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Reactive Power & Voltage Control in
Grid-Connected Wind Farms: An Online

Optimization Based Fast Model Predictive Control
Approach

Hafiz Ahmed

Abstract—This paper presents the application of an online
optimization based fast model predictive control scheme to grid-
connected wind farms for reactive power and voltage control.
A linear prediction model of the network was used to predict
the behavior of the system for a certain prediction horizon while
a modified quadratic programming problem was used for the
optimization process. The proposed controller was tested in a 5-
bus test system hosting 3 sub wind farms of total 36 MW active
power production capacity connected in series to the external
network. The controller performed its control action by changing
the reactive power output of the sub wind farms and voltage set-
points of an Online Load Tap Changer (OLTC) transformer to
respect the safety limit imposed on the bus voltages and desired
reactive power exchange.

Index Terms—Model Predictive Control, Reactive Power Con-
trol, Voltage Control, Wind Farms, Grid Integration

I. INTRODUCTION

The global energy market is currently experiencing a renew-
able energy revolution. Governmental policy, reduced carbon
emission, fiscal benefit, pressure from various NGO’s etc.
are contributing to this revolution. Every day, more & more
renewable energy sources are being added to the global energy
network. Their contribution is also increasing steadily to the
global energy-mix. Out of various renewable energy sources,
wind power has been able to establish itself as one of the
key player among the others. It is considered as one of
the most promising & important renewable energy sources.
The wind energy technology has progressed a lot in the last
few decades. Because of this technological advancement, the
growth of wind energy installation is also very high. As a
result, it has started to become an influential factor in the
overall power system operation. This rapid integration of wind
energy/distributed generation into the grid has brought many
operational challenges in the distribution network as most
of them are directly connected to the distribution network
instead of the transmission network [13], [2], [45], [36]. This
operational challenge comes with the benefit of rapid extension
of the distribution system. Although, they have started to create
impact on the overall power system operation but until recent
times they were not obliged to provide any support to the
distribution/transmission system operation. Because of their
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impact, Distribution System Operator’s (DSO) have started
to oblige Distributed Generators (DG) like Wind farm to
contribute to the power system operation. Reactive Power and
Voltage supports are now sought from DG’s [47].

The challenge here is to optimally manage the reactive
power support while maintaining the acceptable grid voltages
[44]. In order to provide the aforementioned supports, Wind
farm must have to supply/absorb reactive power along with
the active power supply. To do this, flexible and coordinated
control actions are needed, which will take into account the
problem of reactive power & voltage control (RPVC). Reactive
power plays an important role in improving the voltage profile
in the overall power system operation. Reactive power flow can
be controlled through the generator voltages, transformer tap
and also through the reactive power capability of the generator
[12]. The problem of RPVC has been well studied in the
literature. Various types of evolutionary optimization algorithm
like Genetic Algorithm(GA) [18], [28], [35], shuffled frog-
leaping algorithm [41], Particle Swarm Optimization (PSO)
[11], various variants of Genetic algorithms [38], PSO [1],
[24], [42], [48], [29], Ant colony optimization [21], [43],
Differential Evolution (DE) [40], [20], Cuckoo Search (CS)
[4], Harmony Search (HS) [3], [16], [9] etc. have been used.
Classical methods like Genetic Algorithm suffers from various
problems like sticking around the local minima instead of the
global minima, high computation time etc.

