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Abstract
This paper introduces Alpacas, a domain-specific language and algorithms aimed at architecture
modeling and safety assessment for critical systems. It allows to study the effects of random and
systematic faults on complex critical systems and their reliability. The underlying semantic framework
of the language is Stochastic Guarded Transition Systems, for which Alpacas provides a feature-rich
declarative modeling language and algorithms for symbolic analysis and Monte-Carlo simulation,
allowing to compute safety indicators such as minimal cutsets and reliability. Built as a domain-
specific language deeply embedded in Scala 3, Alpacas offers generic modeling capabilities and
type-safety unparalleled in other existing safety assessment frameworks. This improved expressive
power allows to address complex system modeling tasks, such as formalizing the architectural design
space of a critical function, and exploring it to identify the most reliable variant. The features and
algorithms of Alpacas are illustrated on a case study of a thrust allocation and power dispatch
system for an electric vertical takeoff and landing aircraft.
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1 Introduction

The work presented in this paper is motivated by the emergence of Urban Air Mobility
(UAM) which will move people and cargo by air, exploiting the third dimension to escape
ground congestion. UAM will be powered by new electric Vertical Take-Off and Landing
(eVTOL) aircraft. They will use highly redundant fully electric propulsion systems for
reduced noise and safe operation in urban areas. The Aerospace Recommended Practices
(ARP-4754A1/47612) guide the design and certification process of these aircraft. According to
[18], safety assessment is very challenging for eVTOL development with large costs associated
to safety modeling, and difficulties to assess and optimize multiple architecture variants.

New eVTOL companies propose very different system architectures (lift-only config-
urations, lift+cruise configurations with tilt-wing, tilt-rotor, etc.) for a wide variety of
applications (air taxi, deliveries, freight, etc.) and safety aspects play a decisive role in the

1 https://www.sae.org/standards/content/arp4754a/
2 https://www.sae.org/standards/content/arp4761/
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5:2 ALPACAS

competition of designs. Moreover, exploring the underlying design-space from a safety and
certification perspective can help define meaningful mandatory safety targets, which are still
being actively discussed by regulators in the US and the EU.

A system is called critical when the failure to perform its function is likely to result in
loss of life or extreme environment damage. Examples of critical systems are embedded
aircraft control systems, railway control systems, nuclear plant control systems, radiotherapy
equipment control systems, etc. The acceptable risk levels for critical systems are defined
by competent regulatory bodies, collaboratively with stakeholders such as system providers,
system users, the state, etc. The severity of identified risks determines fault tolerance and
reliability requirements for the system, as well as design and verification process requirements.
System safety assessment consists in characterizing the risk for a particular system, identifying
applicable safety requirements and demonstrating that the planned system architecture meets
safety requirements.

All phases of the safety process are backed by modeling and analysis tasks in some
adapted formalism. The modeling artifacts are used as evidence in the certification process.
Implementation requirements [11] are derived from the safety analysis to feed the implemen-
tation phase following DO-178C and DO-254A recommendations. Similar concepts apply in
other domains such as automotive and railway [39] [46].

The safety, verification and validation activities of critical embedded systems account for a
large part of the total development cost. Identifying the optimal system architecture according
to safety metrics and implementation cost criteria before starting its implementation and
certification is hence essential, in particular in the UAM domain where designs are created
from a blank slate without preexisting reference or safety record. A lack of agility in these
early design phases can result in suboptimal system designs and limit programmatic agility
in the long run, i.e. the ability to update an existing system with new functions or safety
enhancing features that would require substantial modifications of the safety models and
analysis.

As will be seen in the related works section, current safety formalisms lack features which
could make safety modeling more efficient. These features are commonly found in modern
functional and object-oriented programming languages: encapsulation, generic parameters,
higher-order parameters, polymorphism, etc. Better support for incremental and generic
modeling can allow to go beyond safety assessment and support genuine safety-driven design-
space exploration, where optimal design decisions are made by comparing automatically several
candidate system architectures. For this we propose the Alpacas safety formalism, built
as an embedded domain-specific language in the Scala 3 functional programming language.
Alpacas offers first-class generic and parametric modeling capabilities allowing to formalize
higher-order design spaces. The embedding allows to fuse declarative safety modeling and
programming in a coherent framework, to compute safety indicators for system variants more
easily, effectively unlocking architectural design-space exploration and optimization.

