (z) is optimized (e.g. 

maximization of profits) and constraints maintain dynamic operability in the presence of stochastic 

realizations in the uncertain parameters. This problem can be conceptually formulated as follows:  



22 

max
{𝒖,𝑺𝑫}

 𝒛(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣, 𝑺𝑫)                (1) 

𝑠. 𝑡.  

𝒇𝒍(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣, 𝑺𝑫) = 0;         ∀𝑡, 𝑙 ∈ 1,2… ,𝑁𝐿      

𝒈𝒑(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣, 𝑺𝑫) <= 0;    ∀𝑡, 𝑝 ∈ 1,2… ,𝑁𝑃 

𝒉𝒎(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣, 𝑺𝑫) = 0;      ∀𝑡, 𝑚 ∈ 1,2… ,𝑁𝑚     

𝑢𝑚𝑖𝑛 ≤ 𝒖(𝑡) ≤ 𝑢𝑚𝑎𝑥;                      ∀𝑡 

𝜣 = {𝛩𝑛𝑜𝑚, 𝛩𝑢𝑛𝑐} 

𝒕 ∈ [0, 𝐻] 

where 𝒙(𝒕) ∈ ℝ1×𝑁𝑠𝑡 represent the system’s states and their derivatives 𝒙̇(𝒕) ∈ ℝ1×𝑁𝑠𝑡, where 𝑁𝑠𝑡 is the 

total number of model states; control variables 𝒖(𝒕) ∈ ℝ1×𝑁𝑐𝑡𝑟𝑙 and 𝑁𝑐𝑡𝑟𝑙  is the total amount of control 

inputs available for each unit; 𝑺𝑫 is a set of decisions that results in a production schedule, e.g. assignment 

variables, operational costs or batch sizes. Problem (1) is challenging to solve, i.e. to ensure dynamic 

feasibility, an infinitely dimensional search space in a continuous time domain would need to be explored, 

resulting from treating uncertain process parameters as randomly distributed variables. This problem can 

be casted as a stochastic MIDO, which may be reformulated as a stochastic Mixed Integer Non-Linear 

Programming (MINLP) problem by discretizing the time domain49. Problem complexity still remains since 

dynamic and integer dependent decisions have to be determined over a discretized time horizon for every 

possible realization of the uncertain parameters. 

In this study, two methods are presented which circumvent the complications arising with problem (1). The 

first algorithm, explored in this chapter, aims to solve a fully integrated MINLP, but relaxes the assumption 

of stochastic-based representation of the uncertain model parameters by proposing multi-scenario-based 

descriptions for the uncertain parameters. The second algorithm, explored in the next chapter, decomposes 

the problem by searching for scheduling and control decisions in an iterative fashion thus avoiding the need 
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to solve an expensive MINLP. A key feature of the later approach is the consideration of back-off terms, 

which are used to approximate process variability due to the effect of stochastic realizations in the uncertain 

parameters. The goal of the proposed back-off algorithm is to search for a set of scheduling and control 

decisions that most surely remain dynamically feasible in the presence of stochastic-based uncertainty. 

3.2 Multi-Scenario Approach: Problem Definition 
 

For the challenges mentioned in the previous section, the original consideration of stochastic-based 

uncertainty is reconsidered. In its stead, a multi-scenario-based representation is adopted to solve the fully 

integrated problem, this section will expand upon the definition, assumptions and characteristics of the 

subsequent approach.  

The State-Task-Network representation (STN), adopted from Kondili, et al.46 and  Shah et al.87 is considered 

to describe a multi-unit multi-product batch plant. STN is considered here due to its wide applicability for 

solving scheduling problems in chemical batch plants. This formulation, in combination with task-

dependent disjunctive decisions, enable detailed scheduling and dynamic optimization modeling of 

flowshop batch plants, i.e. 

max/min
{𝒖,𝑺𝑫}

 𝒛(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣, 𝑺𝑫, 𝜔𝛿)                                                      (2a)                                    

𝑠. 𝑡.   

∑ ∑ 𝑊𝑗,𝑘,𝑡′ ≤ 1

𝑡−𝜏𝑗+1

𝑡′=𝑡

                                                  ∀𝑘, 𝑡

𝑗∈𝐽𝑘

                                                                                   (2b) 

𝑊𝑗,𝑘,𝑡𝐵𝑗,𝑘
𝑚𝑖𝑛 ≤ 𝐵𝑗,𝑘,𝑡 ≤ 𝑊𝑗,𝑘,𝑡𝐵𝑗,𝑘

𝑚𝑎𝑥                     ∀𝑗, 𝑘 ∈ 𝐾𝑗, 𝑡                                                               (2c) 

𝑆𝑠,𝑡 = 𝑆𝑠,𝑡−1 + ∑ ∑ 𝜔𝛿𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡,𝛿

𝛿∈𝛥

∑ 𝐵𝑗,𝑘,𝑡−τj,s

𝑘∈𝐾𝑗

−

𝑗∈𝑇̅𝑠

∑ ∑ 𝜔𝛿

𝛿∈𝛥

𝜌𝑖𝑛𝑗,𝑠,𝑡,𝛿
∑ 𝐵𝑗,𝑘,𝑡

𝑘∈𝐾𝑗𝑗∈𝑇𝑠

   ∀𝑠, 𝑡                    (2𝑑) 

𝑺𝒄𝒉𝒆𝒒(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣, 𝑺𝑫) = 0              (2𝑒) 

𝑺𝒄𝒉𝒊𝒏𝒆𝒒(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣, 𝑺𝑫) ≤  0             (2𝑓) 
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[
 
 
 
 
 
 
 
 
 
 
 

𝑌𝑗,𝑘,𝑡 = 𝑇𝑟𝑢𝑒

𝑊𝑗,𝑘,𝑡 = 1

ℎ𝑘,𝑗,𝛿
𝑚 (𝑥𝑗,𝑘,𝑡,𝛿(𝜏𝑗), 𝑥̇𝑗,𝑘,𝑡,𝛿(𝜏𝑗), 𝑢𝑗,𝑘,𝑡(𝜏

𝑗), 𝛩, 𝑆𝐷) = 0 ∀𝑚, 𝛿 ∈ 𝛥

𝑔𝑘,𝑗,𝛿
𝑝

(𝑥𝑗,𝑘,𝑡,𝛿(𝜏
𝑗), 𝑥̇𝑗,𝑘,𝑡,𝛿(𝜏𝑗), 𝑢𝑗,𝑘,𝑡(𝜏

𝑗), 𝛩, 𝑆𝐷) ≤ 0 ∀𝑝, 𝛿 ∈ 𝛥

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘,𝑗,𝑡(𝜏
𝑗) ≤ 𝑢𝑚𝑎𝑥

  

𝜌𝑖𝑛𝑗,𝑠,𝑡,𝛿
(𝑥𝑗,𝑘,𝑡,𝛿(𝜏𝑗), 𝑥̇𝑗,𝑘,𝑡,𝛿(𝜏𝑗), 𝑢𝑗,𝑘,𝑡(𝜏

𝑗), 𝛩) ∀𝑠 ∈ 𝑆𝑗, 𝛿 ∈ 𝛥

𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡,𝛿
(𝑥𝑗,𝑘,𝑡,𝛿(𝜏𝑗), 𝑥̇𝑗,𝑘,𝑡,𝛿(𝜏𝑗), 𝑢𝑗,𝑘,𝑡(𝜏

𝑗), 𝛩) ∀𝑠 ∈ 𝑆𝑗̅, 𝛿 ∈ 𝛥

𝐹𝑘,𝑡,𝛿 = 𝐹𝑗,𝑘,𝑡,𝛿 (𝑢𝑗,𝑘,𝑡, 𝜏
𝑗 , 𝐵𝑗,𝑘,𝑡 , 𝑥𝑗,𝑘,𝑡,𝛿 (𝑇𝑜𝑝𝑓

𝑗
))  ∀𝛿 ∈ 𝛥

]
 
 
 
 
 
 
 
 
 
 
 

⋁

[
 
 
 
 
 

𝑌𝑗,𝑘,𝑡 = 𝐹𝑎𝑙𝑠𝑒

𝑊𝑗,𝑘,𝑡 = 0

𝜌𝑖𝑛𝑗,𝑠,𝑡,𝛿
= 0 ∀𝑠 ∈ 𝑆𝑗, 𝛿 ∈ 𝛥

𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡,𝛿
= 0 ∀𝑠 ∈ 𝑆𝑗̅, 𝛿 ∈ 𝛥

𝐹𝑘,𝑡,𝛿 = 0 ∀𝛿 ∈ 𝛥 ]
 
 
 
 
 

   

         ∀𝑡, 𝑗 ∈ 𝑱𝒌, 𝑘 ∈ 𝑲     (2g) 

𝑡 ∈ [0, 𝐻], 𝜟 = {𝛿1, 𝛿2 …𝛿𝑁𝑠𝑐𝑛
}, 𝜣 = {𝛩𝑛𝑜𝑚, 𝛩𝑢𝑛𝑐}, 𝑌𝑗,𝑘,𝑡 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, 𝜏𝑗 ∈ [𝑇𝑜𝑝0

𝑗
, 𝑇𝑜𝑝𝑓

𝑗
] ∀𝑗 ∈ 𝐽                                  

(2h) 

Equation (2a) states the objective function of the integrated formulation; that is, the optimization of a 

function dependent on mechanistic states (𝑥), its derivatives (𝑥̇), control actions (𝑢), model parameters (𝛩) 

and scheduling decisions, which include assignment variables, batch sizes and production costs (𝑺𝑫 =

{𝑊𝑗,𝑘,𝑡, 𝐵𝑗,𝑘,𝑡 , 𝐹𝑘,𝑡,𝛿}). Relevant sets are denoted as 𝑲 (available units), 𝑱𝒌 (tasks that can be performed in 

unit k), 𝑲𝒋 (units capable of performing task j), 𝑻̅𝒔 (tasks producing s), 𝑻𝒔(tasks consuming s) and Δ (total 

scenarios). The time required to produce material s from task j is assumed fixed and denoted as τj,s. Note 

that task fulfilment time is defined as τj, and is composed of two indicators, a task initiation (𝑇𝑜𝑝0

𝑗
) and 

completion time (𝑇𝑜𝑝𝑓

𝑗
).  

3.3 Unified Time-Grid 
 

The multi-scenario integrated algorithm seeks to tie the scheduling model with the process dynamics, with 

the aim to perform simultaneous scheduling and control. A time grid that showcases the main structure of 

the proposed integrated approach is shown in Figure 2. 
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As shown in problem (2), the production makespan is discretized (𝑡 ∈ [0, 𝐻]) following the STN framework. 

Scheduling decisions can be performed at each 𝑡 discretization of the horizon. Assignment constraints 

(Equation 2b) are related to the binary variable 𝑊𝑗,𝑘,𝑡 to assign an operating state (𝑊𝑗,𝑘,𝑡 = 1) or idle state 

(𝑊𝑗,𝑘,𝑡 = 0); specifically, 𝑊𝑗,𝑘,𝑡 determines that, at any point in time t, an equipment 𝑘 can only operate a 

single task 𝑗 for the duration of 𝜏𝑗. Capacity constraints (Equation 2c) limit the batch size 𝐵𝑗,𝑘,𝑡  within a 

given bound if an equipment is operating a certain task. The material balance constraint (Equation 2d) 

describes the net change in material 𝑆𝑠,𝑡 at any time t for every state 𝑠. Material balance for any state is 

dictated by their proportion of material input (𝜌𝑖𝑛𝑗,𝑠,𝑡,𝛿
) for each state which feed task j (𝑺𝒋) and output 

(𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡,𝛿
) for each state which task j produces (𝑺̅𝒋). A weight 𝜔𝛿 is considered for every effect of scenario 

𝛿 in 𝜟, such that the sum of all weights is equal to the unity. Equations (2e-f) include additional equality 

and inequality constraints that may be considered for a scheduling framework, such as non-preemptive 

operation, product demands, state capacity, etc.  