However, the main problem associated with the abovemen-
tioned techniques is that the optimization problem is always
formulated as a single step optimization problem. Single step
problems are open-loop hence cannot be robust to various
uncertainties or change in system properties. Instead of single-
step optimization, multi-step optimization based Model Predic-
tive Control can be used. Model Predictive Control (MPC) has
recently gained much popularity among the research commu-
nity [15], [52]. For example, in the area of electrical machine
& power electronics, it has attracted a lot of attention recently
[17], [33], [32], [31], [23], [22]. Although the application
of MPC is very new in power system domain but still a
number of researches have already been done and got wide
acceptance. In [51], [50], [49], classical MPC have been used
to control the voltages of active distribution network. MPC
based control scheme for load management in power network
with renewable energy sources have been discussed in [55].
MPC based control strategy has been developed in [25] to
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correct the transmission voltages. A two-stage MPC controller
has been proposed in [27], [26] to prevent voltage collapse.
In the first stage, a static load shedding algorithm was used to
obtain stable MPC prediction simulations. While in the second
stage, a linear programming problem was used to optimize the
control action. In [34], the authors have proposed a coordinated
system protection scheme (SPS) against voltage collapse based
on MPC and heuristics tree search. In [10], authors have
proposed a MPC based voltage stabilization using the state
automata description of the primary voltage controller from
the hybrid system (System having both continuous and discrete
dynamics, Example-Bouncing Ball) point of view. The hybrid
system arises from the interaction of the continuous dynamics
of the nonlinear load to the discrete dynamics of the controller.
This paper proposes a centralized MPC based control scheme
for grid connected wind farms to address the problem of
reactive power and voltage control. Instead of using traditional
MPC, this paper uses a recently developed algorithm named as
online optimization based fast model predictive control [53].
In this algorithm, the structure of the quadratic programming
problem is exploited to speed up the optimization process.
This approach makes the computation of control action faster
in the order of maximum 100 times than a method that uses
generic optimizer for some specific classes of problems. This
faster computation time makes it a suitable candidate for real-
time operation. There also exists some other fast computation
method for solving Quadratic programming problems [37],
[39], [19]. Some them are not suitable for all class of system.
For example, in [19], primal-dual interior-point methods have
been proposed. Again, some are suitable for special pursoses
like embedded optimization [37], [19]. Commercial efficient
QP solvers like [39] are very costly. But the method being
used in this paper is applicable to large class of MPC problems
while freely available in public domain.

The paper is organized as follows: Section II discusses
the control objective while section III discusses about model
predictive control based problem formulation. The speedup of
the optimization process i.e. fast model predictive control is
discussed in section IV. The test system is discussed in section
V. Section VI is devoted for simulation results while the last
section i.e. section VII concludes the present work.

II. CONTROL OBJECTIVE

Typically, wind farms are located in distant geographical
location far from the city where the wind profile is very high
and also the population density is low. Onshore wind farms
are also very popular. In fact, most of the large capacity wind
farms are located on the shore. As wind is an intermittent
renewable energy, the active power generation of the wind
farms is very unpredictable. It may vary from zero to the rated
capacity depending on the wind profile. Each wind generator
has its own reactive power capability which depends on the
type of generator being used and also on the power electronics
setup. This reactive power capability can be derived from the
P-Q diagram of the respected wind generator [5]. For example,
a general rule of thumb for DFIG based wind turbine’s reactive
power capability is, ±Q = 0.33 ∗ P . When these wind farms

are connected to the grid, they create challenges like voltage
problem in the grid [46].

The objective of the present work is to address the problem
of reactive power and voltage control. In case of voltage con-
trol, the objective is to maintain the voltages of different buses
around predefined safe limits. These safe limits are generally
defined by the system operators. Regarding reactive power
support, the wind farms must respond to the requirements of
the system operators. In this case, the objective is to optimally
manage the reactive power resources of the wind farms to
respond to the operator’s request. The proposed controller is
based on the idea that once we have achieved our goal/target,
then control variables will not change their values instead will
work on the previously computed values. This idea will help
to reduce the introduction of any additional disturbance in
the power system which rises from the continuous control
effort. For example, we are in a case that all our bus voltages
are around our desired limit and also we are successfully
meeting the demand of reactive power support. In this case,
the controller will stop working and the system will run on
the previously computed control variable. The controller will
come into action once it detects that the system is outside
the limit. This approach will be illustrated through simulation
results in section VI. The controlled variables in the case of
our problem are the reactive power output of wind farms and
voltage set-points of the OLTC transformer.