The rest of the paper is structured as follows: Section 2 reviews existing safety model-
ing formalisms and their limitations, as well as domain-specific language implementation
techniques; Section 3 presents the design goals and requirements that shaped Alpacas,
together with a running example; Section 4 introduces the Alpacas syntax and implemen-
tation using the running example; Section 5 describes the formal semantics of Alpacas;
Section 6 discusses safety analysis algorithms provided by Alpacas; Section 7 describes a
design-space exploration study performed with Alpacas for a thrust reallocation function
of an electric vertical takeoff and landing aircraft; Last, Section 8 concludes the paper and
outlines perspectives to this work.
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2 Related works

We present core safety modeling concepts in Section 2.1, related works on safety modeling
and analysis in Section 2.2, as well as relevant literature on domain-specific language
implementation techniques in Section 2.3.

2.1 Core safety concepts
We now review fundamental concepts in system safety modeling as originally presented in
[47]. A System is an assembly of Components, operating together to perform a Function.
Basic Failure Events cause changes of the internal State of components. At the very least,
a component has two states: working and failed, but it can have more, such as multiple
functional or degraded modes. Failure Modes are the external manifestations of the internal
failure state of a component. For instance, a valve component could be in three states:
working, stuck-open, stuck-closed, with corresponding failure modes nominal pressure, over-
pressure or under-pressure, respectively. Failure modes propagate and combine through the
system, affecting its ability to perform its function. A Failure Condition is a failure mode of
the function performed by the system, and it is the consequence of one or more basic failure
events. The Structure Function of the system specifies how basic failure event combinations
or sequences produce different failure conditions at the system level.

Failure events occur randomly following certain delay distributions, failure behaviour
can be non-monotonic and sensitive to event ordering, propagations can exhibit some level
of randomness and time dependency, which makes safety modeling and analysis a complex
problem. Many formalisms have been proposed, depending on the class of system to analyze.
In all cases, safety models are built in order to compute safety indicators of a system and
predict its performance. Qualitative indicators describe the logical relationship between
basic failure events and system failure conditions. Minimal cutsets or sequences (MCS)
are minimal event combinations or sequences triggering a failure condition. Quantitative
indicators capture the probabilistic aspects of system failure. For instance, Unreliability, the
probability that the system fails in the interval [0, T ], depends in a non-trivial way on basic
event probabilities and on system architecture.

2.2 Safety formalisms
Safety formalisms are distinguished by their semantics, which delimits the class of real-
world systems they can faithfully model. Semantics also influences the tractability of safety
indicators. The other major aspect for use in real-world applications is the level of support
for design-space exploration, i.e. the ease with which models can be parameterized, updated,
extended, reused, etc. Each new system design iteration alters the system architecture and its
dysfunctional behaviour, which must be reflected in the safety model. Design modifications
are also largely guided by the safety analysis of different design options which orient the
choice of fault-tolerance patterns, redundancy levels, basic event occurrence rates, etc.

The most widely used safety formalism in industrial domains are Fault Trees [30] and Bow-
Tie Diagrams [22]. These graphical formalisms address static systems where the order of event
occurrences does not matter, and allow a direct representation of combinatorial structure
functions as Boolean functions over basic events interpreted as propositions. Dynamic fault
trees [24] extend fault trees to handle dynamic systems where event ordering matters, by
adding logic gates where subtree ordering encodes temporal sequencing constraints. Dynamic
systems are also traditionally modeled using Markov chains. In non-repairable systems, new
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5:4 ALPACAS

events can only degrade the health of the system, which translates to monotony properties of
structure functions. In repairable systems, a new event can improve the health of the system
by prompting a repair action. Boolean logic-driven Markov Processes [13, 16, 32, 33] allow
to address dynamic repairable systems.

Model-checking tools such as PRISM [35, 36] or UPPAAL-SMC [19, 17], supporting
formalisms like Continuous-time Markov chains (CTMC) or Probabilistic Timed Automata
(PTA), can be used for reliability analysis. Generalized Semi-Markov Processes (GSMP),
which are strictly more expressive than CTMC and PTA, have also been quite successful for
reliability analysis using Monte-Carlo [37, 23, 48] or bounded model-checking approaches
[2]. Works such as [25] propose a superset of both GSMPs and PTAs and leverage either
Monte-Carlo simulation or PRISM as back-end depending on the particular subset the model
falls in.