 

Figure 2: Visual representation of the multi-scenario integrated algorithm. 
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3.4 Task-Dependent Disjunctive Decisions 
 

Moreover, at each 𝑡 discretization, an exclusive task and unit-dependent logical disjunctive decision is 

performed, as shown in Equation (2g). The latter aims to engage the non-linear dynamic equations with the 

multi-period scheduling constraints. These logical selective decisions typically found in Generalized 

Disjunctive Programming (GDP) are posed by implementing different relaxation methods 81. Therefore, a 

GDP modeling strategy is followed to recast the optimization problem into a logic-based model, offering a 

robust modeling method for cases where exclusive constraints have to be enforced. This means that task 

and unit assignment can be simultaneously considered by the scheduling and dynamic constraints.  

In the embedded dynamic optimization problem, mechanistic process models are affected by the selection 

of the scheduling tasks, e.g. manufacture products A, B or C. The relationship between scheduling and 

process dynamics are reflected as a possible variation of product and task-specific operational constraints 

or model parameters. This co-dependence justifies the reason for the integration of transient mechanistic 

unit models and scheduling. As described earlier, the STN formulation regards different operating 

configurations as alternating tasks that may be assigned to a unit, as shown in Figure 2. Therefore, the total 

logical disjunctions of a unit comprise the different tasks (dynamics) that the unit may perform; this 

information is described in the set 𝑱𝒌, such that, a unit will have as much disjunctions as elements in 𝑱𝒌. If 

the disjunction indicator variable is active (i.e. 𝑌𝑗,𝑘,𝑡 = 𝑇𝑟𝑢𝑒), an operating state is considered, thus the 

mechanistic task-dependent process equations and constraints (i.e. ℎ𝑗,𝑘,𝛿
𝑚    and 𝑔𝑗,𝑘,𝛿

𝑝
) are enforced. Control 

trajectories 𝑢𝑗,𝑘,𝑡  are obtained while maintaining the control variable within pre-specified bounds. 

Moreover, proportion of material input and output are calculated based on initial and final conditions, 

respectively. Operating cost (𝐹𝑘,𝑡,𝛿) is a key variable in the formulation that depends on control profiles, 

operating time of the current active equipment performing a given task 𝜏𝑗 , batch size 𝐵𝑗,𝑘,𝑡, or ending 

conditions of mechanistic state variables 𝑥𝑗,𝑘,𝑡,𝛿 (𝑇𝑜𝑝𝑓

𝑗
).  
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An additional disjunct is considered to account for equipment idling (i.e. 𝑌𝑗,𝑘,𝑡 = 𝐹𝑎𝑙𝑠𝑒). In this idle state, 

no dynamic equations are enforced to describe the behavior of the unit, and all of the variables relevant for 

the integration, such as process costs, proportion of material production and consumption, are set to zero.  

Moreover, dynamic time discretization has to be selected, as a means to correctly incorporate the scheduling 

time slots, with the reformulated time-dependent equations. For the purpose of generalization, discretization 

can easily accommodate different schemes, i.e. finite differences or finite elements schemes.  

3.5 Multi-Scenario Uncertainty 
 

Problem (2) considers a multi-scenario approach to handle process parameter uncertainty. That is, process 

variables and constraints, sensitive to uncertainty, are evaluated for every scenario δ, exploring a total of 

𝑁𝑠𝑐𝑛 scenarios. The definition of a scenario is presented in Figure 3.  

A limitation of the integrated approach is that, due to computational limits, it is unable to represent fully 

stochastic model parameters. For this reason and for better representation of the analysis, the original 

formulation presented in problem (1) is modified, instead of a PDF, each uncertain parameter is now 

composed by a combination of different discrete realizations, i.e. 𝜣𝒌,𝝋 = {𝜃𝑘,1, 𝜃𝑘,2, … 𝜃𝑘,𝑁𝑘}, ∀𝑘 ∈

𝑲,𝜑 ∈ 1,2… ,𝛷𝑘, where 𝛷𝑘 is the total number of uncertain parameter realizations considered for a unit.  

Each unit k may be affected by a certain number of uncertain parameters (𝑁𝑘), each of these parameters 

and their different combinations (𝜣𝒌,𝝋), will generate different trajectories for the mechanistic states 𝑥𝑗,𝑘,𝑡,𝛿, 

 

Figure 3:Illustrative definition of a scenario, for simplicity, connections to consequent realizations of 

uncertainty are represented by three dots. 

 

 

Figure 1: Illustrative definition of a scenario, for simplicity, connections to consequent realizations of 

uncertainty are represented by three dots 
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and therefore different realizations on variables and constraints sensitive to uncertainty 

(𝑖. 𝑒. ℎ, 𝑔, 𝜌𝑖𝑛, 𝜌𝑜𝑢𝑡, 𝐹). Thus, for every combination of uncertain realizations considered, a single control 

trajectory for each unit needs to be obtained which meets the enforced constraints.  

Propagation of uncertainty is considered to be non-preemptive, meaning that control decisions for each unit 

considers the cumulative effects of uncertainty up to that unit itself. This can be exemplified with Figure 3; 

consider unit 1, a unique control trajectory is determined for the net effects of all the realizations in the 

uncertain parameters, i.e. 𝜣𝟏,𝟏
 to 𝜣𝟏,𝜱𝟏. In consequence, to find a control profile for unit k several scenarios 

must be considered involving all the possible combinations in the realizations of the uncertain parameters 

from unit 1 up until unit k. As shown in Figure 3, scenario δ1 for unit k considers the combined effects of 

𝜣𝟏,𝟏, 𝜣𝒌−𝟏,𝟏 up until 𝜣𝒌,𝟏.  Hence, scenario δ1 for unit K would then need to consider the cumulative effects 

of all previous uncertainty realizations (i.e. 𝜣𝟏,𝟏, 𝜣𝑲−𝟏,𝟏 up until 𝜣𝑲,𝟏). This implies the problem grows 

exponentially as more units and uncertain parameters are considered.    

3.6 Model Convergence  
 

The integrated problem generally contains non-convex terms from the dynamic and disjunctive models. 

The existence of non-convexities can be time-consuming in converging to a solution of a highly-

dimensional MINLP problem. In this study, locally optimal solutions identified by local solvers are 

accepted, within reasonable CPU times. However, the decomposition method can take advantage of the 

problem structure to reduce the overall computational time (see Chapter 6).  

In the multi scenario-based representation of uncertainty, the probability density function of the uncertain 

parameters is represented and approximated by a finite set of scenarios, each correlated to a particular 

probability of occurrence 𝜔𝛿. A large number of scenarios have to be explored for this approach to yield 

results that converge to a stochastic representation. In practice, it would be desired to select a sufficiently 

large number of selected scenarios such that any addition of a discrete realization within a given uncertainty 

bound does not significantly change the solution quality. However, problem complexity and computational 
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costs may limit the maximum allowed number of realizations. Furthermore, to aid convergence to a locally 

optimum solution, an initialization phase is required. This is achieved by obtaining the optimal solution of 

the recipe-based case (MILP), where scheduling parameters are obtained from a steady-state analysis of the 

plant. The previously obtained MILP solution is used to fix a production sequence (binary variables) so that 

a nonlinear optimization of the dynamic unit models is performed (NLP), considering uncertainty 

realizations to be at their expected value64. The integrated MINLP model is solved departing from the 

solution generated by the previous step. 

3.7 Chapter Summary 
 

In this section, the fully integrated MLDO methodology is described. Given the optimization problem in 

(2), the scheduling time region is discretized into global equidistant discretizations by following the STN 

framework. This formulation allows for the detailed design of a batch schedule through the definition of 

material states, equipment and tasks. However, that formulation alone does not contain important dynamic 

information and optimal control strategies to maximize the batch plant’s performance. Consequently, at 

each of the discretizations, logical disjunctive decisions are performed. This results in a mixed-logic 

dynamic optimization (MLDO) problem. By applying discretization and relaxation techniques, the problem 

can be casted as an MINLP.  Two possible operating states are explored, if an indicator variable is active, 

a set of dynamic model and operational constraints are enforced. The activation of these constraints allows 

for imposing dynamic dependency on the scheduling parameters, therefore, linking the control and 

scheduling layers.  If the binary indicator is inactive, then said scheduling parameters are set to zero. 

Disjunctive selective decisions are performed, with the goal of enforcing product specific quality 

constraints. Incorporation of stochastic-based uncertain parameters would tax the computational 

performance of an already challenging problem to solve, as such, multi-scenario-based uncertainty is 

proposed. The main purpose of this method is for it to serve as a benchmark for the decomposition approach, 

both in computational efficiency and in solution quality. 
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Chapter 4: Back-Off Decomposition Algorithm  

This section presents the back-off decomposition algorithm proposed to address the integration of 

scheduling and control of batch plants under stochastic realizations in the uncertain parameters. This 

method was adopted from the methodology previously presented by Koller et al.27, where it was shown to 

be successfully applied to the integration of design, scheduling, and control of a continuous multi-purpose 

unit.  

An expansion upon this methodology is presented, a decomposition approach for the integration and 

dynamic optimization of multi-unit, multi-product batch plants. The proposed algorithm is expected to 

converge to an economically attractive solution while incorporating fully stochastic distributions of 

parameter uncertainty and avoiding the solution of a complex MLDO problem, which is the key feature of 

this method.   

The main difference between the proposed algorithm and that presented by Koller et al.27 is that the latter 

requires the formulation and solution of an MINLP at each iteration step for a single production unit. 

Applying that approach to multiple units may become a daunting task, e.g. computationally taxing for large-

scale and complex applications; hence, the proposed approach avoids the need to solve such intensive 

problems by decomposing the scheduling and control layers into two optimization formulations.   

As shown in Figure 4, the proposed algorithm consists of a master outer loop, which includes scheduling 

and dynamic optimization (control) decisions, and an inner loop, which aims to propagate model parameter 

uncertainty into the dynamic process by solving feasibility-based problems. Each of the steps involved in 

the proposed back-off decomposition algorithm is explained next. 
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4.1 Initialize Variables 
 

The first stage consists of initializing relevant algorithm parameters, i.e. an iteration index (i=0), maximum 

number of iterations, a user-defined criterion for the tolerance of convergence (Tol), and a multiplier for 

the back-off terms (λ), which shapes the conservativeness of the solution. Also, the present method requires 

the specification of the set of probability density functions that describe each of the realizations of the 

uncertain parameters (𝛩𝑢𝑛𝑐) and the number of Monte Carlo simulations (MC), which have to be large 

enough so that an accurate representation of the distribution for each parameter in 𝛩𝑢𝑛𝑐  is achieved. 

Similarly, an empty matrix, gcrit, needs to be initialized and used to store relevant information extracted 

 

Figure 4: Flowchart of the decomposition back-off algorithm 
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from the MC simulations. At the first iteration (i=0), no uncertainty in the model parameters is considered 

in the scheduling and dynamic optimization stage, this case is referred to as the nominal solution. 

