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ABSTRACT The economic load dispatch (ELD) problems considering nonlinear characteristics where an
optimal combination of power generating units is selected in order to minimize the total cost by economic
allocation of power produced and the emission cost. As a consequence, optimal allocation is performed by
considering both fuel cost and emission leading to Combined Economic and Emission Dispatch (CEED).
This study presents a new Meta-heuristic algorithms (MHs) called the Turbulent Flow of Water Optimization
(TFWO), which is based on the behaviour of whirlpools created in turbulent water flow, for solving different
variants of ELD and CEED. To verify the robustness of the TFWO, various test network of CEED with effect
of valve, and ELD with losses of transmission are incorporated. In comparison with seven well-known MHs
such as Cuckoo Search Algorithm (CSA), Grey Wolf Algorithm (GW), Sine Cosine Algorithm (SCA), Earth
Worm Optimization Algorithm (EWA), Tunicate Swarm Algorithm (TSA), Moth Search Algorithm (MSA)
and Teaching Learning Based Optimization (TLBO), the TFWO provides the minimum fuel cost and
significantly robust solutions of ELD problem over all tested networks. The results confirm the potential
and effectiveness of the GWO to be a promising technique to solve various ELD problems.

INDEX TERMS Turbulent flow of water optimization (TFWQ), economic load dispatch (ELD), combined
economic and emission dispatch (CEED), metaheuristic optimization algorithms.

ABBREVIATIONS o
ACO Ant Colony Optimization

CEED Economic and Emission Dispatch
PSO Particle Swarm Optimization
WOA  Whale Optimization Algorithm

ELD Economic Load Dispatch
CSA Crow Search Algorithm

e FA Firefly Algorithm
IGWO Improved Grey Wolf Optimization ctly Algorit ..
. . . MFO Moth Flame Optimizer
DE Differential evolution
HS Harmony Search

EWA  Earthworm optimization algorithm
BA Bat Algorithm

CTO Class Topper Optimization

ACS Artificial Cooperative Search
WMA  Woodpecker Mating Algorithm
SSA Salp Swarm Algorithm

SCA Sine Cosine Algorithm

TSA Tree Seed Algorithm

I. INTRODUCTION

TLBO  Teaching Learning Based Optimization

TFWO  Turbulent Flow of Water Optimization

The complexity of power system operation and planning is
increasing day by day. Economic Load Dispatch (ELD) is

The associate editor coordinating the review of this manuscript and one such complex power system problems involving ELD

approving it for publication was Pasquale De Meo.
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involves reduction of the cost of production by economically

VOLUME 9, 2021


https://orcid.org/0000-0002-1032-1081
https://orcid.org/0000-0002-8127-7233
https://orcid.org/0000-0002-0537-4728
https://orcid.org/0000-0002-1544-9906

S. Deb et al.: Performance of TFWO on ELD Problem

IEEE Access

allocating the power produced by each unit [1], [2]. In addi-
tion to reduction of production cost nowadays emphasis is
laid on reduction of emission [3], [4]. As a consequence,
optimal allocation is performed by considering both emis-
sion and cost leading to Combined Emission and Economic
Dispatch (CEED). Various real-life applications are solved
using Meta-heuristic Algorithms (MHs) [S]-[7]. For exam-
ple, nature-inspired algorithms mimic the biological, phys-
ical, or environmental processes [8]. Furthermore, several
MHs are performed relatively well on the ELD problem. For
instance, cost-effective emission dispatch problems is solved
using the improved Manta ray foraging optimizer [9], also,
in [10], the Gradient-Based Optimizer (GBO) is applied to
solve the ELD Problem. Despite the availability and use of
different MHs for solving ELD, researchers are still propos-
ing new and novel algorithms for its solution.

Economic Load Dispatch problem objective function is
performed as a quadratic equation. based on that, there are
two ways for analyzing the problem of ELD. The first way;
the techniques of traditional mathematical such as Newton
methods, Lagrangian multiplier method, Lambda iteration
method, Dynamic programming and Gradient method [11].
The second way is the metaheiristics algorithms. This algo-
rithms are used in several problems such as extraction of
photovoltaic parameters using gradient based optimizer [12]
and Turbulent flow of water optimization [13]. In addition,
solving ELD problem is performed with several algorithms
such as non dominated sorting genetic algorithm [14], modi-
fied jrill algorithm [15], Whale Optimization Algorithm [16],
Henry gas solubility optimization [17], gravitational search
algorithm [18], improved Firework Algorithm [19], grasshop-
per optimization algorithm [20], multi gradient practical
swarm optimization [21], Salp Swarm Algorithm [22], Dif-
ferential Evolution [23], Equilibrium Optimizer [24], rein-
forcement learning [25], virus colony search algorithm [26],
Harmony Search Algorithm [27], improved grey wolf opti-
mization [28], bat algorithm [29], improved class topper opti-
mization algorithm [30], improved bat algorithm [31], Ant
Colony Optimization [32], improved Jaya algorithm [33] and
artificial cooperative search algorithm [34].

In [14], authors have discussed the constraint handling
techniques by multi-objective evolutionary algorithms in
case of ELD and CEED. In [15], modified krill algorithm
is used for solving constrained ELD. In [16], the authors
have applied WOA to solve static as well as dynamic ELD
problem. In [17], the authors used WMA to solve ELD.
The simulation results confirmed the superior performance
of WMA as compared to other MHs. In [18], the authors
have proposed a novel memory-based GSA for solving ELD.
The memory-based GSA performed better than the conven-
tional GSA in solving ELD. In [19], the authors have solved
dynamic ELD using an modified FA version in multi-area
power systems. In [20], the authors have solved a ELD prob-
lem for a power system of hybrid wind-based using oppo-
sitional based chaotic grasshopper optimization algorithm.
In [21], authors have solved real power limitations in the
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dynamic ELD of large-scale thermal power units under the
effects of valve-point loading and ramp time constrains by
multi-gradient PSO. In [22], the authors have formulated
the dynamic ELD problem incorporating commercial EVs
and used SSA to solve the problem. In [23], the authors
have solved the multi-area ELD problem by DE. In [24],
the authors have used a pareto based PSO for solving CEED.
The proposed PSO performed better than NSGA II on CEED
problem.

