53 research outputs found

    A Flexible, Highly Integrated, Low Power pH Readout

    Get PDF
    Medical devices are widely employed in everyday life as wearable and implantable technologies make more and more technological breakthroughs. Implantable biosensors can be implanted into the human body for monitoring of relevant physiological parameters, such as pH value, glucose, lactate, CO2 [carbon dioxide], etc. For these applications the implantable unit needs a whole functional set of blocks such as micro- or nano-sensors, sensor signal processing and data generation units, wireless data transmitters etc., which require a well-designed implantable unit.Microelectronics technology with biosensors has caused more and more interest from both academic and industrial areas. With the advancement of microelectronics and microfabrication, it makes possible to fabricate a complete solution on an integrated chip with miniaturized size and low power consumption.This work presents a monolithic pH measurement system with power conditioning system for supply power derived from harvested energy. The proposed system includes a low-power, high linearity pH readout circuits with wide pH values (0-14) and a power conditioning unit based on low drop-out (LDO) voltage regulator. The readout circuit provides square-wave output with frequency being highly linear corresponding to the input pH values. To overcome the process variations, a simple calibration method is employed in the design which makes the output frequency stay constant over process, supply voltage and temperature variations. The prototype circuit is designed and fabricated in a standard 0.13-μm [micro-meter] CMOS process and shows good linearity to cover the entire pH value range from 0-14 while the voltage regulator provides a stable supply voltage for the system

    Developing ultrasensitive and CMOS compatible ISFETs in the BEOL of industrial UTBB FDSOI transistors