Consequently, back-off terms 𝑏𝑝,𝑡,𝑖 are set to zero for the first iteration (i=0); for all discretizations in time 

𝑡 and 𝑝 ∈ 1,2… ,𝑁𝑃, where 𝑁𝑃 represents the total number of constraints considered in the formulation, as 

shown in Problem 1. 

4.2 Scheduling  
 

A general scheduling formulation, which allows for the definition of states and tasks resulting in a multi-

product manufacturing recipe for chemical batch plants is specified as follows: 

max
{𝑆𝐷}

 𝑧𝑠𝑐ℎ𝑒𝑑𝑖
(𝐹𝑗,𝑘,𝑡(𝑏𝑝,𝑡,𝑖), 𝜌𝑖𝑛𝑗,𝑠,𝑡 

(𝑏𝑝,𝑡,𝑖), 𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡
(𝑏𝑝,𝑡,𝑖), 𝐻)                                                                  (3a) 

𝑠. 𝑡.  ∑ ∑ 𝑊𝑗,𝑘,𝑡′ ≤ 1

𝑡−𝜏𝑗+1

𝑡′=𝑡

                                                                                                          ∀𝑘, 𝑡

𝑗∈𝐽𝑘

                 (3𝑏) 

𝑊𝑗,𝑘,𝑡𝐵𝑗,𝑘
𝑚𝑖𝑛 ≤ 𝐵𝑗,𝑘,𝑡 ≤ 𝑊𝑗,𝑘,𝑡𝐵𝑗,𝑘

𝑚𝑎𝑥                                                                                       ∀𝑗, 𝑡, 𝑘 ∈ 𝐾𝑗     (3𝑐) 

𝑆𝑠,𝑡 = 𝑆𝑠,𝑡−1 + ∑ 𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡
(𝑏𝑝,𝑡,𝑖) ∑ 𝐵𝑗,𝑘,𝑡−τj,s

𝑘∈𝐾𝑗

−

𝑗∈𝑇̅𝑠

∑ 𝜌𝑖𝑛𝑗,𝑠,𝑡
(𝑏𝑝,𝑡,𝑖) ∑ 𝐵𝑗,𝑘,𝑡

𝑘∈𝐾𝑗𝑗∈𝑇𝑠

           ∀𝑠, 𝑡                  (3𝑑) 

𝑺𝒄𝒉𝒆𝒒(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡), 𝛩, 𝑆𝐷) = 0              (3𝑒) 

𝑺𝒄𝒉𝒊𝒏𝒆𝒒(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡), 𝛩, 𝑆𝐷) ≤  0             (3𝑓)  

Problem (3a-f) is typically formulated as a mixed-integer linear problem (MILP). At each iteration step i, 

the resulting schedule is generated by solving problem (Equation 3a-f), which consist of maximizing a user-

defined objective function 𝑧𝑠𝑐ℎ𝑒𝑑𝑖
 (Equation 3a) subject to a set of allocation (Equation  3b), capacity 

(Equation  3c) and material balance (Equation  3d) constraints. Equations (3e-f), as in section 2, represent 

placeholder constraints which may represent additional scheduling considerations, e.g. temporary 

unavailability of equipment, unit cleaning, etc. Global uniform discretization was applied to the scheduling 
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makespan (H), i.e. scheduling decisions occur at specific equidistant points in time t using a time-scale 

which is shared by all units. Variable definitions remain the same as in problem (2a-h). Note that in the 

present method the variables may change at each iteration of the master outer loop. Moreover, variables 

that for the full integration problem were indexed by uncertainty (i.e. 𝜌𝑖𝑛𝑗,𝑠,𝑡,𝛿
, 𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡,𝛿

, 𝐹𝑗,𝑘,𝑡,𝛿) are now 

redefined such that process variability is captured explicitly through the consideration of back-off terms. 

Note that at each iteration of the master outer loop, new back-off terms bp,t,i are calculated. Consequently, 

uncertainty dependent linking variables (i.e. operating costs, proportion of material 

consumption/production) are updated accordingly, as a means of effectively propagating process variability 

into the scheduling problem. As indicated in the Initialize variables stage, bp,t,0=0, i.e. no uncertainty is 

considered for i=0; hence, all the scheduling parameters shown in Equation (3a-f) can be obtained a priori 

or calculated from a steady-state analysis of the batch plant for the first iteration.  

4.3 Dynamic Optimization  
 

The solution from (3) provides the production parameters and the manufacturing sequence to follow, i.e. 

SD. This information is the key input used to search for optimal open-loop control profiles on the batch 

units that are expected to maintain the plant on specification and dynamically operable in the presence of 

uncertainty. The optimal control profiles can then be calculated from a discretized dynamic optimization 

problem (NLP). As shown in (4), an objective function 𝑧𝑑𝑦𝑛 needs to be optimized over the time horizon 

𝐻. Mechanistic process variables 𝑥𝑗,𝑘,𝑡 are to follow a trajectory specified by the optimized control profiles 

𝑢𝑗,𝑘,𝑡. For this stage, a key consideration is made, every uncertain parameter is assumed to be set at their 

expected values, i.e. 𝜣̂𝒖𝒏𝒄 = {𝜃𝑘,𝜈|𝜃𝑘,𝜈 = 𝐸[𝑃𝐷𝐹𝑘,𝜈(𝛺)]} . This assumption however, may produce 

constraint violations should the nominal solution be subjected to any other possible realization in the 

uncertain model parameters. To address this problem, back-off terms (bp,t,i) are explicitly considered into 

the inequality constraints (𝑔𝑝,𝑡 ) at any time t to approximate the effects of process variability due to 

uncertainty, as shown in Equation (4c). Back-off terms are not static or obtained from a single optimization 
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problem. The terms carry important statistical information regarding the effect of stochastic process 

variability on the corresponding process constraints, and they are refined at each iteration of the master 

loop. Hence, these back-off (penalty) terms are being updated at each iteration in the present algorithm. 

This is a key difference with respect to penalty-based methods, which penalize deviations from a desired 

behavior through the implementation of sum of errors (i.e. sum of squares) directly into the objective 

function30,65,88. The reformulation of the inequality constraints implies that, by shifting away from the 

nominal operation of the plant (i.e. when 𝛩̂𝑢𝑛𝑐 is considered), dynamic operability of the plant may be 

ensured, even under the effects of stochastic realizations in the uncertain parameters. Robustness of the 

solution can be fine-tuned by modifying the user-defined weight parameter 𝜆𝑝 , which determines the 

amount of variability (i.e. back-off terms) that is considered on each constraint 𝑔𝑝,𝑡  due to model 

uncertainty. 

max 𝑧𝑑𝑦𝑛𝑖
(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝜣𝒏𝒐𝒎, 𝜣̂𝒖𝒏𝒄)                                                                                                              (4𝑎) 

𝑠. 𝑡.    

𝑓𝑙,𝑡(𝑥𝑗,𝑘,𝑡 , 𝑥̇𝑗,𝑘,𝑡+1, 𝑢𝑗,𝑘,𝑡, 𝛩𝑛𝑜𝑚, 𝛩̂𝑢𝑛𝑐) = 0                                          ∀𝑡, 𝑗 ∈ 𝑱𝒌, 𝑘, 𝑙 ∈ 1,2…𝑁𝐿                     (4𝑏)  

𝑔𝑝,𝑡(𝑥𝑗,𝑘,𝑡, 𝑥̇𝑗,𝑘,𝑡, 𝑢𝑗,𝑘,𝑡 , 𝛩𝑛𝑜𝑚, 𝛩̂𝑢𝑛𝑐) + 𝜆𝑝𝑏𝑝,𝑡,𝑖 ≤ 0                         ∀𝑡, 𝑗 ∈ 𝑱𝒌, 𝑘, 𝑝 ∈ 1,2…𝑁𝑃                   (4𝑐) 

𝑡 ∈ [0, 𝐻] 

4.4 Monte Carlo Simulations 
 

The aim of this stage is to test the dynamic feasibility of the schedule and control profiles obtained from 

the previous stages under the effects of fully stochastic uncertain parameters in 𝜣𝒖𝒏𝒄, as defined in Problem 

(1). For this purpose, a feasibility problem is posed in Equation (5a-b), where the objective function is set 

to be constant c. Dynamic process model equations for each batch unit (5b) are the only set of constraints 

enforced. Whereas in problem (4) control variables (𝑢𝑗,𝑘,𝑡) were optimized using fixed back-off terms and 

nominal realizations in the uncertain parameters (𝜣̂𝒖𝒏𝒄), this stage keeps the control actions fixed such that 
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the set of control decisions calculated in (4) i.e. 𝑢𝑗,𝑘,𝑡 remain as inputs to problem (5), as shown in Figure 

4. For the sake of clarity, the set of fixed control inputs obtained from problem (4) are referred to as 𝑢𝑓𝑖𝑥𝑗,𝑘,𝑡
. 

Thus, by enforcing a set of specific control trajectories, mechanistic process variables are sensitive only to 

different realizations in 𝜃𝑘,𝜈. Each of the uncertain model parameters in 𝜣𝒖𝒏𝒄 are to be described by a 

number of MC realizations, which follow a user-defined probability distribution that are defined a priori 

(i.e. in the initialization stage). Monte Carlo sampling techniques are used to obtain a random realization n 

of the νth element in the set 𝜣𝒖𝒏𝒄 (referred to as 𝜃𝑛
𝑘,𝜈) which together with the control profile 𝑢𝑓𝑖𝑥𝑗,𝑘,𝑡

, 

represent the key inputs to problem (5). 

max 𝑐                                                                                                                                                (5a) 

𝑠. 𝑡. 𝑓𝑡
𝑙 (𝑥𝑗,𝑘,𝑡, 𝑥̇𝑗,𝑘,𝑡, 𝑢𝑓𝑖𝑥𝑗,𝑘,𝑡

, 𝜣𝒏𝒐𝒎, 𝜃𝑛
𝑘,𝜈) = 0                 ∀𝑡, 𝑗 ∈ 𝑱𝒌, 𝑘, 𝜈 ∈ 1,2… ,𝑁𝑢𝑛𝑐, 𝑙 ∈ 1,2…𝑁𝐿      (5b) 

The solution from (5a-b) for current inner-loop iteration n, allows for the evaluation of every inequality 

constraint  𝑔𝑝,𝑡. The measured value at iteration n of each constraint 𝑔𝑝,𝑡 is added to the pth row, nth column 

of matrix 𝑔𝑐𝑟𝑖𝑡; thus, each p row in 𝑔𝑐𝑟𝑖𝑡 contains an approximation of the variability of each 𝑔𝑝 due to the 

stochastic effect of the uncertain parameters 𝛩𝑢𝑛𝑐, as shown in problem (5c). 

𝑔𝑐𝑟𝑖𝑡𝑝,𝑡,𝑛
∪ 𝑔𝑝,𝑡,𝑛 (𝑥𝑗,𝑘,𝑡, 𝑥̇𝑗,𝑘,𝑡, 𝑢𝑓𝑖𝑥𝑗,𝑘,𝑡

, 𝜣𝒏𝒐𝒎, 𝜃𝑛
𝑘,𝜈)  

    ∀𝑡, 𝑗 ∈ 𝑱𝒌, 𝑘, 𝑛 ∈ 1,2…𝑀𝐶, 𝜈 ∈ 1,2…𝑁𝑢𝑛𝑐 , ∀𝑝 ∈ 1,2…𝑁𝑃             (5c) 

The procedure considered for solving (5a-b) to (5c) is systematically repeated until MC feasibility problems 

have been solved (n=MC). The outcome from this stage is to draw statistical information from the inequality 

constraints contained in 𝒈𝒄𝒓𝒊𝒕 ∈ ℝ𝑝×𝑡×𝑀𝐶.  

