4,188 research outputs found

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    ALPACAS: A Language for Parametric Assessment of Critical Architecture Safety

    Get PDF
    This paper introduces Alpacas, a domain-specific language and algorithms aimed at architecture modeling and safety assessment for critical systems. It allows to study the effects of random and systematic faults on complex critical systems and their reliability. The underlying semantic framework of the language is Stochastic Guarded Transition Systems, for which Alpacas provides a feature-rich declarative modeling language and algorithms for symbolic analysis and Monte-Carlo simulation, allowing to compute safety indicators such as minimal cutsets and reliability. Built as a domain-specific language deeply embedded in Scala 3, Alpacas offers generic modeling capabilities and type-safety unparalleled in other existing safety assessment frameworks. This improved expressive power allows to address complex system modeling tasks, such as formalizing the architectural design space of a critical function, and exploring it to identify the most reliable variant. The features and algorithms of Alpacas are illustrated on a case study of a thrust allocation and power dispatch system for an electric vertical takeoff and landing aircraft

    Data analysis and machine learning approaches for time series pre- and post- processing pipelines

    Get PDF
    157 p.En el ámbito industrial, las series temporales suelen generarse de forma continua mediante sensores quecaptan y supervisan constantemente el funcionamiento de las máquinas en tiempo real. Por ello, esimportante que los algoritmos de limpieza admitan un funcionamiento casi en tiempo real. Además, amedida que los datos evolución, la estrategia de limpieza debe cambiar de forma adaptativa eincremental, para evitar tener que empezar el proceso de limpieza desde cero cada vez.El objetivo de esta tesis es comprobar la posibilidad de aplicar flujos de aprendizaje automática a lasetapas de preprocesamiento de datos. Para ello, este trabajo propone métodos capaces de seleccionarestrategias óptimas de preprocesamiento que se entrenan utilizando los datos históricos disponibles,minimizando las funciones de perdida empíricas.En concreto, esta tesis estudia los procesos de compresión de series temporales, unión de variables,imputación de observaciones y generación de modelos subrogados. En cada uno de ellos se persigue laselección y combinación óptima de múltiples estrategias. Este enfoque se define en función de lascaracterísticas de los datos y de las propiedades y limitaciones del sistema definidas por el usuario

    Third Conference on Artificial Intelligence for Space Applications, part 1

    Get PDF
    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    A Bayesian Approach to Sensor Placement and System Health Monitoring

    Get PDF
    System health monitoring and sensor placement are areas of great technical and scientific interest. Prognostics and health management of a complex system require multiple sensors to extract required information from the sensed environment, because no single sensor can obtain all the required information reliably at all times. The increasing costs of aging systems and infrastructures have become a major concern, and system health monitoring techniques can ensure increased safety and reliability of these systems. Similar concerns also exist for newly designed systems. The main objectives of this research were: (1) to find an effective way for optimal functional sensor placement under uncertainty, and (2) to develop a system health monitoring approach with both prognostic and diagnostic capabilities with limited and uncertain information sensing and monitoring points. This dissertation provides a functional/information --based sensor placement methodology for monitoring the health (state of reliability) of a system and utilizes it in a new system health monitoring approach. The developed sensor placement method is based on Bayesian techniques and is capable of functional sensor placement under uncertainty. It takes into account the uncertainty inherent in characteristics of sensors as well. It uses Bayesian networks for modeling and reasoning the uncertainties as well as for updating the state of knowledge for unknowns of interest and utilizes information metrics for sensor placement based on the amount of information each possible sensor placement scenario provides. A new system health monitoring methodology is also developed which is: (1) capable of assessing current state of a system's health and can predict the remaining life of the system (prognosis), and (2) through appropriate data processing and interpretation can point to elements of the system that have or are likely to cause system failure or degradation (diagnosis). It can also be set up as a dynamic monitoring system such that through consecutive time steps, the system sensors perform observations and send data to the Bayesian network for continuous health assessment. The proposed methodology is designed to answer important questions such as how to infer the health of a system based on limited number of monitoring points at certain subsystems (upward propagation); how to infer the health of a subsystem based on knowledge of the health of the main system (downward propagation); and how to infer the health of a subsystem based on knowledge of the health of other subsystems (distributed propagation)

    Hierarchical feature extraction from spatiotemporal data for cyber-physical system analytics

    Get PDF
    With the advent of ubiquitous sensing, robust communication and advanced computation, data-driven modeling is increasingly becoming popular for many engineering problems. Eliminating difficulties of physics-based modeling, avoiding simplifying assumptions and ad hoc empirical models are significant among many advantages of data-driven approaches, especially for large-scale complex systems. While classical statistics and signal processing algorithms have been widely used by the engineering community, advanced machine learning techniques have not been sufficiently explored in this regard. This study summarizes various categories of machine learning tools that have been applied or may be a candidate for addressing engineering problems. While there are increasing number of machine learning algorithms, the main steps involved in applying such techniques to the problems consist in: data collection and pre-processing, feature extraction, model training and inference for decision-making. To support decision-making processes in many applications, hierarchical feature extraction is key. Among various feature extraction principles, recent studies emphasize hierarchical approaches of extracting salient features that is carried out at multiple abstraction levels from data. In this context, the focus of the dissertation is towards developing hierarchical feature extraction algorithms within the framework of machine learning in order to solve challenging cyber-physical problems in various domains such as electromechanical systems and agricultural systems. Furthermore, the feature extraction techniques are described using the spatial, temporal and spatiotemporal data types collected from the systems. The wide applicability of such features in solving some selected real-life domain problems are demonstrated throughout this study

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p
    corecore