    Get PDF
    Le marché des capteurs a récemment connu une croissance spectaculaire alimentée par l'application remarquable de capteurs dans l'électronique de consommation, l'industrie de l'automatisation, les appareils portables, le secteur automobile et l'internet des objets de plus en plus adopté. La technologie avancée des complementary metal oxide semiconductor (CMOS), les technologies de nano et de micro-fabrication et les plateformes de synthèse de matériaux innovantes sont également des moteurs du développement incroyable de l'industrie des capteurs. Ces progrès ont permis la réalisation de capteurs dotés de nombreuses caractéristiques telles que la précision accrue, les dimensions miniaturisées, l’intégrabilité, la production de masse, le coût très réduit et le temps de réponse rapide. Les ion-sensitive field-effect transistors (ISFETs) sont des capteurs à l'état solide (bio) chimiques, destinés à la détection des ions H+ (pH), Na+ et K+. Malgré cela, la commercialisation des ISFETs est encore à ses balbutiements, après près de cinq décennies de recherche et développement. Cela est dû principalement à la sensibilité limitée, à la controverse sur l'utilisation de l'électrode de référence pour le fonctionnement des ISFETs et à des problèmes de stabilité. Dans cette thèse, les ISFETs ultrasensibles et compatibles CMOS sont intégrés dans le BEOL des transistors UTBB FDSOI standard. Un circuit diviseur capacitif est utilisé pour polariser la grille d’avant afin d'assurer des performances stables du capteur. En exploitant la fonction d’amplification intrinsèque fournie par les transistors UTBB FDSOI, nous avons présenté des ISFET ultra sensibles. L'amplification découle du fort couplage électrostatique entre la grille avant et la grille arrière du FDSOI et des capacités asymétriques des deux grilles. Un changement de tension au niveau de la grille avant apparaît sur la grille arrière sous la forme d'un décalage amplifié de la tension. L'amplification, représentée par le facteur de couplage (γ), est égale au rapport de la capacité de l'oxyde de grille et de la capacité de le buried oxide (BOX). Par conséquent, en fonctionnalisant la détection du pH sur la grille avant pour les dispositifs FDSOI, la modification du potentiel de surface sur la grille avant est détectée par la grille arrière et amplifiée du facteur de couplage (γ), donnant lieu à un capteur chimique à l'état solide à sensibilité ultra-élevée. L'intégration de la fonctionnalité de détection a été réalisée en back end of line (BEOL), ce qui offre les avantages d'une fiabilité et d'une durée de vie accrues du capteur, d'une compatibilité avec le processus CMOS standard et d'une possibilité d'intégration d'un circuit diviseur capacitif. Le fonctionnement des MOSFETs, sans une polarisation appropriée de la grille avant, les rend vulnérables aux effets de grilles flottantes indésirables. Le circuit diviseur capacitif résout ce problème en polarisant la grille avant tout enmaintenant la fonctionnalité de détection sur la même grille par un couplage capacitif au métal commun du BEOL. Par conséquent, le potentiel au niveau du métal BEOL est une somme pondérée du potentiel de surface au niveau de la grille de détection et de la polarisation appliquée au niveau de la grille de contrôle. Le capteur proposé est modélisé et simulé à l'aide de TCAD-Sentaurus. Un modèle mathématique complet a été développé. Il fournit la réponse du capteur en fonction du pH de la solution (entrée du capteur) et des paramètres de conception du circuit diviseur capacitif et du transistor UTBB FDSOI. Dans ce cas, des résultats cohérents ont été obtenus des travaux de modélisation et de simulation, avec une sensibilité attendue de 780 mV / pH correspondant à un film de détection ayant une réponse de Nernst. La modélisation et la simulation du capteur proposé ont également été validées par une fabrication et une caractérisation du capteur de pH à grille étendue avec validation de son concept. Ces capteurs ont été développés par un traitement séparé du composant de détection de pH, qui est connecté électriquement au transistor uniquement lors de la caractérisation du capteur. Ceci permet une réalisation plus rapide et plus simple du capteur sans avoir besoin de masques et de motifs par lithographie. Les capteurs à grille étendue ont présenté une sensibilité de 475 mV/pH, ce qui est supérieur aux ISFET de faible puissance de l'état de l’art. Enfin, l’intégration de la fonctionnalité de détection directement dans le BEOL des dispositifs FDSOI UTBB a été poursuivie. Une sensibilité expérimentale de 730 mV/pH a été obtenue, ce qui confirme le modèle mathématique et la réponse simulée. Cette valeur est 12 fois supérieure à la limite de Nernst et supérieure aux capteurs de l'état de l’art. Les capteurs sont également évalués pour la stabilité, la résolution, l'hystérésis et la dérive dans lesquels d'excellentes performances sont démontrées. Une nouvelle architecture de détection du pH est également démontrée avec succès, dans laquelle la détection est fonctionnalisée au niveau de la diode de protection de la grille plutôt que de la grille avant des dispositifs UTBB FDSOI. La commutation