In [25], the authors have modelled the ELD problem in
presence of EVs and solved the problem by reinforcement
learning. In [26], the authors have solved the ELD problem
in presence of wind energy resources and EVs by applying
virus search algorithm. In [27], the authors have solved the
ELD problem for a microgrid by Harmony Search Algorithm.
In [28], authors have used IGWO for solving ELD and CEED.
Simulation results indicated that IGWO performs better than
GWO on ELD and CEED. In [29], the authors have used
BA to solve continuous ELD with and without the effect of
valve point. Also, the ELD application in a power system
is solved using class topper optimization (CTO) algorithm
in [30]. In [31], authors have used an improved version of
BA to solve ELD in presence of renewable energy sources.
In [32], authors have used ACO to solve ELD with losses.
In [33], authors have proposed a multi-population-based Jaya
algorithm to solve ELD. The simulated results established
the superiority of multi-population-based Jaya algorithm over
basic Jaya algorithm. In [34], authors have used ACS to
solve ELD with losses. In [35], the authors have used Squir-
rel Search Algorithm to solve CEED for multi-area system.
In [36], the authors have used an improved simplex based
PSO for solving CEED. In [37], authors have modelled
the ELD problem in presence of wind farms and flexible
resources in a multi-objective framework and solved the
problem by fuzzy logic. In [38], the authors have used MFO
algorithm for solving ELD for integrated power system in
presence of stochastic wind generation. In [39], the authors
have used distributed gradient algorithm for solving ELD
in case of stochastic networks. In addition, the dynamic
programming based on rejectable deep differential for inte-
grated generation dispatch and control framework is pre-
sented in [40].

Recently, the Turbulent Flow of Water Optimiza-
tion (TFWO) for solving global real-world optimization
problems is proposed by Ghasemi et al. [41]. The inspiration
source for TFWO is based on the behaviour of whirlpools
created in turbulent flow of water. As mentioned in the
original paper, TFWO has provided an evidence in solving
various optimization problems such as real-world engineer-
ing problems and standard benchmark compared to other
MHs. Moreover, the prime motivation behind this is the No
Free Lunch (NFL) theorem [42], [43]. NFL theorem states
that a single algorithm does not perform equally well on all
the optimization problems. Hence, the TFWO performance is
tested for different networks such as ELD with transmission
losses and CEED with and without the effect of valve point.
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The results of TFWO is compared with eight other algo-
rithms such as Cuckoo Search Algorithm (CSA) [44], Grey
Wolf Algorithm (GW) [45], Sine Cosine Algorithm (SCA)
[46], Earth Worm Optimization Algorithm (EWA) [47],
Tunicate Swarm Algorithm (TSA) [48], Moth Search Algo-
rithm (MSA) [49] and Teaching Learning Based Optimiza-
tion (TLBO) [50]. The results revealed the superiority of the
TFWO comparing to the other counterparts.

In summary, the main contributions of this paper are:

« Analysis of three cases network such as economic load
dispatch (ELD) with transmission losses and Combined
Economic and Emission Dispatch (CEED) with and
without the effect of valve point.

o Turbulent flow of water based optimization algorithm is
applied as a new metaheuristic algorithm for the three
network cases of ELD problems.

o The objective function for the ELD is minimizing the
cost fuel function. Minimizing the cost of fuel and emis-
sion is applied to CEED with and without the effect of
valve point.

o Comparison between TFWO algorithm and other algo-
rithms such as Cuckoo search algorithm (CSA), Grey
wolf algorithm (GW), Sine cosine algorithm (SCA),
Teaching learning based optimization (TLBO), Earth
worm optimization algorithm (EWA), Tunicate swarm
algorithm (TSA), and Moth search algorithm (MSA) is
performed.

o The evaluation of TFWO and all algorithms perfor-
mance is performed according the power mismatch
between the generated power and the load demand with
transmission losses.

« Statistical analysis is performed for running 30 inde-
pendent runs of all algorithms and the robustness and
convergence curves are discussed.

The organization of paper is as follows. The ELD problem
is elaborates in section II, then Section III presents Turbulent
Flow of Water Optimization (TFWQO) overview. Section IV
discusses the experimental results analysis. Finally, Section V
discusses the conclusion and draw directions of the future
work.

Il. ECONOMIC LOAD DISPATCH PROBLEM

The operation and planning of power system has several prob-
lems such as ELD problem. The main contribution of ELD
problem is maximizing the power system economic benefit
and minimizing the net cost of fuel consumption based on
allocating the optimal production of each unit. The following
subsections discuss the three cases applied in this work such
as ELD with losses, CEED with and without valve point
effect.

A. ECONOMIC LOAD DISPATCH (ELD) WITH LOSSES

The ELD with losses can be expressed with the follow-
ing analysis. The fuel consumption cost of n generators is
explained as the following equation:

Min(F) = Fy (P1) + - - - F (Pn) ey
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where F is the net fuel cost, F is the 1st generator fuel cost
and F;, is the nth generator fuel cost.