 

 



36 

4.5 Update back-off terms 
 

With the statistical data obtained from the Monte Carlo simulations, back-off terms at each t for each 

constraint 𝑔𝑝,𝑡 are updated using Equation (6), which is the formal definition of the standard deviation for 

each output distribution 𝑔𝑐𝑟𝑖𝑡𝑝,𝑡
. Therefore, the updated back-off terms (𝑏𝑝,𝑡,𝑖+1)  represent the variability 

(measured in terms of the standard deviation) of the pth inequality constraint due to the effect of MC 

realizations for every parameter in 𝜣𝒖𝒏𝒄 at time t. Moreover, 𝜆𝑝 can be considered for each constraint 𝑔𝑝,𝑡, 

as a user-defined multiplier of the expected standard deviation on process variability. As shown in Equation 

(4c), an increase in magnitude of the multipliers 𝜆𝑝 can be regarded as an increase in the robustness of the 

solution. 

𝑏𝑝,𝑡,𝑖+1 = √
1

𝑀𝐶
∑ [𝑔𝑐𝑟𝑖𝑡𝑝,𝑡,𝑛

−
1

𝑀𝐶
∑ 𝑔𝑐𝑟𝑖𝑡𝑝,𝑡,𝑛

𝑀𝐶

𝑛=1

]

2𝑀𝐶

𝑛=1

              ∀𝑡, 𝑝 ∈ 1, 2,… ,𝑁𝑝                                            (6) 

 

4.6 Convergence Criterion 
 

As shown in (7), the back-off terms from successive iterations are compared to determine if convergence 

has been achieved. If criterion (7) is not met, 𝑏𝑝,𝑡,𝑖 is updated with the value of 𝑏𝑝,𝑡,𝑖+1, as shown in Figure 

4. Updated scheduling parameters are calculated and used as inputs to Equation (3) for the next iteration 

i+1, as shown in Figure 4. Convergence is achieved if the difference between successive back-off terms is 

less than a user-defined tolerance criterion (Tol). Accordingly, a solution z* composed by a set of scheduling 

decisions and control profiles that remain dynamically feasible under the effects of uncertainty has been 

found. The algorithm is also terminated if a maximum number of iterations is reached. 

|
(𝑏𝑝,𝑡,𝑖+1 − 𝑏𝑝,𝑡,𝑖)

𝑏𝑝,𝑡,𝑖+1
| ≤ 𝑇𝑜𝑙     ∀𝑡, 𝑝 ∈ 1,2…𝑁𝑝                                                                                                        (7) 
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The back-off algorithm proposed in this work follows a similar structure to equation (2); however, a 

separation of the MINLP into its MILP and NLP components is performed; moreover, no disjunctive 

decisions are required. The iterative nature of the algorithm can decrease computational costs of the problem 

when gauged in performance against an MINLP that attempts to perform scheduling and control 

simultaneously. Moreover, the proposed algorithm gives the user the freedom to fine-tune solution 

conservativeness by modifying 𝜆𝑝. In addition, the MINLP formulation handles uncertainty using a multi-

scenario approach, which may require a sufficiently large number of uncertainty realizations to return an 

acceptable solution that may be immune to uncertainty. Some inherent limitations of the decomposition 

algorithm exist due to the stochastic nature of the model parameters. If the selected number of MC 

simulations is not sufficiently large, then uncertainty might not be fully captured by the back-off terms; 

hence, multiple runs of the algorithm over the same case study may yield to different results or to 

convergence issues. Moreover, convergence of the algorithm may be inhibited if either the multiplier 𝜆𝑝, 

or the back-off terms are sufficiently large in magnitude, i.e. large process variability. This may manifest 

as dynamic infeasibilities when solving problem (4). However, this issue can be resolved if relaxation on 

the bounds of the control variables is a possibility since infeasibilities are mainly due to limited degrees of 

freedom. We recognize that convergence to the optimal back-off solution cannot be guaranteed, unless the 

back-off terms are proven to be insensitive to the optimization variables. Moreover, if first order KKT 

optimality conditions for the integrated optimization hold, and critical realizations in the uncertain 

parameters are active at the solution, the present back-off calculation is equivalent to the integrated 

problem89.  More details about convergence issues with the present back-off method are described in Koller 

et al.27  

4.7 Chapter Summary 
 

This section presented the novel back-off decomposition algorithm for integration of scheduling and control. 

The proposed methodology offers an iterative approach to the solution of scheduling and control of 

sequential batch plants, subject to stochastic model-parameter uncertainty. The solution of a complex 
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MLDO problem is thus avoided by iteratively solving between a scheduling formulation (MILP) and an 

optimal open-loop control strategy (NLP). The key idea of this method is to approximate process variability 

through Monte Carlo simulations, so as to move away from an economically attractive though dynamically 

infeasible operation policy to obtain robust scheduling and control decisions. The proposed algorithm can 

accommodate different probabilistic distributions in the uncertain model parameters, which are propagated 

into the process model through feasibility simulations obtaining a resulting output distribution on key 

process constraints. From this output, back-off terms are calculated and incorporated into the dynamic 

optimization problem, conditions from this modified problem allow for the calculation of key scheduling 

parameters. This process is repeated until a convergence criterion is met. The solutions obtained by this 

method are able to accommodate robustness up to a user-defined level of process variability. Convergence 

of the algorithm is discussed, namely the selection of a large enough number of feasibility problems to 

approximate variability. A case study illustrating the features and limitation of this algorithm is presented 

in the next chapter. 
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Chapter 5: Case Study & Results 

In this chapter the previously presented methods are applied to a multi-product, multi-unit batch plant. 

Equipment, materials and scheduling representation are all expanded upon in the section below. Results 

from the application are presented, discussing in depth computational performance, effects of uncertainty 

upon the solution, advantages and disadvantages of both the integrated and decomposition-based 

approaches.  

5.1 Flowshop Batch Plant 
 

The performance of the algorithms presented in sections 3 and 4 were tested on a case study involving the 

optimal scheduling and control of a multiproduct flowshop batch plant adapted from Nie and Biegler64. The 

main goal of the sequential batch plant is to maximize the overall profit in the production of two chemical 

species, ProdB1 and ProdB2, differing only in their economic attractiveness and their purity. The process 

flow diagram of the multi-product multi-unit batch plant is shown in Figure 5.  

 

Figure 5: Process flow chart of case study 
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The batch plant consists of three main processing units, a reactor, a filter and a distillation column. The 

process starts with a material inlet to a reactor (FeedA). Material output from the reactor (IntABC) is a 

mixture of three species A, B and C, respectively. This material serves as an input to the filter, whose main 

task is to separate the undesired species C (WstC) to yield a material composed of only A and B (IntAB), 

which is then fed as an input to the distillation column. The final step in the production sequence consists 

of the binary distillation of light species B from heavy A to yield either ProdB1 or ProdB2. The production 

of either product, i.e. Prod𝛾 (𝛾 ∈ 𝜞 = {𝐵1, 𝐵2}), depends on factors such as process economics, scheduling 

and control decisions. 

Scheduling 

The state-task sequence for this plant is presented in Figure 6. Following the STN formulation presented in 

the previous sections, the set K represent the available units (i.e. 𝑲 = {𝑟, 𝑓, 𝑑}); similarly, four tasks need 

to be defined for this process, i.e. 𝑱 = {𝑅𝑐𝑡, 𝐹𝑖𝑙, 𝐷𝑖𝑠𝐵1, 𝐷𝑖𝑠𝐵2}. The former tasks 𝐷𝑖𝑠𝛾 (𝛾 ∈ 𝜞) correspond 

to the selection of either desired product within the distillation unit (ProdB1 or ProdB2), as shown in Figure 

6. Therefore, this decision may be considered as a switching condition. In addition, eight material states are 

defined for this process as shown in Figure 6, i.e. S= {Feed A, IntABC, WstC, IntAB, RcyB1, RcyB2, ProdB1, 

ProdB2}.   

 

Figure 6: STN representation of the proposed case-study 
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To simplify the analysis, the operational time τj for the tasks performed by the reactor, filter and distillation 

is assumed to be fixed and equal to 2 hours each. Processing units described in the case study are assumed 

to have a batch size limit of 60 kg. Considerations for each equipment are described next. 

Reactor 

As shown in Figure 5 and 6, input to the reactor comes from material state Feed A. The main function of 

this unit is to produce species B through an irreversible reaction of A. In a similar fashion, B degrades into 

waste species C. Ending conditions of this unit propagate and affect initial conditions of the following units, 

therefore affecting the production of Prod𝛾. The reactor dynamics (Equations 8a-c) are assumed to be 

accurately driven by the transformed temperature control variable, u(t) (m3/kg·hr).  

𝐶𝐴̇ = −𝑢(𝑡)𝐶𝐴
2(𝑡)                               𝐶𝐴(0) = 1                                                                                              (8𝑎) 

𝐶𝐵̇ = 𝑢(𝑡)𝐶𝐴
2(𝑡) − 𝛽𝑢2(𝑡)𝐶𝐵(𝑡)     𝐶𝐵(0) = 0                                                                                              (8𝑏)

𝐶𝑐̇  = 𝛽𝑢2(𝑡)𝐶𝐵(𝑡)                             𝐶𝐶(0) = 0                                                                                               (8𝑐)

 

𝐶𝐴̇, 𝐶𝐵̇ and 𝐶𝐶̇ represent the change in each species concentration with respect to time, initial conditions 

state that initially there is only species A in the reactor, kinetics will be affected by 𝛽, a reaction parameter.  

The operating cost of the reactor is assumed a function of the batch size processed in the unit 𝐵𝑅𝑐𝑡,𝑟,𝑡 and 

the heating utility, given a unit price factor pr ($0.3/kg), i.e. 

𝐹𝑅𝑐𝑡,𝑟,𝑡 = 𝑝𝑟𝐵𝑅𝑐𝑡,𝑟,𝑡 ∫ 𝑢(𝑡)𝑑𝑡                                                                                                                               (9)
𝜏𝑅𝑐𝑡

0

 

For the purpose of this equipment, having only one material input and one output means that variables 

𝜌𝑖𝑛𝑅𝑐𝑡,𝐹𝑒𝑒𝑑𝐴,𝑡 
and 𝜌𝑜𝑢𝑡𝑅𝑐𝑡,𝐼𝑛𝑡𝐴𝐵𝐶,𝑡 

 are equal to the unity for any time t.  

Filter 

The goal of filtration is to eliminate any trace of waste species C from the reactor material output, IntABC. 

No inherent dynamics are considered for this unit. The operating cost for this unit is dependent on the 
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amount of material IntAB produced (S𝐼𝑛𝑡𝐴𝐵,𝑡), a penalization on the production of waste species 𝑊𝑠𝑡𝐶 

(S𝑊𝑠𝑡𝐶,𝑡), and a unit price factor pf ($1/kg), i.e. 