de courant abrupte, aussi basse que 9 mV/decade, pourrait potentiellement augmenter la sensibilité de polarisation fixée à 6,6 decade/pH. Nous avons démontré expérimentalement une sensibilité de 1,25 decade/pH supérieure à la sensibilité reportée à l’état de l’art.Abstract: The sensor market has recently seen a dramatic growth fueled by the remarkable application of sensors in the consumer electronics, automation industry, wearable devices, the automotive sector, and in the increasingly adopted internet of things (IoT). The advanced complementary metal oxide semiconductor (CMOS) technology, the nano and micro fabrication technologies, and the innovative material synthesis platforms are also driving forces for the incredible development of the sensor industry. These technological advancements have enabled realization of sensors with characteristic features of increased accuracy, miniaturized dimension, integrability, volume production, highly reduced cost, and fast response time. Ion-sensitive field-effect transistors (ISFETs) are solid state (bio)chemical sensors, for pH (H+), Na+, K+ ion detection, that are equipped with the promise of the highly aspired features of CMOS devices. Despite this, the commercialization of ISFETs is still at the stage of infancy after nearly five decades of research and development. This is due mainly to the limited sensitivity, the controversy over the use of the reference electrode for ISFET operation, and because of stability issues. In this thesis, ultrasensitive and CMOS compatible ISFETs are integrated in the back end of line (BEOL) of standard UTBB FDSOI transistors. A capacitive divider circuit is employed for biasing the front gate for stable performance of the sensor. Exploiting the intrinsic amplification feature provided by UTBB FDSOI transistors, we demonstrated ultrahigh sensitive ISFETs. The amplification arises from the strong electrostatic coupling between the front gate and the back gate of the FDSOI, and the asymmetric capacitances of the two gates. A change in voltage at the front gate appears at the back gate as an amplified shift in voltage. The amplification, referred to as the coupling factor (γ), is equal to the ratio of the gate oxide capacitance and the buried oxide (BOX) capacitance. Therefore, functionalizing the pH sensing at the front gate of FDSOI devices, the change in surface potential at the front gate is detected at the back gate amplified by the coupling factor (γ), giving rise to an ultrahigh-sensitive solid state chemical sensor. Integration of the sensing functionality was made in the BEOL which gives the benefits of increased reliability and life time of the sensor, compatibility with the standard CMOS process, and possibility for embedding a capacitive divider circuit. Operation of the MOSFETs without a proper front gate bias makes them vulnerable for undesired floating body effects. The capacitive divider circuit addresses these issues by biasing the front gate simultaneously with the sensing functionality at the same gate through capacitive coupling to a common BEOL metal. Therefore, the potential at the BEOL metal would be a weighted sum of the surface potential at the sensing gate and the applied bias at the control gate. The proposed sensor is modeled and simulated using TCAD-Sentaurus. A complete mathematical model is developed which provides the output of the sensor as a function of the solution pH (input to the sensor), and the design parameters of the capacitive divider circuit and the UTBB FDSOI transistor. In that case, consistent results have been obtained from the modeling and simulation works, with an expected sensitivity of 780 mV/pH corresponding to a sensing film having Nernst response. The modeling and simulation of the proposed sensor was further validated by a proof of concept extended gate pH sensor fabrication and characterization. These sensors were developed by a separated processing of just the pH sensing component, which is electrically connected to the transistor only during characterization of the sensor. This provides faster and simpler realization of the sensor without the need for masks and patterning by lithography. The extended gate sensors showed 475 mV/pH sensitivity which is superior to state of the art low power ISFETs. Finally, integration of the sensing functionality directly in the BEOL of the UTBB FDSOI devices was pursued. An experimental sensitivity of 730 mV/pH is obtained which is consistent with the mathematical model and the simulated response. This is more than 12-times higher than the Nernst limit, and superior to state of the art sensors. Sensors are also evaluated for stability, resolution, hysteresis, and drift in which excellent performances are demonstrated. A novel pH sensing architecture is also successfully demonstrated in which the detection is functionalized at the gate protection diode rather than the front gate of UTBB FDSOI devices. The abrupt current switching, as low as 9 mV/decade, has the potential to increase the fixed bias sensitivity to 6.6 decade/pH. We experimentally demonstrated a sensitivity of 1.25 decade/pH which is superior to the state of the art sensitivity