The function of fuel cost is further approached in quadratic
equation as:

n n
Min(F) =) F;i(P) =) aPi +biPi+c ()
k=1 k=1
where a, b, ¢ are the fuel cost weight constants. The con-
straints of each generator unit for minimizing the fuel cost
is explained by equation (3) and (5).
n

> Pi—Pp—PL=0 3)
k=1
where the network net demand is represented by Pp and Py,
is the transmission network losses.

n n
P; = Z ZPiBiij @)

i=1 j=1
where Bj; is the coefficient of losses, P; is the ith generator
generated power, and P; is the jth generator generated power.

P < P < PP ®)

B. COMBINED ECONOMIC LOAD DISPATCH (CEED)
The ELD problem is developed with taking into consideration
the production cost and the reduction of emission, hence
this problem is called Combined Emission and Economic
Dispatch (CEED). The main contribution of CEED problem
is minimizing the net cost of fuel consumption and also
reduction the emission; based on that allocating the optimal
production of each unit is performed.

The minimizing of gases emission from power plants is
the main issue on emission dispatch problem. The emission
factor is explained mathematically by:

Min(E) =Y E(P;) =Y axP + PPk + 1 (6)
k=1 k=1

The CEED objective function is:

n n
objectivefunction = Min (Z Ei(P)) + h, Z Fl-(Pi)> 7

k=1 k=1
where A, is the price penalty factor as in equation 8:
_ F i(P imax)
Ei(P imax)

The constraints of variable is given by equations (3)
and (5).

®)

e

C. CEED WITH VALVE POINT EFFECT

The effect of valve point is appeared in steam turbines due to
it have multiple valves. The function of cost is nonlinear due
to effect of valve point as in equation 9:

n n
Min(F) =Y Fi =Y aP; + bePi + cx
k=1 k=1
+ le sin(fy X (Prnin — Pr))| 9)
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where e; and f; are the valve point effect coefficients of
kth generator. The main concern of optimization problem is
minimized the emission and fuel cost of network based on
the objective function of each network and the constraints
illustrated in equations (3) and (5).

Ill. TURBULENT FLOW OF WATER-BASED OPTIMIZATION
Turbulent Flow of Water-based Optimization (TFWO) [41],
is a modern powerful optimization algorithm for solving a
complex problem inspired by the random activity of nature
found in rivers, seas, and oceans, i.e. whirlpools formed in
a turbulent flow of water For global real-world optimization
problems. In whirlpools, the whirlpool’s center acts as a suck-
ing hole, drawing objects and particles around it towards the
whirlpool’s center and interior. The TFWO algorithm divides
the population into NWh groups and places the best member
of each group in the whirlpool’s center.

A. WHIRLPOOLS: THEIR ORIGINS AND EFFECTS

The algorithm’s initial population ((x"), which contains N,
members) is evenly divided into Ny groups or whirlpool
sets. Then the most vital member of each whirlpool set (the
member with the highest objective function values f ()) is
considered the whirlpool that pulls the objects (X, which
contains N, - Ny, objects).

Each whirlpool(Wh), pulls objects toward their center
by applying a centripetal force and unites their respective
objects, then it suctions their objects and pours them into the
sound. As a result, the jth whirlpool, with its local position
on Wh;, acts so that it unifies the position of the ith object
(X;) with that of itself, i.e., X; = Wh;. Other whirlpools,
however, cause some deviations (X;), depending on the dis-
tance between them (Wh-Wh;) and the objective values
(f (. As a result, the new position of the ith object is equal
to X;"*V = Whj — AX;

The items (X) move with a peculiar pattern around the cen-
tral point (8) and near it. Thus, this position in the algorithm
is constantly rotating:

8 =§; +rand; x randy x 7 (10)

To measure AX;, Eq. 11 is used to calculate the farthest
and nearest whirlpools (Ay), i.e. the whirlpools with the most
and least weighted distance from all items, and then Eq. 12
is used to calculate (Ay;). The particle’s location is modified
(X7*%) using Eq.13.

A = f (Why) x |[Why — sum (X;)|* (11)
AX; = (cos(8;°" ) x rand (1,D) x (Why — X;)
—sin (6?6“’ ) x rand(1, D) x (Wh,, — X,-))
x (14 |cos (87") — sin (87" )]) (12)
X"V = Wh; — AX; (13)

where Why and Why are the whirlpools with the lowest and
highest A, respectively, and §; is the angle of the ith object.
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B. THE MATHEMATICAL MODEL
This part summarizes the mathematical steps necessary to
implement the TFWO algorithm:

1) The phase of updating an object’s position: The fol-
lowing two steps summarize the phase of updating an
object’s position:

Step 1:

fort =1 Nwy,

Ar = f(Why) x |Why — sum(X)|*

end

Why = Wh, with min value of A,

Wh,, = Wh; with max value of A;

87" =6;+ rand | x randy x 7

AX; =

(cos ((Sfmw) x rand (1, D) x (th — X,-)

—sin (87" x rand(1, D) x (Wh,, — X;))

x (1 + |cos (87°%) x —sin (7% )|);
Xinew = Whj - AX,';

Step 2:

Xinew — min (max (Xinew , Xmin ) , ymax );
iff (XPV) <=f (X))

X; = Xl.neW
f&X) =f(Xre™);
end

2) Centrifugal force phase: According to Newton’s first
law of motion, Unless acted upon by an unbalanced
force, an object at rest will remain at rest, and an
object in motion will remain in motion with the same
speed and direction. The centrifugal force (FE;) may
often overpower the whirlpool’s centripetal or traction
force, causing the object to move randomly. We’ve used
Eq. 14 to model the centrifugal force, which arises at
random in one of the decision variables’ dimensions.
To do so, first, calculate the centrifugal force based
on the angle between the target and the whirlpool
(as Eq. 15), then see if it is greater than a random
amount.Step 3 summarizes the mathematical model for
the centrifugal force phase.