𝐹𝐹𝑖𝑙,𝑓,𝑡 = 𝑝𝑓(S𝐼𝑛𝑡𝐴𝐵,𝑡 + 4S𝑊𝑠𝑡𝐶,𝑡)                ∀𝑡                                                                                                      (10) 

Having two outputs, material balance on task Fil consists of two variables 𝜌𝑜𝑢𝑡𝐹𝑖𝑙,𝐼𝑛𝑡𝐴𝐵,𝑡 
 and 𝜌𝑜𝑢𝑡𝐹𝑖𝑙,𝑊𝑠𝑡𝐶,𝑡 

, 

which define the proportion of the processed batch fed into states IntAB and WstC. As shown in Equation 

(11a-b), these variables are dependent on the final conditions of the reactor. 

𝜌𝑜𝑢𝑡𝑖,𝐹𝑖𝑙,𝑊𝑠𝑡𝐶,𝑡 
= 𝐶𝑐(τ

Rct)/[𝐶𝐴(τRct) + 𝐶𝐵(τRct) + 𝐶𝐶(τRct)]                                                             (11a) 

𝜌𝑜𝑢𝑡𝑖,𝐹𝑖𝑙,𝐼𝑛𝑡𝐴𝐵,𝑡 
= [𝐶𝐵(τRct) + 𝐶𝐴(τRct)]/[𝐶𝐴(τRct) + 𝐶𝐵(τRct) + 𝐶𝐶(τRct)]                                       (11b) 

Distillation Column 

As shown in Figure 5 and 6, the binary distillation column aims to further purify the filter material output 

IntAB. This material is fed into the reboiler, with an initial charge equivalent to 𝐵𝐷𝑖𝑠𝛾,𝑑,𝑡. Change in the 

reboiler’s material over time is dictated by 𝑄̇ as shown in Equation (12a). Change of concentration of 

species B in the reboiler is described by 𝑥̇𝑄, with an initial concentration of 𝜂𝐵 (Equation 12b).  

𝑸̇ = 𝑳 − 𝑽               𝑄(0) = 𝐵𝐷𝑖𝑠𝛾,𝑑,𝑡  (𝑘𝑔)      ∀𝛾 ∈ 𝜞 = {𝐵1, 𝐵2})                                    (12a) 

𝒙̇𝑸 =
𝑉(𝑥𝑄 − 𝑥𝑑)

[(𝑅 + 1) ∙ 𝑄]
        𝑥𝑄(0) = 𝜂𝐵  (𝑘𝑔/𝑘𝑔) = 𝐶𝐵(τRct)/[𝐶𝐴(τRct) + 𝐶𝐵(τRct)]                         (12b) 

 

L is the flow returning to the column, V is the vapor flow, 𝒙𝒅 the distillate concentration and R the reflux 

ratio. The dynamics of the distillation column are solved using the shortcut batch distillation model without 

holdup and a constant relative volatility 𝛼. Equilibrium between liquid (𝒙µ) and vapor phases (𝒚µ) in each 

µ tray, which impacts distillation purity, is as follows: 

𝒚µ =
𝛼𝒙µ

[1 + (𝛼 − 1) ∙ 𝒙µ]
        ∀µ = 1…4                                                                                                            (12𝑐) 
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Moreover, the adjustable variable for control in this unit is the reflux ratio R, which represents a relationship 

between flow returning to the column (L) and the amount drawn from to distillate (D), as shown in Equation 

(13). As depicted in Equation (14), both L and D hold a relationship with the vapor flow V, which is assumed 

to be a function of batch size 𝐵𝑗,𝑑,𝑡 and parameter κd (1.646).  

𝑹(𝒕) = 𝑳(𝒕)/𝑫(𝒕)                                                                                                                                                      (13) 

𝑳(𝒕) + 𝑫(𝒕) = V = κd𝐵𝐷𝑖𝑠𝛾,𝑑,𝑡                        ∀𝛾 ∈ 𝛤                                                                                          (14) 

The manufacturing constraint for the batch plant is as follows:  

 𝑥̅𝑑γ =
Q(0)𝑥Q(0)−Q(τ𝐷𝑖𝑠𝛾)𝑥Q(τ𝐷𝑖𝑠𝛾)

∫ 𝐷𝑑𝑡
τ𝐷𝑖𝑠𝛾

0

                         ∀𝛾 ∈ 𝛤                  (15) 

𝑥̅𝑑γ ≥ 𝑥̅𝑑
∗
γ                                                                 ∀𝛾 ∈ 𝛤                   (16) 

where 𝑥̅𝑑
∗
B1  and 𝑥̅𝑑

∗
B2  represent the critical product purity for ProdB1 (0.995) and ProdB2 (0.997), 

respectively. Therefore, an optimal reflux ratio must be determined to keep the unit on spec, according to 

the task selected. The operational cost function for this equipment is a function of vapor flow, unit price 𝑝𝑑 

($1.5/m3·hr), and the task completion time, i.e. 

𝐹𝐷𝑖𝑠𝛾,𝑑,𝑡 = τ𝐷𝑖𝑠𝛾𝑝𝑑𝑉                                                 ∀𝛾 ∈ 𝛤                                                                           (17) 

Material output proportion variables are defined in Equation (18a-b), where the total amount of accumulated 

distillate (𝐷𝑡𝑜𝑡𝛾
) dictates the net quantity of manufactured product. Initial reboiler charge Q(0) is given in 

Equation (12a). 

𝜌𝑜𝑢𝑡𝑖,𝐷𝑖𝑠𝛾,𝑃𝑟𝑜𝑑𝛾,𝑡 
= 𝐷𝑡𝑜𝑡𝛾

/Q(0)                            ∀𝛾 ∈ 𝛤                                                                     (18a) 

𝜌𝑜𝑢𝑡𝑖,𝑅𝑐𝑦𝛾,𝑃𝑟𝑜𝑑𝛾,𝑡 
= Q(τ𝐷𝑖𝑠𝛾)/Q(0)                        ∀𝛾 ∈ 𝛤                                                                               (18b) 

The overall net cost function considered for this plant for a given production horizon is as follows: 
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𝛹($) = ∑∑∑𝐹𝑗,𝑘,𝑡

𝐻

𝑡=0

𝐾𝑗

𝑗

𝐾

𝑘

                                                                                                                                           (18) 

 

5.2 Results 
 

In this section, results are presented, obtained from applying the algorithms presented above to three 

different scenarios of the case study. The Python package, Pyomo 5.6.190,91, was chosen to solve the 

resulting optimization problems. A computer with an Intel® Core™ i7-7770HQ 3.8GHz and 16GB of RAM 

was used to run all the optimization problems. Solvers were selected based on performance. For the back-

off decomposition algorithm, CPLEX was used for the MILP scheduling problem and ipopt with the ma57 

HSL linear solver for the dynamic optimization problem. Several open-source MINLP solvers were tested 

for the integrated formulation; however, better performance was found when using the Pyomo/GAMS 

interface. The solvers SBB92 and DICOPT93 are selected for the multi-scenario integrated problem, 

CONOPT94 was used as the non-linear sub-solver in both MINLP solvers.  

Several modules within Pyomo were used to complete the implementation of the proposed algorithms. The 

Generalized Disjunctive Programming (GDP) module facilitated the definition of logical disjunctions, 

which are needed for the integrated approach. To recast the multi-scenario MLDO into a MIDO, this module 

provides two methods to reformulate logical disjunctions, the Big-M method and the convex hull relaxation 

(CHR). The latter generally leads to a tighter relaxed problem at the cost of larger problem size, compared 

with the Big M method. In the proposed algorithm, the dynamic models that describe operating tasks are 

nonlinear and nonconvex, such that applying the CHR might risk cutting off the feasible search space 84. 

Moreover, since the problem is already highly dimensional due to the multi-scenario uncertainty, 

consequent growth in the size of the problem is highly undesirable, for this purpose the Big-M method was 

selected. Furthermore, Pyomo’s GDP module is capable of considering non-identical M multipliers for 

linear constraints. This method, also referred to as Multiple Parameter Big-M methodology82, can use 
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different values for the M multipliers with their respective constraint. An optimal value of M is found, such 

that, good quality, tighter relaxations can be achieved. 

 Moreover, the differential-algebraic equations (DAE)95 module was chosen for its versatility when 

obtaining the discretization of time-dependent equations. This allows for the reformulation of the MIDO 

problem into an MINLP. For the purpose of this study, and to guarantee numeric stability, a discretization 

based on orthogonal collocation on finite elements is selected. In this case study, eight finite elements are 

considered, each having four collocation points, which provided accurate results in reasonably short 

computational times. 

Scenario 1: Nominal Conditions  
 

For comparison purposes, a scenario where the uncertain parameters are set to their expected value (nominal 

conditions) is considered first, which is then be compared against the decomposition approach. This 

scenario is equivalent to solving the optimization problems presented in appendix A considering only one 

realization in the uncertain parameters, corresponding to the relative volatility (Equation 12c) and the 

reactor kinetic coefficient (Equation 8b-c).  

For illustrative purposes, an attempt at solving the integrated approach to global optimality is performed. 

BARON 96 was used to solve the resulting MINLP problem. A locally optimal solution is found in the pre-

solve stage, corresponding to the same objective as SBB and DICOPT (Shown in Table 2). However, given 

a computational time limit of 86,400 seconds, it failed to close the upper bound on the problem (relative 

gap of 31%) even when providing the solver with lower and upper bounds on all variables and an 

initialization based on locally optimal conditions. Efficient implementation of techniques for ensuring a 

global optimal solution of non-convex generalized disjunctive formulations still remains an open research 

question 84.  
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In comparison, local MINLP solvers provide a solution with a relatively low computational time. A feasible 

integer solution is found by the branch and bound algorithm, closing the relative optimality gap to 0.1%. 

Differences between dynamic decisions and objective function obtained with SBB and DICOPT are 

negligible, as shown in Table 2. Computational time of DICOPT, although almost two times greater than 

SBB, still remains attractive; however, this property diminishes as the problem increases in size, as it will 

be shown in the next scenarios. A different schedule, which yields the same objective value is obtained for 

each solver; however, the only difference stems from the order of the production sequence, batch sizes and 

material balance remained the same for both solvers.  

For the case of the decomposition algorithm, a nominal solution is obtained by first solving the scheduling 

problem, which accounts for all of the integer variables for this approach. Relevant scheduling parameters 

are obtained from a steady-state, recipe-based operation of the batch plant and are calculated a priori. 

Consequently, the dynamic optimization problem aims to find the optimal control trajectory when no 

uncertainty or process variability is considered for the resulting production sequence. This case is one which 

has not received any feed-back from the back-off terms, and can be considered equivalent to a sequential-

 

Table 2: Comparison between the integrated and decomposition approach when considering a nominal 

realization in the uncertain parameters 

Approach Integrated Back-off decomposition 

Integer Variables 66 66 

Continuous Variables 2,823 1,770 

Number of constraints 3,029 1,852 

Process revenue ($) 1,694 (SBB, DICOPT, BARON) 1,578 

CPU time (s) 
295 (SBB), 540 (DICOPT), 86,400 

(BARON) 

0.76 
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based optimization. For this scenario, the integrated formulation exploits the linking of scheduling and 

dynamic decisions to achieve around 9% greater objective value than the decomposition approach. 

Comparison of solutions for both methodologies are shown in Table 2. 