In all of the above formalisms, system architecture, components, failure modes and failure
propagation are not first class concepts, the concept of failure condition is implicit and
cannot be disentangled from models and models are not composable. Moreover, design-space
formalization is impossible with these formalisms, for their lack of generic modeling features
and inability to express parametric system families.

The more recent Model-Based Safety Analysis (MBSA) approach [38] addresses these issues
by adopting hierarchical modeling, failure modes, propagation rules and failure conditions
as first-class concepts. A first collection of works proposes to annotate a functional design
model with failure mode propagation rules: [20] proposes a safety extension for the well
known AADL system design language; [31] extends a Simulink model with Boolean formulas
modeling failure mode propagation conditions; in xSAP [12] a reference functional model is
annotated with timed failure propagation information.

Extending a functional model with safety information is debatable, due to the fact that
fault propagation can occur through non-functional paths in real systems, and that external
non-functional factors also need to be modeled to conduct safety assessment. The computation
of safety indicators requires to abstract away safety-irrelevant aspects of system behaviour
to become tractable, and results in models that are qualitatively different from engineering
models. Another line of works in MBSA addresses these issues by proposing languages
dedicated to safety modeling. In particular, the Altarica family of languages [4, 42, 9] proposes
a hierarchical modeling approach based on components and data-flow with a semantics based
on Stochastic Guarded Transition Systems (SGTS). This framework is at least as expressive as
GSMP and allows to model dynamic and repairable systems, with concurrency and real-time
aspects, with deterministic or stochastic failure mode propagation rules, common-cause
failure modeling with event synchronizations. The recent S2ML framework [8] uses concepts
borrowed from object-oriented programming to improve model reuse and allow the creation
of component libraries, and only offers a restricted form of parametricity.

Alpacas is a new incarnation of SGTS with hierarchical modeling and expressivity
comparable to Altarica. However, Alpacas is tailored for design-space exploration by adding
first-class support for generic modeling based on functional programming concepts such as
higher-order parameters, typeclass polymorphism, etc. Design-space formalization, was only
handled externally and informally in all previous approaches. In addition, Alpacas removes
the strict boundary between safety models and analysis algorithms, opening the way to
better design-space exploration methods.
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2.3 Domain-specific languages
Domain-Specific Languages (DSL) are dedicated to the modeling and solving of particular
classes of problems, and are generally not complete programming languages. Standalone
DSLs are implemented by writing a standalone front-end (lexer, parser, type-checker, . . . )
and back-end (interpreter, compiler, solver, optimizer, . . . ). Embedded DSLs on the other
hand are implemented within a host language [28], and exposed to the user through functional
combinators or syntax extensions. Language embedding allows to reuse the host language
syntax, type system, semantics, libraries, compilers and tools at the cost of slightly less
freedom in the syntax definition of the DSL, and has become a very popular approach. A
DSL embedding is shallow when DSL constructs are directly interpreted in the host language
without any further analysis or code generation stages. The Tagless Final approach [34] is
very popular for shallow DSL implementation: DSL operations are represented as a purely
functional interface parameterized by a monadic higher-kinded effect type, which defines its
semantics. In deep embedding approaches, evaluating the domain-specific program yields a
term data structure representing the DSL program that is then analyzed and processed in
multiple stages [44]. Deep embedding approaches based on free monads have been proposed,
however both shallow and deeply embedded monadic approaches are hard to scale to large
DSLs, are syntactically constrained by the monadic programming style, and require deep
understanding of monads and higher-kinded types from the end user.

To implement Alpacas, we opted for a non-monadic deep embedding technique, because
the language is relatively rich and requires advanced static checks and preprocessing on
the models before running simulations and analyses. The Scala language is known to offer
very good support for deep embedding and staging, as demonstrated in multiple domains
like hardware description with the Chisel language [5], Lightweight Multi-Stage numerical
code optimization [44], full language virtualization [43], GPU acceleration of numerical code
[49], event monitoring with automata [26], polymorphic linear algebra [45], etc. The newly
released Scala 3 based on the Dependent Object Type calculus [3] offers even better support
for deep embedding, with generalized algebraic data types, extension methods, infix methods,
contextual abstraction mechanisms such as type-classes and automatic type-class derivation,
and more importantly implicit function types [40], etc. Support for Multi-stage programming
is also improved with the new inline-def macro system which, together with a new quoting
and splicing system, provides efficient compile-time as well as run-time code generation.