FE; = ((cos (87°%))? x (sin ((S}‘ew))2>2 (14)

Xip = x;,nin + rand x (x;,nax - x;,ni“) (15)

Step 3: )
FE; = ((cos (67))* x (sin (57 ))?) "
ifrand < FE;

p = round(1 + rand x(D — 1));

xmax _ min ).

P )

Xip = x;}‘in + rand X
f &) =f(X);
end

3) Whirlpool interactions: Like how a whirlpool inter-
acts with and displaces its surroundings, they also
interact with and displace one another. This effect
has been modeled similarly to how whirlpools affect
objects. Each whirlpool has a natural tendency to attract

other whirlpools, exert centripetal force on them, and
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TABLE 1. Different cases of ELD considered in analysis.

TABLE 2. Parameter settings of all algorithms.

Case | Description Test system 17)(;:(1)nand (MW) Algorithms Parameters setting
1000 Common Settings | Population size: N = 30
1 ELD 6 1200 Maximum iterations: ¢ty g = 1000
Zggo Number of independent runs 30
2 CEED 6 1200 TFWO
3 CEED with valve point effect | 10 2000 SCA A=2
TLBO TF = {1,2}
submerge them in their wells (i.e., unify the consid- GWO a decreases linearly from 2 to 0
ered whirlpool position with its position). The nearest CSA
whirlpool is determined first, using its objective func- TSA Prin=1 and P qz=4 (Default)
tion and the smallest amount of Eq (16) to simulate this EWA a=098, o =0.1,v=0.9
effect. Then, Eqgs. (17) and (18) are used to determine MSA fo =15, Smaz =1

the position of the whirlpool.

Ay = f(Why) x |Why — sum(Wh;)| (16)
AWh; = rand(1, D) x |cos(87") + sin( Sjnew)‘

x(Wh" — Whi") a7

W™ = Why — AWh; (18)

where 8. denotes the angle of the j# whirlpool hole.
Steps 4 and 5 demonstrate the relationship between
whirlpool interactions and are used to summarize the
above phenomenon:
Step 4:
fort=1: Nwy —j
Ay = f(Why) x |Why — sum(Whj)| end
Why = Wh with min value of A,
Wh;zew = th — AWhj;
AWH = rand(1,D) x_|cos(s") + sin(3")|
(Whrgew _ Wh}’leW);
5;‘6 =6; + randy x randy x 7.
Step 5:
WhHY = min(maX(Wh;’eW,X miny  xmaxy.
if f(Wh;?eW) < f(Wh))
Wh; = Whj’.’ew;
f(Why) = £(WH");
end

4) The phase of selecting the best member: If the best new
member of the whirlpool’s set outperforms its corre-
sponding whirlpool, it is selected as the new whirlpool
for the next iteration. Step 6 depicts the latest best
whirlpool that has been chosen.
Step 6:
if f(Xpest) < f(Why)
Whj < Xpest
end

IV. EXPERIMENTAL RESULTS ANALYSIS AND
DISCUSSION

The performance of TFWO on different scenarios of ELD
is compared with other algorithms such as; Cuckoo Search
Algorithm (CSA) [44], Grey Wolf Algorithm (GW) [45],
Sine Cosine Algorithm (SCA) [46], Earth Worm Optimiza-
tion Algorithm (EWA) [47], Tunicate Swarm Algorithm

77886

TABLE 3. Statistical results of the experimental series 1: ELD problem.

Demand (MW) | Algorithm | min mean max SD
TFWO 8453.76192 1379081.99 13082056.1 3296646.43
SCA 907782.138 | 68065356.8 | 285344403 | 60444388.9
TLBO 9019.36061 | 10925318.3 | 62924616.3 | 16170600.6
GWO 362947.614 | 6046091.28 | 20685340.1 5465239.14
CSA 18559.7269 | 827178.657 | 4343492.65 | 978763.025
TSA 275801.527 | 13242490.7 | 434455773 | 11464055.7
700 EWA 14082.2401 | 43232927.3 | 390748779 | 83438502
MSA 8416.08767 | 8746.97462 | 9225.14196 180.245442
TFWO 12164.5853 | 314535.872 | 3578493.72 | 756727
SCA 740103.535 | 88782958.5 | 222530268 | 67692758.5
TLBO 13926.3065 | 13749662.6 | 72600497.8 | 17910396.5
GWO 285622.639 | 9101405.82 | 26944657.8 | 6706299.6
CSA 28313.2238 | 505104.661 | 2689533.25 | 626323.447
TSA 77930.9845 | 16058610.3 | 45829971 14684516.5
1000 EWA 49087.2012 | 21265097.6 | 115431147 | 28637807.3
MSA 12129.8801 | 12282.1503 | 12592.0808 | 100.389703
TFWO 14867.2231 | 528582.834 | 3954992.4 954834.858
SCA 1268040.81 | 207184312 465738288 129555600
TLBO 24455.3253 | 4346071.08 | 21567599 5189973.72
GWO 798811.425 | 10825902.3 | 28975810.3 | 9103573.43
CSA 31815.2192 | 2259672.72 | 9632243.88 | 2732490.15
TSA 1020643.54 | 21140672.4 | 84567435.2 | 204433914
1200 EWA 17595.5608 | 161035562 | 882270106 | 225076551
MSA 14856.588 14927.2252 | 15044.0576 | 46.3826663

TABLE 4. Best costs for different demand value of case 1 in $ per hour.