III. MPC BASED CONTROL PROBLEM FORMULATION

Model Predictive Control (MPC) also referred to as receding
(or moving) – horizon control is a feedback strategy that
attempts to solve at every decision instant an open-loop
optimal control problem over some prediction horizon, to
apply the first input in the optimal control sequence and to
repeat the process at the next decision instant [7]. The main
idea is, at time instant k, with the help of latest available
measurements data, a cost minimizing control strategy is
computed for a time horizon in the future [k, k + p], so that
the optimal change of control variable helps to reach the target
at the end of the prediction horizon, p. However, only the
first step of the predicted control sequence is applied and
the optimization process repeats. Keeping this idea in mind,
the MPC based reactive power & voltage control problem is
formulated. The controller calculates the change of reactive
power output (Qg) of wind farms and the voltage set-point
(Vtap) of the transformer to maintain the voltages at different
buses while providing the requested reactive power support at
the end of the prediction horizon. The change of the control
variables at time instant k can be written as,

∆u(k) = [∆Qg(k)T ,∆Vtap(k)]T (1)

Then the objectives of our problem become to minimize
the change of the control variables while keeping constraints
like bus voltages around a safe limit. This objective can be
translated as the following standard Quadratic Programming
(QP) problem:
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minimize

p−1∑
i=0

||∆u(k + i)||2R (2)

subject to,

umin ≤ u(k + i) ≤ umax

∆umin ≤ ∆u(k + i) ≤ ∆umax

xmin ≤ x(k + i) ≤ xmax

Where, x(k) is the state of the system, R is the weight
matrices to penalize the controlled variables. The states of
the system x(k + i|k) are the voltages at different buses and
reactive power exchange with the grid. The prediction model
for the state can be expressed as,

x(k + i|k) = x(k + i− 1|k) +
δx

δu
∆u(k + i− 1) (3)

Here, δx
δu is the sensitivity matrix of the state with respect

to change in control variables and has the following form:

δx

δu
=


δx1

δu1

δx1

δu2
. . . δx1

δum
δx2

δu1

δx2

δu2
. . . δx2

δum

...
...

...
...

δxn

δu1

δxn

δu2
. . . δxn

δum


The controller updates itself with the data x(k|k) and

previous control inputs u(k− 1) to compute the next optimal
control sequence [50]. The calculation of sensitivity matrix
was done with power-flow analysis. The value of the weight
matrices were assigned according to the priority. In our case,
we assumed that the transformer voltage set-point is costlier
than the reactive power output of the sub wind farms. It’s
because the no. of change of voltage set-points has an effect
on the lifetime of OLTC transformer. So, the controller will
always try not to use the voltage set-points of the OLTC as
this will minimize the objective function.

IV. FAST MODEL PREDICTIVE CONTROL

MPC relies on a dynamic model of the system being
controlled which is very often a linear model. The state
dynamics of a basic linear time invariant system can be written
as,

x(t+ 1) = ax(t) + bu(t) + ω(t), t = 0, 1, · · · · · · · · · (4)

Where time is denoted by t, x(t) ∈ Rnis the state, u(t) ∈
Rm is denoting the output and the disturbance is denoted by
ω(t) ∈ Rn. The state matrix A ∈ Rnxn and the input matrix
B ∈ Rnxm are known data. It is assumed that for different
values of t, ω(t) values are independent identically distributed
(IID) with known distribution. Then let, $ = Eω(t) is the
mean of ω(t) (which is independent of t) [53].

Then the current input u(t) must have to be determined from
the previous & current states x(0), . . . , x(t) by the control
policy. The role of the Model Predictive Control (MPC) is to
find this control policy by solving an optimization problem.