Figure 7 shows the production sequences obtained from the back-off and integrated approaches, 

respectively. In both cases, two events on the distillation column are dedicated to the production of ProdB2 

(blue), while only one is used for the production of ProdB1 (red). This suggests that ProdB2 is considered 

to be the most economically relevant product when the nominal case is considered. SBB and BARON 

converged to the same schedule. Scheduling decisions, however, are not necessarily unique. There may 

exist multiple production sequences that yield the same value in the objective function46, which was 

observed on the resulting schedules obtained by SBB and DICOPT, where the latter allocates the production 

of ProdB1 to the last possible slot (at t=8), however converging to the same objective and dynamic 

decisions. Note that the integrated approach utilizes its interconnectivity between layers to achieve a greater 

purity of species B in intermediate material IntAB; a greater initial concentration of species B in the initial 

distillation column batch indicates that a greater amount of ProdB1 or ProdB2 may be produced. Moreover, 

smaller batch sizes processed by the distillation column translate into lower operational costs.  

 

 

Figure 7: Scenario 1: Schedules for the back-off decomposition (left) and SBB-BARON integrated 

approach (right) 
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As mentioned in the previous section, average purity (Equation 15) is the critical operational constraint of 

the plant. Since ProdB2 has a higher purity requirement (i.e. 0.997) than ProdB1 (i.e. 0.995), keeping the 

average purity of ProdB2 above its minimum threshold (Equation 16) requires an overall larger reflux ratio, 

when compared to the production of ProdB1. Therefore, ProdB2 is the product which limits the degrees of 

freedom of the overall problem and is of the most interest for the presentation of the results. The optimal 

control profile for the reflux ratio in the production of ProdB2 is shown in Figure 8 for both the integrated 

(SBB, DICOPT) and sequential back-off approach. As a consequence of processing smaller batch sizes, the 

integrated problem is able to meet the operational constraint with a smaller reflux ratio, which indicates 

that more product is accumulated as distillate thus producing higher revenues for this process.  

 

 

 

 

 

 

Figure 8: Resulting reflux ratio control profiles for the manufacturing of ProdB2, considering the 

nominal case for the integrated (SBB, DICOPT), and back-off approach 
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Scenario 2: Uncertainty in the Distillation Unit 
 

The aim of this scenario is to test the performance of both the integrated and back-off approach under the 

effects of an uncertain parameter in the distillation unit. For this scenario, uncertainty in the relative 

volatility (α) is considered. Consider that the uncertain parameter α is normally distributed, i.e. 

𝛩𝑢𝑛𝑐 = 𝛼 ~𝑁(2.515,0.06832) 

For the integrated approach, a vector of normalized weights is calculated, which are assigned to each 

discrete realization of the uncertain parameter. Nineteen realizations of 𝛼  are considered; preliminary 

simulations were used to determine that this number of realizations is enough so that any addition does not 

change the objective function by more than 0.5%, the range of possible values are within 4 standard 

deviations of the previously defined PDF. This case is equivalent to solving the optimization problem in 

Appendix A.1, exploring 19 different discrete realizations affecting Equation (19d). Although uncertain 

realizations do not increase the number of integer variables in the integrated formulation, added constraints 

have significant impact on problem size, e.g. by an order of magnitude when compared to the nominal case 

(Table 2) thus affecting the overall algorithm performance (see Table 3).  

 

 

Table 3: Comparison of problem size between integrated and back-off approach when considering one 

stochastic parameter in the process model 

Approach Integrated Back-off decomposition 

Integer Variables 66 66 

Continuous Variables 23,996 1,770  

Number of constraints 24,464 1,852 
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Next, the proposed scenario is solved by following the back-off decomposition approach. The initial 

procedure is similar to that described for Scenario 1. However, for this case, by considering a stochastic 

representation of the uncertain parameter, MC simulations have to be performed to capture the variability 

of the batch plant. It was determined, through a priori simulations tests, that the number of Monte Carlo 

simulations should be MC=1,000 to obtain consistent output distributions. 

 For each resulting feasibility problem, we evaluate 1,126 variables and 1,374 constraints, as described in 

section 4. This stage evaluates MC realizations on inequality constraint (Equation 15), so as to obtain a 

process PDF output, due to the stochastic effect of α on the distillation process.  

 

Figure 9: Output distributions of the operational constraint when subject to uncertainty when considering (top) 

no back-off, (bottom) λ=3. Dotted line represents the required purity constraint on both products 
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Figure 9 (top), show the resulting PDFs which correspond to output of the first master outer-loop iteration 

(i=0) of the back-off approach. This iteration, due to not receiving variability feed-back in the form of the 

back-off parameters, creates an output distribution scenario where the key purity constraint is most surely 

violated during operation. Therefore, a “shift” in the purity constraint must be considered if the plant is to 

be kept on spec due to the effect of uncertainty. That “shift” can be tuned in the present approach by setting 

the multiplier in the back-off terms (λ) to a sufficiently large value. In this scenario, λ=3, which implies 

that three standard deviations on the output purity variability are incorporated as variability, as explained 

in section 4. The algorithm converged in four iterations generating a solution that most surely satisfies the 

required operational constraint, as shown in Figure 9 (bottom). 

 

Accounting for process variability however, comes at a necessary profit loss, as shown in Table 4. When 

λ=3, the most conservative case for the back-off approach is explored; as much as a 40% decrease in profits 

is observed when compared against the nominal solution (see Tables 2 and 4). This loss in profit is mainly 

attributed to the increasingly conservative reflux ratios, as shown in Figure 10. This is mostly due to the 

addition of the back-off terms into the purity constraint, which have effectively “backed-off” from the 

nominal set-points, i.e. 0.995 for ProdB1 and 0.997 for ProdB2, to accommodate the uncertainty in α. As 

mentioned in the previous section, a larger value for λ accounts for a larger effect of the process variability. 

Table 4: Comparison in solution quality and computational cost for integrated and back-off 

methodology when considering one uncertain parameter 

Approach Integrated 
Back-off 

λ=1 

Back-off 

λ=2 

Back-off 

λ=3 

Process revenue ($) 979 1,431 1,211 1,016 

Iterations - 3 4 4 

CPU time (s) 4,509 (SBB), 6,024 (DICOPT) 2,783 3,691 3,937 
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For this particular formulation, the performance of DICOPT started to deteriorate as the problem grows in 

size. When compared to scenario 1, as much as an order of difference is needed in computational time to 

converge, as seen in Table 4. Moreover, with each main iteration, the size of the master MILP problem for 

DICOPT increases, making the successive solution of the master problem progressively expensive97. 

Discrepancies between the integrated and decomposition approach are noted due the inherent calculation 

of the back-off terms, which assumes output distributions to follow a normal distribution, however, due to 

the non-linearity of the process, resulting PDFs are slightly skewed. Moreover, due to the stochastic nature 

of the parameters, there may be critical uncertain realizations for which dynamic feasibility cannot 

guaranteed, accounting for those unlikely but critical realizations ensure robustness against parameter 

uncertainty at the expense of generating conservative solutions. The integrated approach, by solving a 

sparse problem, guarantees that every realization considered is accommodated by the particular dynamic 

 

Figure 10: Reflux ratio control profiles for maintaining ProdB2 on spec when considering an integrated 

approach and different lambda multipliers for the back-off terms 
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decisions found, which is reflected as a more conservative reflux ratio is obtained for this case, as shown 

in Figure 10, and a lower process revenue relative to the back-off approach, as shown in Table 4. 

Computational costs for the integrated approach are observed to increase with problem size, where DICOPT 

is noted to have already a difference of 33% in performance with respect to SBB. The back-off approach 

avoids the explicit solution of the MINLP by iteratively solving the MILP and NLP separately; however, 

the main bottleneck of this approach will be the MC simulations stage, where most of the computational 

time is spent.  

As shown in Figure 11, there exists a critical threshold where ProdB2 ceases to be the most economically 

attractive material; instead, production of ProdB1 is incentivised. This is mainly due to the increasingly 

conservative reflux ratios, which are reflected as less material output (i.e. less overall revenue) at the cost 

of keeping the purity constraint on spec; therefore, for ProdB2, the trade-off between incurring a cost for 

operating the distillation column and obtaining material sales, is not as profitable as it is for ProdB1. Product 

manufacturing priority, then, has been observed to be sensitive to model parameter uncertainty.  

 

 

 

Figure 11: Resulting schedules for the integrated (Left) and back-off decomposition (Right), considering 

λ=3, when subjected to the effects of a normal probability distribution in a single uncertain parameter 
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As larger values for λ are considered, decisions made by the back-off methodology seem to converge to 

that achieved by the integrated approach. This can be observed in Figure 11, where a comparison for the 

back-off case (λ=3) and the integrated approach is considered. In both cases scheduling decisions led to the 

allocation of the maximum material capacity in the reactor (60 kg); although this means a larger processing 

cost is incurred (Equation 9), this also allows for the distillation column to process a larger batch leading 

to the maximization of product sales. 

If ProdB2 is to remain on spec, a greater initial purity of species B is required, which is achieved by 

minimizing the amount of species A in the intermediate material IntAB. This however, comes with a trade-

off, by reducing the amount of species A, production of waste species C (WstC) increases. As a result, the 

initial batch size in the column for the production of ProdB2 is smaller than that specified in the nominal 

case. This large interaction between uncertainty, dynamic and scheduling decisions serves as a justification 

for their simultaneous consideration. 

Scenario 3: Uncertainty in the Reactor and Distillation Units 
 

For this scenario, the operation of both the distillation and the reactor units are subject to uncertainty. The 

reaction kinetic parameter (β) in conjunction with α are considered uncertain model parameters. In the 

following sections, the effects of different PDFs are considered. 

Scenario 3.a: Uniform Probability 

 

For the integrated approach, 6 realizations in the reaction kinetic parameter are considered, which remain 

within a 15% variation from its nominal value while considering 19 realizations in the relative volatility. 

As shown in Table 5, considering six realizations of equal probability of occurrence in the reactor combined 

with 19 realizations in α were enough so that any other additional realization does not change the overall 

objective function by more than 0.5%. 
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As indicated above, the increase in the number of uncertain realizations does not constitute an increase in 

the number of integer variables, however a significant growth is observed in the number of nonlinear 

algebraic equations and degrees of freedom in the optimization problems, when gauged against Scenario 1, 

as shown in Table 6. This is mainly due to the combinatorial nature in the problem, where the combination 

of the effects for each different realization in uncertain parameters have to be considered. For the back-off 

approach, it was found that setting MC=1,000 returned sufficiently accurate approximations to the process 

output distributions.  

 

 

 

Table 6: Problem size comparison for the integrated and back-off approach, when considering a uniform 

distribution and two uncertain parameters 

Approach Integrated Back-off decomposition 

Integer Variables 66 66 

Continuous Variables 141,420 1,770  

Number of constraints 142,889 1,852  

 

Table 5: Objective function change when considering additional realizations in the additional reactor 

uncertain parameter and nineteen realizations in α 

 

No. of realizations in uncertain reactor parameter 3 5 6 7 

Objective function 923.6 869.82 863.3 865.78 

Number of constraints  71,933 119,237 142,889 166,541 

Number of variables 71,151 118,041 141,486 164,931 

 



56 

 

A comparison of the results for this scenario is shown in Table 7. Having equal probability of occurrence, 

the overall profit decreases for all cases so as to account for the high process variability. Compared with 

the nominal case (Table 2), as much as a 50% reduction in profit has to be incurred to account for the effects 

on uniform probability on the uncertain parameters. The proposed back-off decomposition algorithm was 

able to converge within reasonable computational times, i.e. as much as 2 times faster than SBB and an 

order of magnitude faster with respect to DICOPT. For the integrated approach, the trend of increasingly 

large computational costs is observed, as more uncertain realizations are considered (See Table 2 and Table 

7). However, obtaining a robust solution is guaranteed by ensuring constraints are met for all uncertain 

parameter combinations considered. A possible reformulation of this approach needs to be considered for 

its applicability on large-scale batch multi-product multi-unit plants. However, the problem size for the 

back-off decomposition approach remains unchanged, i.e. no additional variables or constraints need to be 

added since it relies on the feasibility stage to propagate an approximation of process variability into the 

optimization problem. Therefore, the back-off method converges in shorter computational times than those 

required by the integrated approach when considering the effects of multiple uncertain parameters, as shown 

in Table 7. 