Algorithm | 700 MW 1000 MW 1200 MW

TFWO 845376192 | 12164.5683 | 14867.2231
SCA 8977.36522 | 12229.5632 | 14921.6636
TLBO 8957.12833 | 12181.0506 | 15038.6454
GWO 8871.22926 | 12797.6456 | 14939.5775
CSA 8691.6761 12186.2742 | 14919.5663
TSA 8755.28822 | 12368.0809 | 14930.4879
EWA 9073.6947 13820.0655 | 18038.3241
MSA 9921.94843 | 14263.3788 | 17163.8795

(TSA) [48], Moth Search Algorithm (MSA) [49] and Teach-
ing Learning Based Optimization (TLBO) [50]. The perfor-
mance of TFWO is analyzed for different cases of ELD as
shown in Table 1.

This section reported the proposed TFWO results for solv-
ing ELD problem. Comparison between the competitor tech-
niques and TFWO algorithm is discussed.

A. PARAMETER SETTINGS

For fair comparison, the parameters setting of each algorithm
is reported in table 2.

B. EXPERIMENTAL SERIES 1: THE ELD PROBLEM

The ELD problem is solved for 6-unit system for the load
demands shown in Table 1 by the algorithms mentioned
in Table 2. Table 3 presents the statistical comparison of the

VOLUME 9, 2021
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TABLE 5. Allocation vector for 700 MW of case 1 at best objective function.

TFWO SCA TLBO GWO CSA TSA EWA MSA
279.70647 100 103.079581 | 103.191452 | 163.882794 | 141.305386 | 54 50.0166154
53.7350452 | 57.291274 50.0000286 | 161.913376 | 118.483692 | 200 62.7600473 | 50.0740601
124780909 | 186.671592 | 224.21128 161.291166 | 146.726141 | 171.907561 | 96.6647418 | 82.4313911
98.2733336 | 150 89.3033024 | 101.718418 | 50 51.7078763 | 120.556948 | 95.5309411
102.455809 | 171.171305 | 199.002992 | 135.551449 | 138.749038 | 98.1461498 | 145.578577 | 104.549086
52.8326254 | 50 50 50 95.4691493 | 50 203.292193 | 328.40613

TABLE 6. Allocation vector for 1000 MW of case 1 at best objective function.

TFWO SCA TLBO GWO CSA TSA EWA MSA
411.094183 | 313.955109 | 340.087152 | 135.888893 | 380.765127 | 290.414644 | 88.1573367 | 50.0232365
96.2654945 | 196.890827 | 116.160462 | 199.001016 | 124.989153 | 183.333019 | 91.8663096 | 57.237545
185.468484 | 200.61033 242.047927 | 294.665653 | 187.668323 | 296.338687 | 105.787269 | 132.647259
124.121701 | 112.611771 | 92.6391316 | 128.396045 | 119.44231 150 113.663678 | 145.799425
138.10152 150.830348 | 149.168555 | 172.302205 | 101.019063 | 50 295.689453 | 221.52656
68.7556101 | 5.00E+01 85.1210498 | 98.6973324 | 110.017034 | 55.2138696 | 330.135192 | 416.147459

TABLE 7. Allocation vector for 1200 MW of case 1 at best objective function.

TEFWO SCA TLBO GWO CSA TSA EWA MSA

423.663636 | 462.791999 | 500 498.864855 | 499.605748 | 477.306095 | 86.1251182 | 77.7295385
147.788068 | 167.236572 | 50 96.0242331 | 190.931523 | 192.905792 | 106.482075 | 137.508053
273.623451 | 300 300 220.873051 | 185.547242 | 295.675102 | 171.917379 | 138.992873
141.281259 | 50 150 144.599474 | 143.940165 | 145.727481 | 176.159478 | 145.170595
187.078697 | 200 186.287678 | 199.996288 | 117.125234 | 68.830457 261.237939 | 256.069967
62.7158386 | 55.750911 50 75.0171419 | 96.1454203 | 53.011574 495 478.937148

o Robustness curve of case 1 at 700 MW load demand
T 1

I I
|| [-=TFWo —sCA- - -TLBO -~ GWD —CSA—TSA —EWA—MSA

fitness function

TFWO SCA TLBO GWO CSA T5A EWA MsA

Nuofrun

mRank

FIGURE 2. .
FIGURE 1. Test of Friedman rank for algorithms at case 1. cu Robustness curves of 700 MW for case 1

TABLE 8. Statistical results of case 2.