3 Generic modeling needs and running example

In this section we illustrate MBSA concepts on a simple powertrain model, consisting of
two batteries providing power to two electric engines. The failure condition is the loss of
both engines. A battery component, shown in Figure 1, has two internal states Ok and Fail,
an exponential failure delay distribution of parameter lamB. It produces a data-flow power
representing the power failure mode, Ok in the Ok state and Fail in the Fail state. An engine
component has two states Ok and Fail, an exponential failure delay distribution of parameter
lamE. It produces a data-flow thrust representing the thrust failure mode, equal to its input
power in the Ok state, and to Fail in the Fail state.

Components encapsulate states and guarded transitions behind a data-flow interface.
Data-flow connections shown in Figure 2 model how failure modes propagate from batteries,
to engines, to the failure condition observer through the system. Each engine’s power input
is connected to both batteries using an OR operator (produces Ok if one of the inputs is Ok,
Fail otherwise). The engines’ thrust outputs are connected to a failure condition observer

ECOOP 2021
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Battery

no_thrust

FC Observer

no_thrust := 

(thrust0 == Fail 
&&

 thrust1 == Fail)
failure ~ Exp(lamE)

Engine

state := Ok
--------------

power := Ok

state := Fail
--------------

power := Fail

failure ~ Exp(lamB)

state := Ok
--------------

thrust := power

state := Fail
--------------

thrust := Fail

power power thrust

thrust1

thrust0

Figure 1 Powertrain example: battery, engine, failure condition observer components.

monitoring the loss of thrust on both engines. In the initial state shown in Figure 2(a), all
components are in the Ok state and all power and thrust data-flows are Ok. The state in
Figure 2(b) is reached after the failure of the first battery. Since the second battery is still
Ok, engines still receive power and produce thrust and the failure condition is not triggered.
The state in Figure 2(c) is reached after the failure of the second battery, which causes a loss
of power for both engines and loss of thrust, despite the engines being in the Ok state. The
failure condition is triggered as a result.

Figure 2 Powertrain example: state and flow updates after Battery0 and Battery1 failure events.

With Alpacas our goal is to formalize such a model in a generic way, where the number
of engines and batteries are parameters, and where the topology of the power delivery
connections between them is also a parameter of the model. This form of genericity affects
the model’s hierarchy as well as the topology of the data-flow network. We also want the
concrete representation of failure states and failure modes of the engines and batteries to be
parameters, as well as the delay distribution parameters of the corresponding events. By
combining concepts from stochastic guarded transition systems and generic types, typeclass
polymorphism and higher-order concepts from functional programming we can achieve this
genericity. This genericity is the basis needed for genuine design-space formalization and
exploration.

4 The Alpacas domain-specific language

This section presents the Alpacas DSL, the modeling workflow and the embedding techniques
allowing the Scala syntax to be adapted to safety modeling needs. Section 4.1 to Section 4.5
introduce Alpacas constructs using the running example. Section 4.6 details the expressions
language of Alpacas. Section 4.7 shows how we extended the Scala syntax for Alpacas.

Code examples with a green background show Alpacas code written by the end-user,
and code examples with a red background show internal Alpacas implementation code.
These examples are simplified compared to the actual library code, omitting the source
mapping code which allows to track filenames, line numbers and Scala variable identifiers,
handled using the sourcecode library. This implementation of Alpacas is written in Scala
3.0. Listing 1 presents the Alpacas encoding of the powertrain running example of section
3, which is later detailed in sections 4.1 to 4.5.
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1 enum Failure derives Lifted {
2 case Ok
3 case Fail
4 }
5

6 import Failure .*
7

8 given Ord[ Failure ] with {
9 def lt(x: Failure , y: Failure ): Boolean = x == Ok && y == Fail

10 }
11

12 class Battery extends Component {
13 val state = State[ Failure ]( init = Ok)
14 val power = OutFlow [ Failure ]
15 val failure = Event( Exponential (1E -5))
16 val repair = Event(Dirac (5) , weight = 1.0)
17 assertions { power := state }
18 transitions {
19 When( failure ) If state === Ok Then {state := Fail}
20 When( repair ) If state === Fail Then {state := Ok}
21 }
22 }
23