Table 7: Overall process revenue of the batch plant for integrated and back-off approach, when subject 

to two uncertain parameters which follow a uniform distribution 

Approach 
Integrated 

(SBB) 

Integrated 

(DICOPT) 

Back-off  

λ=1 

Back-off  

λ=2 

Back-off  

λ=3 

Process 

revenue ($) 

776.9 LB 

863.3 UB 

863.3 1,403 1,021 934 

Iterations - - 3 5 5 

CPU time (s) 11,283 61,334  2,878 4,472 4,909 
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For the present scenario, process non-linearities are more noticeable for the output distribution of the 

resulting purity when considering a uniform distribution on the uncertain parameters. This in turn, affects 

the accuracy of the calculated variability (back-off terms). However, the algorithm is able to converge 

within 5 iterations for the most conservative case (i.e. Table 7, λ=3), while still accommodating the specified 

variability successfully, as shown in Figure 12.  

Scenario 3.b: Non-Gaussian Distribution 

 

For this scenario, the effect of having non-gaussian distributions on the reaction kinetic parameter (β) and 

the relative volatility (α) is considered. This was done to test the performance of the present back-off 

algorithm under highly nonlinear probability distribution functions.  

 

Figure 13: Uncertain parameter non-gaussian distributions 

 

 

Figure 12: Output distributions of purity for ProdB2 when subjected to the effects of two uncertain 

parameters which follow a uniform distribution. Images correspond to the specific case of λ=3 for i=0 

(Left) and i=5 (Right) 
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The distributions considered are presented in Figure 13. These distributions were generated by using a 

Weibull distribution with a shape parameter equal to 10 and 2 for the reactor parameter and relative 

volatility, respectively. 

 The results for this scenario indicate that it became computationally limiting to accurately represent such 

a distribution with the current integrated approach. By considering the same amount of realizations (19) for 

both the kinetic parameter and the relative volatility, the problem size grows considerably, when compared 

to the nominal case (Table 2), as shown in Table 8.   

From this non-gaussian distribution, note that the back-off algorithm struggles with capturing the 

variability; as many as 8 iterations were required for the convergence of the algorithm, as shown in Table 

9.   

Table 9: Results comparison between integrated and back-off approach when considering non-gaussian 

distributions on the uncertain parameters 

Approach Integrated 
Back-off 

λ=1 

Back-off 

λ=2 

Back-off 

λ=3 

Process revenue ($) - 1,288 916 731 

Iterations - 4 8 7 

CPU time (s) >86,000 3,792 7,448 6,846 

 

Table 8: Model size comparison for the integrated and back-off approach. 19 discrete realizations for 

the integrated problem were considered for both uncertain parameters. 

Approach Integrated Back-off decomposition 

Integer Variables 66 66 

Continuous Variables 446,271 1,770 

Number of constraints 450,365 1,852 
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When capturing a large amount of process variability (i.e. λ=3) a significant decrease in the profits is 

observed, i.e. more than 50% in revenue when compared against a nominal solution. One of the benefits of 

the back-off algorithm is its versatility to adjust the conservativeness of the solution. It is possible to accept 

a certain amount of error in the solution and implement a less conservative λ. Given a computational limit 

of 86,000 seconds, neither SBB or DICOPT were able to close the set relative optimality criterion; 

moreover, no feasible solution was found within the given time limit, which is already an order of 

magnitude when compared against the back-off decomposition approach (Table 9). 

Scheduling decisions change due to the different distributions on the uncertain parameters, as mentioned 

above, originally ProdB2 was the economically attractive product. This decision shifts to benefit the 

production of ProdB1 when considering a stochastic distribution in the uncertain parameters. For the 

present nonlinear distribution scenario, this shift remains, as shown in Figure 14. However, batch sizes 

decrease so as to keep the batch plant on spec. A smaller initial batch size on the distillation column implies 

a larger amount of WstC was removed during the filtering stage, this is mainly due to the effects of the 

uncertainty which are propagated through the reactor into the filter.   

As shown in Figure 15, the effects of multipliers (λ) are reflected on the control decisions and the overall 

conservatism of the solution. It is noted that the effect is more strongly observed in the distillation column; 

this is expected since this unit is critical for meeting the purity constraint. Moreover, this highly 

 

Figure 14: Schedule comparison between different lambda multipliers, λ=1 (Left) and λ=3 (Right), when 

considering a non-gaussian distribution 
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conservative profile (i.e. λ>3) is reflected as much less material is drawn from the distillate, affecting overall 

revenue of the plant. The slight increase in the transformed temperature control profiles for the reactor is 

mainly attributed to the decision of minimizing the concentration for species A. This trade-off generates a 

larger cost of operation in the reactor, according to Equation (9). Moreover, as the concentration of A 

decreases, a potential increase in the concentration of waste species C is observed, also producing an 

increase in the operation of the filter. Nevertheless, this is done so that the batch plant meets the required 

operational constraints. 

 

Figure 15: Resulting control decisions when subject to non-gaussian distribution for the back-off approach, 

when considering different lambda multipliers. 

 



61 

Chapter 6: Conclusions 

In this chapter a summary of the contributions of this thesis is presented, highlighting the novelty of the 

research and expanding upon limitations of the algorithms developed in this study. Based upon the previous 

considerations, several points are presented for recommendations and possible future research opportunities.  

6.1 Summary of Contributions 
 

The research contributes with the development of two algorithms for the integration of scheduling and 

control of multi-purpose batch plants: an integrated and a decomposition-based approach. The contributions 

of this study highlight the use of a decomposition algorithm, shown to successfully accommodate 

stochastic-based model parameter uncertainty. The effect of this uncertainty is shown to significantly 

impact scheduling and control decisions. 

The integrated multi-scenario-based algorithm was shown to obtain robust solutions. This method 

guarantees to find a local-optimal set of scheduling and control decisions, which remain feasible for all the 

considered effects of uncertain parameter combinations. However, the computational cost of this algorithm 

is shown to exponentially grow in size as one considers more realizations in the uncertain parameters, 

limiting its application to medium-scale plants with a very limited number of uncertain parameters.  The 

resulting complexity of the problem is also highly dependent on the number of discretizations in the 

scheduling horizon, this is mainly due to the disjunctive task-dependent decisions that have to be performed 

for each unit at each point in time. For this reason, scalability of this method is limited when considering 

large number of units with a considerable production make-span. Guaranteeing a globally optimal solution 

still remains a challenge when considering large-scale non-convex MINLP problems.  

The back-off decomposition algorithm was shown to successfully obtain solutions which approximate the 

objective function of a locally optimal MINLP. A key feature of this algorithm is giving the user the 

freedom to fine-tune conservativeness of the solution, such that it seeks for scheduling and control solutions 

that will most-surely remain dynamically feasible under the effect of stochastic uncertainty.  However, due 
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to the stochastic nature of the process, there exists certain realizations of the uncertain parameters for which 

dynamic operability is not guaranteed. The computational benefits of this approach are emphasized, 

avoiding a combinatorial growth in problem size by approximating multiple effects of process variability. 

The Monte Carlo simulation stage still remains a bottleneck for this approach; however, possible future 

improvements may be considered to accurately and efficiently approximate the output distribution of 

process variability due to uncertainty.  

Both the multi-scenario and the back-off algorithms were applied to a multi-product multi-unit batch plant. 

Considering an open loop control scheme, with the objective of maximizing overall process revenue under 

the effect of uncertainty.  Key decisions include utility costs, material balance constraints, optimal 

assignation of units and product-dependent constraints. For the decomposition (back-off) approach, a 

convergence to the local optimal MINLP solution is observed when considering a high enough multiplier 

on the back-off terms. The effect of back-off terms was observed as a decrease in the overall process 

revenue when compared against the nominal case; however, optimal open-loop control and scheduling 

decisions are made, able to mitigate the effects of parameter uncertainty. The effect of different probability 

density functions on the solution was assessed. When accounting for process variability, a threshold was 

observed where one product will become more economically attractive. This is reflected as a change in 

scheduling decisions, favoring the manufacture of the most profitable product. 

The scenarios tested in this study showed that the proposed decomposition algorithm remains 

computationally tractable when compared against an integrated MINLP, without compromising on solution 

quality. It is observed that conservative solutions are obtained when requiring to incorporate a large 

magnitude of variability in the process operational constraints, there may be cases where the back-off 

algorithm becomes a dynamically infeasible problem if limited in control actions (i.e. degrees of freedom). 

A decrease in computational time can be achieved if one chooses to relax the convergence criterion at the 

expense of lowering the solution quality. 
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Based on the results obtained in this study, it is shown that there exists important interactions between 

stochastic effects of parameter uncertainty on scheduling and control decisions. Therefore, there is merit 

in the consideration for their integration.  

6.2 Recommendations and Research Opportunities 
 

On the basis of the previously discussed conclusions, several considerations can be made to improve the 

efficiency and accuracy of the presented algorithms. 

• One main venue for modification of the algorithm would be to consider processing time as a 

decision variable. This would require however, a complete reformulation of the scheduling scheme 

into a non-uniform discrete or continuous formulation. This would allow for the exploration of how 

this new decision variable is sensitive with respect to the uncertain process parameters at the 

expense of solving more complex optimization formulations. 

 

• Calculation of the back-off terms are based upon a standard deviation, which is adjusted depending 

of the assumed input distribution of the uncertain process model parameters. This assumption was 

seen to deviate from reality, as the output distribution is often nonlinear resulting from the non-

linearities of the process model. This implies that a re-formulation for updating the back-off terms 

is necessary, as this will most likely improve the convergence of the algorithm when considering 

non-gaussian distributions. 

 

• The inclusion of process design and planning decisions would result in a more challenging problem 

to solve. Although the work presented by Koller et al.27 includes process design decisions, there is 

currently no study that explores the solution of planning, design, scheduling and control of batch 

processes under uncertainty. 
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• Gauging the performance of the presented back-off decomposition algorithm when solving larger 

scale, more complex problems is still an aspect that that needs to be explored in detail.  

 

• A more effective method of uncertainty propagation could be implemented, as has been shown in 

the study presented by Kimaev & Ricardez-Sandoval98, it is possible to increase the computational 

performance by implementing polynomial chaos expansions to approximate the distribution of the 

operational constraints due to the effect of uncertainty, rather than perform expensive MC 

simulations to obtain the distribution in the process outputs.  

 

• Future research will compare the performance of the proposed back-off approach to other 

decomposition methods presented in the literature, e.g. Benders decomposition5,54 or Lagrangian 

decomposition53. 