Demand (MW) | Algorithm min mean max SD
. . . TFWO 13712.6821 326761.658 | 4791878.67 890375.044
performance of TFWO with other algorithms. It is observed SCA 3498899.46 | 818663443 | 214596827 | 63677233.2
: s TLBO | 14123.048 | 8755556.15 | 34473506.6 | 9072878.41
that TEWO is equally competitive as compared to other GWO | 29018611 | 5429748.37 | 25373851.5 | 5749710.12
MHs. Table 4 presents the best costs for different demand CSA | 65325.6086 | 1293088.8 | 6254924.43 | 1593036.44
. . TSA | 281742.814 | 13248261.7 | 43451402.6 | 11464095
value of case 1 in $ per hour. It is observed that TFWO 700 EWA 15160.1414 | 44386744 | 341883986 | 74160339.4
. . MSA | 135757511 | 14585.8734 | 16052.6875 | 696.601179
yields the best cost for all the load demands mentioned TEWO T 216328011 | 338731208 | 609835478 | 1196346 8
1 1 SCA 1066951.63 | 77047657.2 234869078 62697039.5
in Table 2. Tables 6, 7 and 8 presents the allocatl(?n vector for a0 | movsees | mascomns | pmaasti | vca30050n
load demand 700, 1000, and 1200 MW respectively. Based GWO | 162179.528 | 91827472 | 47744950.8 | 10275947
. .. CSA | 247243426 | 79819446 | 4308128.09 | 1098550.55
on this results, the best fuel cost function is 14867.2231, TSA 83113.3798 | 21500100.8 | 78831952.8 | 18405207.9
. . 1000 EWA | 31143.6099 | 28014658.8 | 205671456 | 45866455.5
12164.5683 and 8453.76192 that is achieved by TFWO algo- MSA | 216008477 | 221876555 | 237471207 | 434056003
rithm for 1200 MW. 1000 MW and 700 MW load demand TFWO | 27978.3384 | 541957.3 | 3968150.64 | 954748.052
. ’ . : SCA 1281581.91 | 207198002 | 465751980 | 129555644
respectively. The order of algorithms according to the best TLBO | 386057719 | 4359495.81 | 215810257 | 5189942.6
.. . GWO | 812279.135 | 10839323.8 | 289892422 | 9103601.12
ObJ ective function for 700 MW demand are as fOllOW, TFWO, CSA 45247.9944 | 2273109.79 | 9645398.76 | 2732478.13
TSA 109863.585 | 173949945 | 68229764.1 | 148359752
CSA’ TSA’ GWO’ TLBO’ SCA’ EWA and MSA I'.eSijC- 1200 EWA 43957.236 97054433.5 548931523 140908416
tively. The order of algorithms according to the best objective MSA | 28022.6494 | 28367.5779 | 286934463 | 178.832667
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L Convergence curve of case 1 at 700 MW demand load
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FIGURE 3. Convergence curves of 700 MW for case 1.

Robustness curve of case 1 at 1000 MW load demand
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FIGURE 4. Robustness curves of 1000 MW for case 1.

o Convergence curve of case 1 at 1000 MW demand load
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FIGURE 5. Convergence curves of 1000 MW for case 1.

function for 1000 MW demand are as follow; TFWO, TLBO,
CSA, SCA, TSA, GWO, EWA and MSA respectively. The
order of algorithms according to the best objective function
for 1200 MW demand are as follow; TEFWO, CSA, SCA,
TSA, GWO, TLBO, MSA and EWA respectively.
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Robustness curve of case 1 with 1200 MW load demand
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FIGURE 7. Convergence curves of 1200 MW for case 1.
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FIGURE 8. Test of Friedman rank for algorithms at case 2.

Fig. 1 explains the Friedman ranks of all algorithms for
case 1. Based on this figure ; the best rank is achieved by
TFWO then MSA, GWO, EWA, SCA, TSA, TLBO and CSA
respectively. Fig. 2, Fig. 4, and Fig. 6 presents the robustness
curve of the algorithms for load demands 700, 1000, and
1200 MW respectively. Fig. 3, Fig. 5, and Fig. 7 presents
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TABLE 9. Best costs for different demand value of case 2 in $ per hour.

700 MW 1000 MW 1200 MW

Algorithm fuel emission Fuel emission fuel emission

TFWO 8484.7492 | 5334.43591 12153.53672 | 10350.3571 14868.83888 | 14011.91431
SCA 8753.8071 11824.5127 | 12450.06933 | 9108.129083 | 14921.66359 | 16011.32313
TLBO 8645.3535 | 6370.89591 12426.65607 | 7580.593553 | 15038.64541 | 18149.24197
GWO 8855.721 6069.06129 | 12193.42527 | 10861.57216 | 14939.57752 | 14493.96991
CSA 8510.7373 | 6296.13667 | 12179.40721 12622.4496 14919.56628 | 13559.82202
TSA 8755.2882 | 5719.80766 | 12514.19328 | 13089.89644 | 14879.37634 | 16403.29639
EWA 9354.1225 | 10875.91 12751.47862 | 26975.8048 15194.94776 | 32022.12828
MSA 9488.9578 | 14610.4574 | 14209.44378 | 37140.9 17131.55584 | 51189.43662

Robustness curve of case 2 at 700 MW load demand
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FIGURE 9. Robustness curves of 700 MW for case 2.

Convergence curve of case 2 at 700 MW demand load
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FIGURE 10. Convergence curves of 700 MW for case 2.

the convergence curve for load demands 700, 1000, and
1200 MW respectively. It is observed that the probability of
getting stuck in local optima is rare in case of TFWO and it
favors faster convergence.

C. EXPERIMENTAL SERIES 2: THE CEED PROBLEM FOR

6 UNIT SYSTEM

The CEED problem is solved for 6 unit system for the load
demands shown in Table 1 by the algorithms mentioned
in Table 2. In case of CEED both cost and emission are
given equal importance. Table 8 presents the statistical com-
parison of the performance of TFWO with other MHs. It is

VOLUME 9, 2021

Robustness curve of case 2 at 1000 MW load demand
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FIGURE 11. Robustness curves of 1000 MW for case 2.
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FIGURE 12. Convergence curves of 1000 MW for case 2.

observed that TFWO is equally competitive as compared
to other MHs. Table 9 presents the best costs for different
demand value of case 2 in $ per hour. It is observed that
TFWO yields the best cost for all the load demands mentioned
in Table 2. Tables 10, 11, and 12 presents the allocation
vector for load demand 700, 1000, and 1200 MW respec-
tively. Based on this results, the best fuel cost function is
14868.8388, 12153.5367 and 8484.7923 that is achieved by
TFWO algorithm for 1200, 1000 and 700 MW load demand
respectively. The order of algorithms according to the best
objective function for 700 MW demand are as follow; TFWO,
CSA, TLBO, SCA, TSA, GWO, EWA and MSA respectively.
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TABLE 10. Allocation vector for 700 MW of case 2 at best objective function.