The control input u(t) in MPC can be found at each step by
solving the following Quadratic Programming (QP) problem

minimize
1

T

τ=t+T−1∑
τ=t

s(x(τ), u(τ)) (5)

subject to,

F1x(τ) + F2u(τ) ≤ f, τ = t, . . . , t+ T − 1

x(τ + 1) = Ax(τ) +B(τ) +$,

τ = t, . . . , t+ T − 1

0 = Ax(t+ T − 1) +Bu(t+ T − 1) +$

with variables x(t + 1), . . . , x(t + T −
1), u(t + 1), . . . , u(t + T − 1), and with problem
data x(t), A,B,Q, S,R, F1, F2, f,$. Here, T is
known as the time horizon. If we assume that
u∗(t), . . . , u∗(t + T − 1), x∗(t), . . . , x∗(t + T − 1) is
optimal for the QP (5), then at each time instant t, the MPC
controller will take the policy u(t) = u∗(t).

A. Primal Barrier Interior-Point Method
In this section, a basic primal barrier interior-point method

will be described for the solution of the QP problem mentioned
in equation (5). Let us introduce an overall optimization vari-
able z = (u(t), x(t+1), u(t+1), . . . , x(t+T−1), u(t+T−1)),
where z ∈ RTm+T (n−1). Then the QP problem of (5) can be
expressed as

minimize zTHz + gT z (6)

subject to,
Pz ≤ h, Cz = b

Where,

H =



R 0 0 . . . 0 0
0 Q S . . . 0 0
0 ST R . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Q S
0 0 0 . . . ST R


, g =



2STx(t)
0
0
...
0
0



P =


F1 0 0 . . . 0 0
0 F1 F2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . F1 F2

 ,

C =



−B I 0 0 . . . 0 0
0 −A −B I . . . 0 0
0 0 0 −A . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · I 0
0 0 0 0 . . . −A −B


,

b =



Ax(t) +$
$
$
...
$
$


, h =


f − F1x(t)

f
...
f
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To solve the QP problem (6), an infeasible start primal
barrier method will be used. In this method, the inequality
constraint of the QP problem of (6) will be replaced by a
barrier term in the objective function. So, the approximate
problem becomes [53]

minimize zTHz + gT z + kφ(z) (7)

subject to
Cz = b,

where the barrier parameter κ > 0 and the log barrier φ
associated with the inequality constraints can be defined as,

φ(z) =

lT∑
i=1

−log(hi − pTi z)

where, pTi , . . . , p
T
lT are the rows of P defined in (3). The

equality constrained QP problem of equation (4) is a convex
optimization problem with smooth objective function. This can
be solved using any Newton’s method. Infeasible start Newton
method can be a solution.

B. Infeasible Start Newton Method

According to [14], let us associate a dual variable v ∈ RTn
with the equality constraint Cz = b. Then the optimality
conditions become,

rd = 2Hz + g + κPT d+ CT v = 0,

rp = Cz − b = 0 (8)

where, di = 1/(hi − pTi z) and pTi denotes the i-th row of
P . The term κPT d is the gradient of κφ(z). There also an
implicit constraint exist here which is Pz < h. rp and rd are
called as primal residual and dual residual respectively. They
constitute the residual vector r denoted as, r = [rTd r

T
p ]T . Then

the optimality condition for (8) becomes r = 0.
In this algorithm i.e. Infeasible Start Newton Method, the

initial point z0 strictly satisfies the implicit inequality con-
straints (Pz0 < h) but may not satisfy the equality constraints
Cz = b. So, the initial point z0 can be infeasible. The name
of the algorithm as infeasible starts comes from this infeasible
point. For the dual variable v, any initial point v0 can be
chosen to start with.

Then an approximate z (satisfying Pz < h) and v are
maintained at each step. If the primal residual rp and dual
residual rd are small enough, the algorithm quits. Otherwise,
the estimation is refined by linearizing the optimality condition
given in (8). And computing the primal and dual steps ∆z,∆v
for whichz+ ∆z, v+ ∆v give zero residuals in the linearized
approximation.