    높은 전류 구동능력을 가지는 SiGe 나노시트 구조의 터널링 전계효과 트랜지스터

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 박병국.The development of very-large-scale integration (VLSI) technology has continuously demanded smaller devices to achieve high integration density for faster computing speed or higher capacity. However, in the recent complementary-metal-oxide-semiconductor (CMOS) technology, simple downsizing the dimension of metal-oxide-semiconductor field-effect transistor (MOSFET) no longer guarantees the boosting performance of IC chips. In particular, static power consumption is not reduced while device size is decreasing because voltage scaling is slowed down at some point. The increased off-current due to short-channel effect (SCE) of MOSFET is a representative cause of the difficulty in voltage scaling. To overcome these fundamental limits of MOSFET, many researchers have been looking for the next generation of FET device over the last ten years. Tunnel field-effect transistor (TFET) has been intensively studied for its steep switching characteristics. Nevertheless, the poor current drivability of TFET is the most serious obstacle to become competitive device for MOSFET. In this thesis, TFET with high current drivability in which above-mentioned problem is significantly solved is proposed. Vertically-stacked SiGe nanosheet channels are used to boost carrier injection and gate control. The fabrication technique to form highly-condensed SiGe nanosheets is introduced. TFET is fabricated with MOSFET with the same structure in the CMOS-compatible process. Both technology-computer-aided-design (TCAD) simulation and experimental results are utilized to support and examine the advantages of proposed TFET. From the perspective of the single device, the improvement in switching characteristics and current drivability are quantitatively and qualitatively analyzed. In addition, the device performance is compared to the benchmark of previously reported TFET and co-fabricated MOSFET. Through those processes, the feasibility of SiGe nanosheet TFET is verified. It is revealed that the proposed SiGe nanosheet TFET has notable steeper switching and low leakage in the low drive voltage as an alternative to conventional MOSFET.초고밀도 집적회로 기술의 발전은 고집적도 달성을 통해 단위 칩의 연산 속도 및 용량 향상에 기여할 소형의 소자를 끊임없이 요구하고 있다. 하지만 최신의 상보형 금속-산화막-반도체 (CMOS) 기술에서 금속-산화막-반도체 전계 효과 트랜지스터 (MOSFET) 의 단순한 소형화는 더 이상 집적회로의 성능 향상을 보장해 주지 못하고 있다. 특히 소자의 크기가 줄어드는 반면 정적 전력 소모량은 전압 스케일링의 둔화로 인해 감소되지 않고 있는 상황이다. MOSFET의 짧은 채널 효과로 인해 증가된 누설 전류가 전압 스케일링의 어려움을 주는 대표적 원인으로 꼽힌다. 이러한 근본적인 MOSFET의 한계를 극복하기 위하여 지난 10여년간 새로운 단계의 전계 효과 트랜지스터 소자들이 연구되고 있다. 그 중 터널 전계 효과 트랜지스터(TFET)은 그 특유의 우수한 전원 특성으로 각광받아 집중적으로 연구되고 있다. 많은 연구에도 불구하고, TFET의 부족한 전류 구동 능력은 MOSFET의 대체재로 자리매김하는 데 가장 큰 문제점이 되고 있다. 본 학위논문에서는 상기된 문제점을 해결할 수 있는 우수한 전류 구동 능력을 가진 TFET이 제안되었다. 반송자 유입과 게이트 컨트롤을 향상시킬 수 있는 수직 적층된 실리콘저마늄(SiGe) 나노시트 채널이 사용되었다. 또한, 제안된 TFET은 CMOS 기반 공정을 활용하여 MOSFET과 함께 제작되었다. 테크놀로지 컴퓨터 지원 설계(TCAD) 시뮬레이션과 실제 측정 결과를 활용하여 제안된 소자의 우수성을 검증하였다. 단위 CMOS 소자의 관점에서, 전원 특성과 전류 구동 능력의 향상을 정량적, 정성적 방법으로 분석하였다. 그리고, 제작된 소자의 성능을 기존 제작 및 보고된 TFET 및 함께 제작된 MOSSFET과 비교하였다. 이러한 과정을 통해, 실리콘저마늄 나노시트 TFET의 활용 가능성이 입증되었다. 제안된 실리콘저마늄 나노시트 소자는 주목할 만한 전원 특성을 가졌고 저전압 구동 환경에서 한층 더 낮은 누설 전류를 가짐으로써 향후 MOSFET을 대체할만한 충분한 가능성을 보여주었다.Chapter 1 Introduction 1 1.1. Power Crisis of Conventional CMOS Technology 1 1.2. Tunnel Field-Effect Transistor (TFET) 6 1.3. Feasibility and Challenges of TFET 9 1.4. Scope of Thesis 11 Chapter 2 Device Characterization 13 2.1. SiGe Nanosheet TFET 13 2.2. Device Concept 15 2.3. Calibration Procedure for TCAD simulation 17 2.4. Device Verification with TCAD simulation 21 Chapter 3 Device Fabrication 31 3.1. Fabrication Process Flow 31 3.2. Key Processes for SiGe Nanosheet TFET 33 3.2.1. Key Process 1 : SiGe Nanosheet Formation 34 3.2.2. Key Process 2 : Source/Drain Implantation 41 3.2.3. Key Process 3 : High-κ/Metal gate Formation 43 Chapter 4 Results and Discussion 53 4.1. Measurement Results 53 4.2. Analysis of Device Characteristics 56 4.2.1. Improved Factors to Performance in SiGe Nanosheet TFET 56 4.2.2. Performance Comparison with SiGe Nanosheet MOSFET 62 4.3. Performance Evaluation through Benchmarks 64 4.4. Optimization Plan for SiGe nanosheet TFET 66 4.4.1. Improvement of Quality of Gate Dielectric 66 4.4.2. Optimization of Doping Junction at Source 67 Chapter 5 Conclusion 71 Bibliography 73 Abstract in Korean 81 List of Publications 83Docto

    Journal of Telecommunications and Information Technology, 2009, nr 4

    Get PDF
    kwartalni

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Advanced modeling of nanoscale devices for analog applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Energy-Efficient Wireless Connectivity and Wireless Charging For Internet-of-Things (IoT) Applications