TFWO SCA TLBO GWO CSA TSA EWA MSA
249.229677 | 162.34628 | 159.910043 | 134.532478 | 290.589017 | 141.305386 | 59.0339797 | 75.3858552
138.708474 | 80.050332 | 102.238522 | 139.034345 | 57.0713497 | 200 64.0807746 | 78.0775515
127.543045 | 300 185.305227 | 110.739476 | 109.869376 | 171.907561 | 120.98096 79.5353854
82.5535986 | 55.973674 | 62.3310903 | 141.556111 | 89.1526351 | 51.7078763 | 132.216799 | 92.8517453
50.0005931 | 50 148.916354 | 114.011476 | 65.5363436 | 98.1461498 | 155962314 | 133.308168
63.3666854 | 65.840722 | 54.7532276 | 73.5439384 | 99.3796702 | 50 182.017735 | 252.548458
TABLE 11. Allocation vector for 1000 MW of case 2 at best objective function.
TFWO SCA TLBO GWO CSA TSA EWA MSA
348.695845 | 500 500 484.388312 | 470.298949 | 219.413652 | 53.631972 76.1226548
166.683635 | 50 143.240374 | 73.5859262 | 106.523319 | 200 71 81.6338614
213.740597 | 102.906171 | 80 201.995003 | 254.23611 266.536515 | 103.99366 96.8360107
109.147997 | 92.049489 50 92.7853309 | 67.5116817 | 50 111.010881 | 115.19833
131.911042 | 200 200 119.73716 70.3426938 | 176.749382 | 238.97893 231.648118
54.0637884 | 79.2047469 | 50.0378964 | 50 53.3426186 | 114.918881 | 349.988739 | 422.05644
TABLE 12. Allocation vector for 1200 MW of case 2 at best objective function.
TFWO SCA TLBO GWO CSA TSA EWA MSA
496.100544 | 462.791999 | 500 498.864855 | 499.605748 | 500 81.4513192 | 95.9965098
180.463022 | 167.236572 | 50 96.0242331 | 190.931523 | 126.516088 | 100.000045 | 99.9406786
228.606689 | 300 300 220.873051 | 185.547242 | 282.926534 | 194.998712 | 138.83767
84.7009078 | 50 150 144.599474 | 143.940165 | 126.620457 | 199.99994 199.999793
147.526063 | 200 186.287678 | 199.996288 | 117.125234 | 146.970176 | 221.999973 | 215998151
96.3920018 | 55.7509113 | 50 75.0171419 | 96.1454203 | 51.1752392 | 343 483.015011

Robustness curve of case 2 with 1200 MW load demand
T T T T

LA NN

L
Nu ofrun

ess function

~==TFWO - - ~TLBO

WD = GSH —MSA —TS4)

Nu ofrun

FIGURE 13. Robustness curves of 1200 MW for case 2.

TABLE 13. Statistical results of case 3.

Convergence curve of case 2 with 1200 MW demand load
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FIGURE 14. Convergence curves of 1200 MW for case 2.

TABLE 14. Costs at the best objective function for case 3.

The order of algorithms according to the best objective func-
tion for 1000 MW demand are as follow; TFWO, CSA, GWO,
TLBO, SCA, TSA, EWA and MSA respectively. The order
of algorithms according to the best objective function for
1200 MW demand are as follow; TFWO, TSA, CSA, SCA,
GWO, TLBO, EWA and MSA respectively.

Fig. 8 explains the Friedman ranks of all algorithms for
case 2. It is observed that TFWO has achieved the best
rank followed by EWA, TLBO, GWO, CSA, TSA and SCA

77890

Demand (MW) | Algorithm | min mean max SD Demand (MW) | Algorithm | Fuel cost with valve ($ per hour) | Fuel cost without valve ($ per hour) | Emission (Ib)
TFWO 220423.06 598281.65 4958733.292 944175.481 ';E’\VO : ﬁ‘l’;‘g-g;; :'33335]-:22055573 :i;?ﬁ!gﬁ;
SCA 15101022 1649046188 11581460323 | 2278649761 TLBO 115164581 132623 5573 4150.008489
TLBO 222513.64 5161540.32 27406924.45 5560297.39 GWO 114881.3939 132623.5573 4301.335899
GWO 1120984.99 | 19560051.6 | 89572855.13 17846261.7 CSA 112930.8597 132623.5573 4316.810294
CSA 3645229.16 | 6226255148 | 10000000000 | 4729960096 N 153380160 1320235973 H33288284
TSA 3528495.67 | 38134328.4 105778137.5 29707313.3 2000 - 2o o1

MSA 1142842979 132623.5573 4061.89121

2000 EWA 542621.782 | 2897510479 | 29289503125 | 5800651131

MSA 221324.598 | 30649281.2 912903764.8 166631270

respectively. Fig. 9, Fig. 11, and Fig. 13 presents the robust-
ness curve of the algorithms for load demands 700, 1000,
and 1200 MW respectively. Fig. 10, Fig. 12, and Fig. 14
presents the convergence curve for load demands 700, 1000,
and 1200 MW respectively.

D. EXPERIMENTAL SERIES 3: THE CEED PROBLEM FOR
10 UNIT SYSTEM

The CEED problem considering valve point effect is solved
for 10 unit system for the load demands shown in Table 1
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TABLE 15. Allocation vector for 2000 MW of case 3 at best objective function.