The search steps ∆z and ∆v are found by solving the
following linear equations,[

2H + κPT diag(d)2P CT

C 0

] [
∆z
∆v

]
= −

[
rd
rp

]
(9)

Where, 2H + κPT diag(d)2P is the Hessian of κφ(z) .
Once the search steps ∆z and ∆v are computed, a step size
s ∈ (0, 1] can be found by using a backtracking line search
on the norm of the residual vector r while making sure that

the implicit inequality constraint Pz < h holds true for every
updated point. Then the primal & dual variable are updated as
z := z + s∆z and v := v + ∆v . As long as the norm of the
residual vector r is above an acceptable value, the procedure
keeps repeating.

If the problem (6) is strictly feasible then it can be shown
that the primal feasibility Cz = b will be achieved in a finite
number of steps. Once the primal residual rp becomes zero, it
will be unchanged for the rest of the iterations. Also within a
finite number of steps, the convergence of z and v for optimal
point will also happen.

C. Fast Computation of the Newton Step

The solution of linear equations has a great role in terms
of speed up of the optimization problem. Instead of exploiting
the structure of the linear equations given in (6), if they are
solved using a densed LDLT factorization, the total cost will
be (1/3)T 3(2n + m)3 flops. This computational cost can be
reduced by exploiting the structure of (9). One of the ways is to
use the block elimination procedure. Let us start with denoting
the Hessian 2H+κPT diag(d)2P , of the barrier term κφ(z) as,
Φ = 2H + κPT diag(d)2P which is block diagonal. With the
first block mxm, the last block nxn and the remaining T − 1
block (n + m)x(n + m). Its inverse is also block diagonal.
The inverse can be written as,

Φ−1 =



R̃0 0 0 . . . 0 0 0

0 Q̃1 S̃1 . . . 0 0 0

0 S̃T1 R̃1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . Q̃T−1 S̃T−1 0

0 0 0 . . . S̃T−1 R̃T−1 0

0 0 0 . . . 0 0 Q̃T


The algorithm for solving equation (9) by block elimination

method can be summarized as [14]:
• 1) Form the Schur complement Y = CΦ−1CT and β =
−rp + CΦ−1rd

• 2) Determine ∆v by solving Y∆v = −β
• 3) Determine ∆z by solving Φ∆z = −rd − cT v

The Schur complement Y is a block diagonal matrix which
has the form,

Y =



Y11 Y12 0 . . . 0 0
Y21 Y22 Y23 . . . 0 0
0 Y32 Y33 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . YT−1,T−1 YT−1,T

0 0 0 . . . YT,T−1 YT,T


Where,

Y11 = BR̃0B
T + Q̃1

Yii = AQ̃i−1A
T +AS̃i−1B

T +BS̃Ti−1A
T +BR̃i−1B

T + Q̃i, i = 2, . . . , T

Yi,i+1 = Y Ti+1,i = −Q̃iAT − S̃iBT , i = 1, . . . , T − 1
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The computation procedure for the first step of the algorithm
just mentioned before can be stated as, first we have to
compute the Cholesky factorization of the block diagonal
matrix Φ. Then the formation of Y can be easily done by
backward and forward substitution with columns taken from
A and B, followed by multiplying the associated blocks in
C. In order to compute ∆v i.e. step-2, we have to compute
the Cholesky factorization of Y , followed by backward and
forward substitution. The Cholesky factorization of Y can be
written as Y = LLT where L is the lower triangular and has
the following lower bidiagonal block structure,

L =



L11 0 0 . . . 0 0
L21 L22 0 . . . 0 0
0 L32 L33 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . LT−1,T−1 0
0 0 0 . . . LT,T−1 LT,T


Where, Lii are nxn lower triangular with positive diago-

nal entries and Li+1,i are general nxn matrices. From the
Cholesky factorization of Y i.e. Y = LLT , it can, be found
that

L11L
T
11 = Y 11

LiiLi+1,i = Yi,i+1, i = 1, . . . , T − 1

LiiL
T
ii = Yii − Li,i−1L

T
i,i−1, i = 2, . . . , T

The computation speed and cost of step-3 i.e. computation
of ∆z depends heavily on the previous steps since this step
requires the computation of the Cholesky factorization of
Φwhich is already done in step-1.