 

• A reformulation would have to be considered for the proposed back-off algorithm to be valid for 

real-time on-line applications. Integrated reactive scheduling and control under stochastic 

parameter uncertainty would require information about sensitivities of decisions variables to the 

effects of uncertainty, so that performing MC simulations to obtain this information might be 

eliminated altogether. 
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 Appendix A. Optimization Formulations for the Case Study  

A.1 Integrated Approach 
 

In this section the overall optimization problem used for the solution of integrated approach is presented. 

Several sets used in the formulation correspond to the ones defined on section 4. That is: 𝐾 = {𝑟, 𝑓, 𝑑}), 

𝐽 = {𝑅𝑐𝑡, 𝐹𝑖𝑙, 𝐷𝑖𝑠𝐵1, 𝐷𝑖𝑠𝐵2} and S= {Feed A, IntABC, WstC, IntAB, RcyB1, RcyB2, ProdB1, ProdB2}. 

Task processing time is considered constant, and equal to two hours. 

The overall optimization problem consists of 3 main disjunctions (one for each unit considered), within 

each disjunction, there are 𝐽𝑘 modes of operation and one idle state for each unit. This means that equipment 

which can only perform one task (𝐽𝑟 = 𝑅𝑐𝑡,  𝐽𝑓 = 𝐹𝑖𝑙) have 2 possible disjunctive decisions, as shown in 

Equation (19b) for the reactor and (19c) for filter, respectively. Meanwhile, the distillation column (𝐽𝑑 =

𝐷𝑖𝑠𝐵1, 𝐷𝑖𝑠𝐵2) has three disjunctive decisions (Equation 19d), including its idle state. 

 

                                     

max  ∑𝐶𝑃𝑟𝑜𝑑𝛾
𝑆𝑃𝑟𝑜𝑑𝛾,𝐻

𝛤

𝛾

 − ∑ 𝜔𝛿𝛹

𝛿𝑁𝑠𝑐𝑛  

𝛿=𝛿1

                                                                                                             (19a)  

                                     

𝑠. 𝑡.   

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (2𝑏 − 2𝑑) 

[
 
 
 
 
 
 

𝑌𝑟,𝑅𝑐𝑡,𝑡 = 𝑇𝑟𝑢𝑒

𝑊𝑟,𝑅𝑐𝑡,𝑡 = 1

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (8𝑎 − 𝑐) ∀𝛿 ∈ 𝛥

1.8 ≤ 𝑢𝑟,𝑅𝑐𝑡,𝑡(𝜏
𝑗) ≤ 8.0  

𝜌𝑜𝑢𝑡𝑅𝑐𝑡,𝐼𝑛𝑡𝐴𝐵𝐶,𝑡,𝛿
= 1  ∀𝛿 ∈ 𝛥

𝐹𝑅𝑐𝑡,𝑡,𝛿 = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (9)  ∀𝛿 ∈ 𝛥]
 
 
 
 
 
 

⋁

[
 
 
 
 

𝑌𝑟,𝑅𝑐𝑡,𝑡 = 𝐹𝑎𝑙𝑠𝑒

𝑊𝑟,𝑅𝑐𝑡,𝑡 = 0

𝜌𝑜𝑢𝑡𝑅𝑐𝑡,𝐼𝑛𝑡𝐴𝐵𝐶,𝑡,𝛿
= 0  ∀𝛿 ∈ 𝛥

𝐹𝑅𝑐𝑡,𝑡,𝛿 = 0 ∀𝛿 ∈ 𝛥 ]
 
 
 
 

                         ∀𝑡                   (19b) 
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[
 
 
 
 
 

𝑌𝑓,𝐹𝑖𝑙,𝑡 = 𝑇𝑟𝑢𝑒

𝑊𝑓,𝐹𝑖𝑙,𝑡 = 1

𝜌𝑜𝑢𝑡𝐹𝑖𝑙,𝑊𝑠𝑡𝐶,𝑡 
= 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11𝑎) ∀𝛿 ∈ 𝛥

𝜌𝑜𝑢𝑡𝐹𝑖𝑙,𝐼𝑛𝑡𝐴𝐵,𝑡 
= 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11𝑏)  ∀𝛿 ∈ 𝛥

𝐹𝐹𝑖𝑙,𝑡,𝛿 = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10)  ∀𝛿 ∈ 𝛥 ]
 
 
 
 
 

⋁

[
 
 
 
 
 

𝑌𝑓,𝐹𝑖𝑙,𝑡 = 𝐹𝑎𝑙𝑠𝑒

𝑊𝑓,𝐹𝑖𝑙,𝑡 = 0

𝜌𝑜𝑢𝑡𝐹𝑖𝑙,𝑊𝑠𝑡𝐶,𝑡 
= 0 ∀𝛿 ∈ 𝛥

𝜌𝑜𝑢𝑡𝐹𝑖𝑙,𝐼𝑛𝑡𝐴𝐵,𝑡 
= 0 ∀𝛿 ∈ 𝛥

𝐹𝐹𝑖𝑙,𝑡,𝛿 = 0 ∀𝛿 ∈ 𝛥 ]
 
 
 
 
 

          ∀𝑡      (19c)        

[
 
 
 
 
 
 
 
 

𝑌𝑑,𝐷𝑖𝑠𝐵1,𝑡 = 𝑇𝑟𝑢𝑒

𝑊𝑑,𝐷𝑖𝑠𝐵1,𝑡 = 1

𝑊𝑑,𝐷𝑖𝑠𝐵2,𝑡 = 0

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (12𝑎 − 16)
1.8 ≤ 𝑅 ≤ 8.0

𝜌𝑜𝑢𝑡𝐷𝑖𝑠𝐵1,𝑃𝑟𝑜𝑑𝐵1,𝑡 
= 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (18𝑎) ∀𝛿 ∈ 𝛥

𝜌𝑜𝑢𝑡𝐷𝑖𝑠𝐵1,𝑅𝑐𝑦𝐵1,𝑡 
= 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (18𝑏) ∀𝛿 ∈ 𝛥

𝐹𝐷𝑖𝑠𝐵1,𝑡,𝛿 = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (17) ∀𝛿 ∈ 𝛥 ]
 
 
 
 
 
 
 
 

⋁

[
 
 
 
 
 
 
 
 

𝑌𝑑,𝐷𝑖𝑠𝐵1,𝑡 = 𝑇𝑟𝑢𝑒

𝑊𝑑,𝐷𝑖𝑠𝐵1,𝑡 = 1

𝑊𝑑,𝐷𝑖𝑠𝐵2,𝑡 = 0

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (12𝑎 − 16)
1.8 ≤ 𝑅 ≤ 8.0

𝜌𝑜𝑢𝑡𝐷𝑖𝑠𝐵2,𝑃𝑟𝑜𝑑𝐵2,𝑡 
= 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (18𝑎) ∀𝛿 ∈ 𝛥

𝜌𝑜𝑢𝑡𝐷𝑖𝑠𝐵2,𝑅𝑐𝑦𝐵2,𝑡 
= 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (18𝑏) ∀𝛿 ∈ 𝛥

𝐹𝐷𝑖𝑠𝐵2,𝑡,𝛿 = 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (17) ∀𝛿 ∈ 𝛥 ]
 
 
 
 
 
 
 
 

 

 

⋁

[
 
 
 
 
 

𝑌𝑑,𝐷𝑖𝑠𝛾,𝑡 = 𝐹𝑎𝑙𝑠𝑒

𝑊𝑑,𝐷𝑖𝑠𝛾,𝑡 = 0 ∀𝛾 ∈ 𝛤

𝜌𝑜𝑢𝑡𝐷𝑖𝑠𝛾,𝑃𝑟𝑜𝑑𝛾,𝑡 
= 0 ∀𝛾 ∈ 𝛤, 𝛿 ∈ 𝛥

𝜌𝑜𝑢𝑡𝐷𝑖𝑠𝛾,𝑅𝑐𝑦𝛾,𝑡 
= 0 ∀𝛾 ∈ 𝛤, 𝛿 ∈ 𝛥

𝐹𝐷𝑖𝑠𝛾,𝑡,𝛿 = 0 ∀𝛾 ∈ 𝛤, 𝛿 ∈ 𝛥 ]
 
 
 
 
 

          ∀𝑡                       (19d)        

𝑡 ∈ [0,10], 𝛥 = {𝛿1, 𝛿2 …𝛿𝑁𝑠𝑐𝑛
}, 𝛩𝑢𝑛𝑐 = {𝛼, 𝛽}, 𝜏𝑗 ∈ [𝑇𝑜𝑝0

𝑗
, 𝑇𝑜𝑝𝑓

𝑗
] ∀𝑗 

 

A.2 Back-Off Approach 
 

In this section the optimization problems used for the solution of the back-off decomposition approach are 

presented 

 

Scheduling 

max  ∑𝐶𝑃𝑟𝑜𝑑𝛾
𝑆𝑖,𝑃𝑟𝑜𝑑𝛾,𝐻

𝛤

𝛾

− 𝛹                                                                                                                               (20) 

𝑠. 𝑡.  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (3𝑏) 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (3𝑐) 
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𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (3𝑑) 

As shown in Equation (20), the goal of the scheduling problem is to maximize the overall process revenue, 

given a fixed makespan H and product and specific sale prices (𝐶𝑃𝑟𝑜𝑑𝛾
). The solution to the scheduling 

problem relates to the dynamics of the plant by sharing the following parameters. The operational cost at 

each iteration i of unit k that executes task j in time t (𝐹𝑗,𝑘,𝑡), and material input/output proportion (𝜌𝑖𝑛𝑗,𝑠,𝑡 
 

and 𝜌𝑜𝑢𝑡𝑗,𝑠,𝑡 
).  These parameters can be affected by uncertainty and therefore may change at each iteration 

i. 

Dynamic Optimization 

Equation (21) presents the overall dynamic optimization problem considered for this case study, where Cγ 

represents the sale price of ProdB1 30 ($/kg) and ProdB2 45 ($/kg), respectively. 

max  ∑𝐶𝛾𝐷𝑡𝑜𝑡𝛾

𝛾

− 𝛹                       ∀𝛾 ∈ 𝛤                                                                                                          (21) 

𝑠. 𝑡.   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (8) − (15), (17), (18)  

𝑡 ∈ [0, 𝐻] 

The inequality constraint shown in Equation (16) is affected by the uncertain parameters; therefore, these 

constraints are reformulated as described by the back-off methodology, i.e. 

𝑥̅𝑑γ −  𝜆𝑏𝑖γ
≥ 𝑥̅𝑑𝛾

∗                                                  ∀𝛾 ∈ 𝛤                                                                          (22) 

where 𝑏𝑖γ
 represents the back-off term for each product 𝛾  estimated at iteration i; as described in the 

previous section. These back-off terms capture the variability in product purity due to the combined 

stochastic effects of the uncertain kinetic parameter (β) and the relative volatility (𝛼). Thus, resulting 

scheduling and control decisions obtained from the present analysis are expected to most surely satisfy 

Equation (16) in the presence of stochastic realizations in the uncertain parameters. To simplify the analysis, 
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a single weighting parameter (𝜆) for the back-off terms is used in constraint (22) and remains fixed during 

the execution of the proposed decomposition algorithm.  

Note Equation (16) is not considered for the back-off decomposition approach, rather Equation (22) is used 

in its stead. Through the consideration of the back-off terms, an approximation of the process variability 

due to stochastic effects of uncertain parameters is achieved. However, in the integrated approach a unique 

solution is found, which completely satisfies every constraint in the presence of discrete realizations of 

uncertainty. Equation (22) then, is unnecessary for the integrated formulation.   