    Full text link
    During the recent years, the Internet-of-Things (IoT) has been rapidly evolving. It is indeed the future of communication that has transformed Things of the real world into smarter devices. To date, the world has deployed billions of “smart” connected things. Predictions say there will be 10’s of billions of connected devices by 2025 and in our lifetime we will experience life with a trillion-node network. However, battery lifespan exhibits a critical barrier to scaling IoT devices. Replacing batteries on a trillion-sensor scale is a logistically prohibitive feat. Self-powered IoT devices seems to be the right direction to stand up to that challenge. The main objective of this thesis is to develop solutions to achieve energy-efficient wireless-connectivity and wireless-charging for IoT applications. In the first part of the thesis, I introduce ultra-low power radios that are compatible with the Bluetooth Low-Energy (BLE) standard. BLE is considered as the preeminent protocol for short-range communications that support transmission ranges up to 10’s of meters. Number of low power BLE transmitter (TX) and receiver (RX) architectures have been designed, fabricated and tested in different planar CMOS and FinFET technologies. The low power operation is achieved by combining low power techniques in both the network and physical layers, namely: backchannel communication, duty-cycling, open-loop transmission/reception, PLL-less architectures, and mixer-first architectures. Further novel techniques have been proposed to further reduce the power the consumption of the radio design, including: a fast startup time and low startup energy crystal oscillators, an antenna-chip co-design approach for quadrature generation in the RF path, an ultra-low power discrete-time differentiator-based Gaussian Frequency Shift Keying (GFSK) demodulation scheme, an oversampling GFSK modulation/demodulation scheme for open loop transmission/reception and packet synchronization, and a cell-based design approach that allows automation in the design of BLE digital architectures. The implemented BLE TXs transmit fully-compliant BLE advertising packet that can be received by commercial smartphone. In the second part of the thesis, I introduce passive nonlinear resonant circuits to achieve wide-band RF energy harvesting and robust wireless power transfer circuits. Nonlinear resonant circuits modeled by the Duffing nonlinear differential equation exhibit interesting hysteresis characteristics in their frequency and amplitude responses that are exploited in designing self-adaptive wireless charging systems. In the magnetic-resonance wireless power transfer scenario, coupled nonlinear resonators are proposed to maintain the power transfer level and efficiency over a range of coupling factors without active feedback control circuitry. Coupling factor depends on the transmission distance, lateral, and angular misalignments between the charging pad and the device. Therefore, nonlinear resonance extends the efficient charging zones of a wireless charger without the requirement for a precise alignment.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169842/1/omaratty_1.pd

    Voltage drop tolerance by adaptive voltage scaling using clock-data compensation

    Get PDF
    Proyecto de Graduación (Maestría en Ingeniería en Electrónica) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Electrónica, 2019.El ruido de alta frecuencia en la red de alimentación compromete el rendimiento y la eficiencia energética de los sistemas electrónicos con microprocesadores, restringiendo la frecuencia máxima de operación de los sistemas y disminuyendo la confiabilidad de los dispositivos. La frecuencia máxima será determinada por la ruta de datos más crítica (la ruta de datos más lenta). De esta manera, es necesario configurar una banda de guarda para tolerar caídas de voltaje sin tener ningún problema de ejecución, pero sacrificando el rendimiento eléctrico. Este trabajo evalúa el impacto de la caída de voltaje en el rendimiento de los circuitos CMOS de alta densidad, estableciendo un conjunto de casos de prueba que contienen diferentes configuraciones de circuitos. Se desarrolló una técnica adaptable y escalable para mejorar la tolerancia a la caída de voltaje en los circuitos CMOS a través del escalado adaptativo, aprovechando el efecto de compensación de datos del reloj. La solución propuesta se validó aplicándola a diferentes casos de prueba en una tecnología FinFet-CMOS a nivel de simulación del diseño físico.High-frequency power supply noise compromises performance and energy efficiency of microprocessor-based products, restricting the maximum frequency of operation for electronic systems and decreasing device reliability. The maximum frequency is going to be determine by the most critical data path (the slowest data path). In this way, a guard band needs to be set in order to tolerate voltage drops without having any execution problem, but leading to a performance reduction. This work evaluates the impact of voltage drop in the performance of CMOS circuits by establishing a set of test cases containing different circuit configurations. An adaptive and scalable technique is proposed to enhance voltage drop tolerance in CMOS circuits through adaptive scaling, taking advantage of the clock-data compensation effect. The proposed solution is validated by applying it to different test cases in a FinFet CMOS technology at a post-layout simulation level

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications
    corecore