D. Warm Start

If we solve an optimization problem, then the computational
effort for solving another closely related optimization problem
can be reduced by taking advantage of the information’s
gained while solving the original optimization problem. It
means that the starting point for an optimization problem can
be taken from a previously solve closely related optimization
problem. This idea is known as ‘Warm-start strategies’ [30],
[54]. As in MPC, we have to solve our QP problem (6) at
each time step for a time horizon , the optimization problem
is closely related to the problem of previous time steps. So,
Warm start strategies can be a good solution to reduce the
computational effort which in turn saves time. Which means,
we can use the previously computed plan, suitably shifted in
time, as a good starting point for the current plan [53]

Let us assume that, we have solved our QP problem (6)
at time step t − 1 with the trajectory z̃ = (ũ(t − 1), x̃(t −
1), . . . , x̃(t + T − 2), ũ(t + T − 2)). Then the primal barrier
method for time step t can be initialized with

zinit = (ũ(t), x̃(t− 1), . . . , x̃(t+ T − 2), ũ(t+ T − 2), 0, 0)

zinit will satisfy the constraints if we assume that z̃ satisfies
the equality and inequality constraints strictly. The assumption

Figure 1. 5-bus test system

may not always work. So, there exists a possibility that zinit

will not satisfy the constraints at the first step. In order to
avoid constraints violation, the initial u(t) can be modified in
a way such that it satisfies, F1u(t) + F2x(t) < f . By this
modification we can avoid violating the constraints initially.

V. TEST SYSTEM

The proposed online optimization based fast MPC controller
has been tested in a 5-bus 11 KV network. The network
topology is shown in fig. 1 The network has three sub wind
farms. The network is connected to the external grid through
a 33/11 kV On Load Tap Changer (OLTC) transformer. The
three sub wind farms are connected in series to the trans-
former. For simulation environment, Matlab/Simulink has been
selected. The online optimization based fast MPC controller
was developed in C using the fortran library LAPACK [8].
Later it was compiled through mex option of Matlab/Simulink
to be useable in Matlab/Simulink[53].

The wind farms are consisted of Doubly Fed Induction
Generator (DFIG) driven by wind turbines. Each wind frams
has a rated capacity of 12 MW. The centralized MPC controller
works by requesting the change in reference of the reactive
power output of each wind farms. The controller also requests
the OLTC controller to change its voltage set points. The
internal controller of both the wind farms & the OLTC
transformer works according to the reference signal generated
by the centralized controller. The data’s are collected at every
0.5 seconds. So, the system has a sampling period of 0.5
seconds. The optimization should have to be done within this
time. The system base is 40 MVA. The safe limit of bus
voltages are [0.95 p.u. 1.05 p.u.]. From the test system shown
in fig. 1, it can be said that the most important voltage buses
are bus 2 and 5. If they stay inside the limit, then the other
buses i.e. 3 and 4 are supposed to be inside the limit. So, we
will consider only the voltages of Bus 2 and 5. The reactive
power exchange with the grid will take place at bus 1 i.e. Point
of Common Coupling (PCC).

VI. SIMULATION AND RESULTS

This section discusses about the simulation result. We
have analyzed the performance of the controller with various
prediction horizons. Prediction horizons influences also the
optimization time. So, after considering all the factors, a pre-
diction horizon of p = 10 was chosen. Also in simulation, load
conventions have been used i.e. positive reactive power means
absorption while negative reactive power means production.
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Figure 2. Bus voltages (top) and Tap position (bottom) scenario for case-1
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Figure 3. Reactive power exchange at PCC for case-1 (top) and each SWF’s
contribution (bottom)

To check the performance and effectiveness of the proposed
controller, the controller was tested with three different various
test scenarios. They are described below.

