2,433 research outputs found

    Performance of Turbulent Flow of Water Optimization on Economic Load Dispatch Problem

    Get PDF

    Economic load dispatch solutions considering multiple fuels for thermal units and generation cost of wind turbines

    Get PDF
    In this paper, economic load dispatch (ELD) problem is solved by applying a suggested improved particle swarm optimization (IPSO) for reaching the lowest total power generation cost from wind farms (WFs) and thermal units (TUs). The suggested IPSO is the modified version of Particle swarm optimization (PSO) by changing velocity and position updates. The five best solutions are employed to replace the so-far best position of each particle in velocity update mechanism and the five best solutions are used to replace previous position of each particle in position update. In addition, constriction factor is also used in the suggested IPSO. PSO, constriction factor-based PSO (CFPSO) and bat optimization algorithm (BOA) are also run for comparisons. Two systems are used to run the four methods. The first system is comprised of nine TUs with multiple fuels and one wind farm. The second system is comprised of eight TUs with multiple fuels and two WFs. From the comparisons of results, IPSO is much more powerful than three others and it can find optimal power generation with the lowest total power generation cost

    Harmony Search Method: Theory and Applications

    Get PDF
    The Harmony Search (HS) method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem

    Multi-objective based economic environmental dispatch with stochastic solar-wind-thermal power system

    Get PDF
    This paper presents an evolutionary based technique for solving the multi-objective based economic environmental dispatch by considering the stochastic behavior of renewable energy resources (RERs). The power system considered in this paper consists of wind and solar photovoltaic (PV) generators along with conventional thermal energy generators. The RERs are environmentally friendlier, but their intermittent nature affects the system operation. Therefore, the system operator should be aware of these operating conditions and schedule the power output from these resources accordingly. In this paper, the proposed EED problem is solved by considering the nonlinear characteristics of thermal generators, such as ramp rate, valve point loading (VPL), and prohibited operating zones (POZs) effects. The stochastic nature of RERs is handled by the probability distribution analysis. The aim of proposed optimization problem is to minimize operating cost and emission levels by satisfying various operational constraints. In this paper, the single objective optimization problems are solved by using particle swarm optimization (PSO) algorithm, and the multi-objective optimization problem is solved by using the multi-objective PSO algorithm. The feasibility of proposed approach is demonstrated on six generator power system

    An Environmental-Economic Dispatch Method for Smart Microgrids Using VSS_QGA

    Get PDF
    The increasing penetration of distributed generation resources demands better economic performance of microgrids under the smart-grid era. In this paper, a comprehensive environmental-economic dispatch method for smart microgrids is proposed, with the objective for minimizing the summation of generation and emission costs in the system. As the proposed model belongs to a large-scale nonlinear and nonconvex programming problem, a hybrid heuristic algorithm, named variable step-size chaotic fuzzy quantum genetic algorithm (VSS_QGA), is developed. The algorithm utilizes complementarity among multiple techniques including the variable step size optimization, the rotation mutational angle fuzzy control, and the quantum genetic algorithm and combines them so as to solve problems with superior accuracy and efficiency. The effectiveness of the proposed model is demonstrated through a case study on an actual microgrid system and the advantages in the performance of VSS_QGA is also verified through the comparison with genetic algorithm (GA), the evolutionary programming approach (EP), the quantum genetic algorithm (QGA), and the chaotic quantum genetic algorithm (CQGA)
    • …
    corecore