TFWO SCA | TLBO GWO CSA TSA EWA MSA
35.8593741 | 10 54.2923587 | 18.1864836 | 54.8791241 | 10.5605925 | 21.8488406 | 49.799428
73.541012 20 77.9370289 | 43.7414724 | 51.9410131 | 23.5795537 | 51.0615497 | 79.9991336
119.432799 | 47 98.2565919 | 92.8617652 | 119.589725 | 73.4974903 | 71.4357504 | 86.6114236
128.607768 | 29 112.099482 | 34.3502021 | 67.2280635 | 90.4144438 | 106 96.0298499
89.5279508 | 160 95.1258708 | 133.31944 158.961773 | 72.5558797 | 119.609712 | 130.775676
109.263695 | 240 235.01898 203.021473 | 73.211088 240 153.89698 192.924051
256.05867 300 187.238452 | 296.190367 | 299.977904 | 294.996104 | 197.81122 299.9983
333.452184 | 340 323.546554 | 339.241033 | 340 340 238.025893 | 336.560815
470 470 467.179159 | 459.374178 | 457.613463 | 470 449.460184 | 339.847821
470 470 432.969966 | 465.407542 | 463.030817 | 470 456.59392 469.850154

Robustness curve of case 3 at 2000 MW load demand
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FIGURE 15. Robustness curves of 2000 MW for case 3.

by the algorithms mentioned in Table 2. Table 13 presents
the statistical comparison of the performance of TFWO with
other MHs. It is observed that TFWO is equally competitive
as compared to other MHs. Table 14 presents the best costs of
case 3 in $ per hour. It is observed that TFWO yields the best
cost for all the load demands mentioned in Table 2. Table 15
presents the allocation vector for load demand 2000 MW
respectively.

Fig. 15 presents the robustness curve of the algorithms for
load demand 2000 MW. Fig. 16 presents the convergence
curve. It is observed that the probability of getting stuck in
local optima is rare in case of TFWO and it favors faster
convergence.

E. DISCUSSION

The absolute difference between the sum of generated power
from each unit in the network and the sum of load demand and
transmission losses is called power mismatch. This should be
ideally zero and it is considered as a soft constraint in the
optimization problem. Based on the results extracted for the
three tested network; ELD, CEED with and without effect
of valve point, the term power mismatch is determined from
these results. Table 16 explain the value of power mismatch
for all cases. The more accurate result extracted from any
algorithm is the result that achieve the smallest value of power
mismatch. Based on the results recorded in Table 16; the
proposed TFWO algorithm achieve the best value of power
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Convergence curve of case 3 at 2000 MW demand load
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FIGURE 16. Convergence curves of 2000 MW for case 3.
TABLE 16. The value of power mismatch for all cases.
Cases Algorithm | 700 MW 1000 MW 1200 MW 2000 MW
TFWO 2.20E-13 1.71E-12 6.54E-13 -
SCA 8.99E-05 7.28E-05 1.25E-04
TLBO 6.22E-09 1.75E-07 9.42E-07 -
GWO 3.54E-05 2.73E-05 7.84E-05 -
CSA 9.87E-07 1.61E-06 1.69E-06 -
TSA 2.67E-05 6.56E-06 0.00010057 | -
Case 1 | EWA 32.6253734 | 1.18E+01 36.2637036 | -
MSA 8.72410542 | 1.65E+01 20.6804214 | -
TFWO 7.67E-13 2.13E-13 1.99E-13 -
SCA 3.48E-04 1.04E-04 1.25E-04 -
TLBO 2.01E-10 2.00E-10 9.42E-07 -
GWO 1.40E-06 1.40E-05 7.84E-05 -
CSA 5.14E-06 2.71E-07 1.69E-06 -
TSA 2.67E-05 5.99E-06 8.16E-06
Case2 | EWA 2.06340623 | 103.487379 | 101.595081 | -
MSA 5.50286239 | 16.2276651 | 21.2674607 | -
TFWO - - - 8.24E-13
SCA - - - 1.49E-03
TLBO - - - 6.86E-08
GWO - - - 8.90E-05
CSA - - - 0.00034215
TSA - - - 0.00032945
Case3 | EWA - - - 203.313641
MSA - - - 0.61243059

mismatch for all demands in all cases is reported in Table 16.
Hence; the TFWO algorithm is more accurate and reliable
so that the proposed TFWO is superior on all competitor
algorithms used in the ELD problem.

V. CONCLUSION AND FUTURE WORK

Economic Load Dispatch (ELD) is one of the com-
plex problems of power system. In this study, an effi-
cient new algorithm termed Turbulent Flow of Water-based
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Optimization (TFWO) is proposed to solve different variants
of ELD such as ELD with losses, Combined Economic and
Emission Dispatch (CEED), and CEED considering valve
point effect. TFWO is a recent MH inspired from whirlpools
created in turbulent water flow. TFWO has good balance
between exploration and exploitation. Also, the possibility of
getting stuck in local optima and premature convergence is
rare in TFWO. Three experimental series such as; the ELD
problem, the CEED problem for 6 unit system and the CEED
problem for 10 unit system are utilized in this paper. The
performance of TFWO is compared with seven algorithms
such as Cuckoo Search Algorithm (CSA), Grey Wolf Algo-
rithm (GW), Sine Cosine Algorithm (SCA), Earth Worm
Optimization Algorithm (EWA), Tunicate Swarm Algo-
rithm (TSA), Moth Search Algorithm (MSA) and Teaching
Learning Based Optimization (TLBO) for different demands.
Eventually, The numerical results show that the TFWO algo-
rithm has superior merits, advantages over other counterparts
in terms of robustness, avoids premature convergence, and
stable convergence characteristic. The future work will con-
centrates on; 1) although, the TFWO is applied to solve ELD
problems in the current study, it seems that TFWO has the
potential to solve many other optimization problems in the
field of power system planning and operation such as unit
commitment, charger placement, and optimal power flow.
2) studding the ELD on resources of renewable energy using
TFWO algorithm.
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