A. Case-1

In this case, initially the network is exchanging 1.2 MVAR
(absorbing) reactive power with the grid and the voltage of the
grid is 1 p.u. The bus voltages of the network are around the
safety limit. At this time it received a request from the operator
to increase the absorbed reactive power to 2.5 MVAR. The
controller takes into account this request and starts to change
the value of the control variable.

The simulation results are given in fig. 2 and fig. 3. From
the figure it can be seen that the network gradually reaches to
its target by changing the reactive power output of different
subwind farms. As soon as, the target is reached, no change
in the control variable can be seen. It’s because the goal of
the optimization is to minimize the change of control variable.
When the target is achieved; the minimization of the objective
function will be achieved if there are no changes in the
controlled variable. Another thing to be noted that no change
in transformer tap position can be seen. Its because the tap
position change is penalized more in the objective function
than the reactive power output.

B. Case-2

In this scenario, we assume that the system is absorbing
1.17 MVAR at a grid voltage of 1 p.u. Then it receives a
request from the operator to absorb 3 MVAR however the
grid voltage increased to 1.05 p.u. The simulation result for
this case is shown in fig. 4 and 5.
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Figure 4. Bus voltages (top) and tap position (bottom) scenario for case-2
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Figure 5. Reactive power exchange at PCC (top) and contribution of each
SWF’s (bottom) for case-2

From the fig. 4 and 5, we can see that because of sudden
increase in the grid voltage the bus voltage of bus-5 went
outside of the safety limit. However, playing with only reactive
power output, the voltage will not enter inside the safe limit.
So, the voltage set-points of OLTC transformer changed to
keep the bus voltage inside the desired limit. Another point
to be noted is that the voltage didn’t enter into the desired
limit instantaneously rather it entered slowly step by step.
It is because of the ramp constraint introduced into the
problem formulation in equation (2). This constraint was added
to prevent sudden change in the control parameters which
may introduce oscillation or unnecessary disturbances into the
system.

C. Case-3

In this case, we will see the controller performance regard-
ing reactive power production scenario. Initially the network
is producing 1.4 MVAR at 1 p.u. grid voltage. However, it
is requested to produce more to support the external network.
The target is to produce 3 MVAR. The simulation result can
be seen in fig. 6 and 7.

The figure is telling that the controller is well performing
in this case also. It gradually reaches its target reactive power
production. Bus voltages are increasing because of the reactive
power production. However, as they are inside the limit, no
change in voltage set-points of the transformer can be seen.

The simulation was done in a PC which is powered by
an Intel Core 2 Duo Processor of 2.3 GHz & RAM of
2 GB. The PC was running on Linux operating system.
The optimization process took around 7msec time. Further
reduction in optimization time can be possible by using more
high power processor like Core i-7. However, the optimization
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Figure 6. Bus voltages (top) and tap position (bottom) scenario for case-3
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Figure 7. Reactive power exchange at PCC (top) and contribution of each
SWF’s (bottom) for case-3

time in our case was less than the sampling time which makes
this optimization feasible for real-time implementation with
physical networks.

VII. CONCLUSION

This paper presented the application of an online opti-
mization based fast model predictive controller to the grid-
connected wind farms. The controller coordinated the re-
active power output and voltage set points of the OLTC
transformer to keep the system states around their limit set
by the distribution/transmission system operator. From the
simulation results it can be said that the proposed controller is
very useful in achieving its desires target i.e. reactive power
& voltage control. The controller successfully performed in
all the three test cases which include both reactive power
production & absorption. Furthermore the optimization time
it took was really small which opens up the possibility of
real-time implementation.

Future works may include considering a non-linear predic-
tion model of the network under consideration. This work
was done for a 5-bus system which can be extended for
higher bus system in future. Furthermore, the interaction of
multi area system on the voltage & reactive power of the
transmission network can be studied in future where a central-
ized/decentralized predictive controller might be considered.
Another interesting thing could be applying Non-linear MPC.
[6] Discussed real-time implementation of parameterized Non-
linear MPC. This can also be considered.
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