24 class Engine extends Component {
25 val state = State[ Failure ]( init = Ok)
26 val thrust = OutFlow [ Failure ]
27 val power = InFlow [ Failure ]
28 val failure = Event( Exponential (1E -5) , policy = Policy . Memory )
29 val repair = Event(Dirac (1))
30 assertions {
31 thrust := If (power === Ok && state === Ok) Then Ok Else Fail
32 }
33 transitions {
34 When( failure ) If(state === Ok && power === Ok) Then {state := Fail}
35 When( repair ) If(state === Fail) Then {state := Ok}
36 }
37 }
38

39 type Batteries = Vector [ Battery ]; type Engines = Vector [ Engine ]
40 type Wiring = (Batteries , Engines ) => Assertions
41

42 class Powertrain ( wiring : Wiring , n: Int) extends Component {
43 val batteries = Subs(n)( Battery ())
44 val engines = Subs(n)( Engine ())
45 val observer = OutFlow [ Boolean ]
46 val ccf = Event( Exponential (1E -7))
47 assertions {
48 wiring (batteries , engines )
49 observer := engines .map(_. thrust === Ok). reduce (_&&_)
50 }
51 transitions {
52 Sync(ccf) With { batteries .map(_. failure .hard). reduce (_&_) }
53 }
54 }
55

56 def one2one (b: Batteries , e: Engines ): Assertions =
57 e.map(_.power) := b.map(_.power)
58

59 def one2all (b: Batteries , e: Engines ): Assertions =
60 for (eng <- e) eng.power := b.map(_.power). reduce (_ min _)
61

62 val powertain121 = Powertrain (one2one , 2)
63 val powertrain12all = Powertrain (one2all , 2)

Listing 1 Alpacas modeling of the powertrain example (cf Figure 1 for graphical view).

ECOOP 2021
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4.1 Lifting types, declaring components, state and flow variables
Alpacas supports Scala’s built-in Boolean, Int and Double types. Any Scala enumerated
type can be lifted in the DSL and used to model component states and failure modes. Lines
1-4 of Listing 1 define a Failure enum with two values Ok and Fail, and lift it in Alpacas
space using the derives Lifted clause. The mechanism allowing this syntax will be detailed
in Section 4.7.

It is possible to define ordering relations on user-defined types in order to use the DSL’s
relational operators <, ≤, ≥, >, min, max in guards and data-flow expressions. Orderings
facilitate the definition of generic failure conditions or failure mode consolidation logic that
only require to know if a failure mode is worse or better than another, without knowing
exactly the individual failure modes. Lines 8-10 of Listing 1 define failure mode Ok to be
strictly lesser than failure mode Fail.

Alpacas allows to specify SGTS in a modular and composable way, and to derive a flat
SGTS automatically. All user-defined safety components are represented as Scala classes
extending an abstract Component class provided by the Alpacas library. Components
encapsulate state and flow variable declarations, event declarations, groups of transitions
and flow assertions and have a strongly typed defined data-flow interface.

The model structure is captured using object-orientation (classes) and composition.
Components can be instantiated inside other components using their constructors and the
Sub statement. Vectors of sub-components are declared with the Subs statement where the
size of the vector is provided as first argument (See lines 43-44 in Listing 1). The hierarchy
of an Alpacas model represents the system’s static architecture.

Components contain either state variables declared by specifying their type and initial
value with State[Type](initial), or oriented flow variables declared by specifying their
type and interface orientation with OutFlow[Type] or InFlow[Type]. In lines 25-27 of
Listing 1, we define the variables for the Engine component: the state variable of type
Failure and initial value Ok represents the intrinsic failure state of the component, the
power input flow of type Failure represents the status of the power supply, and the thrust
output flow represents the status of the thrust provided by the engine. Listing 2 shows how
to declare vectors of variables with the keywords States, InFlows and OutFlows, which
take the vector size as parameter.

1 class VectorExample extends Component {
2 val state = States [ Failure ]( init = Ok)(4)
3 val inputs = InFlows [ Failure ](4)
4 val outputs = OutFlows [ Failure ](4)
5 }

Listing 2 Vectors of variables.

4.2 Declaring flow assertions
Flow assertions define the flow variables in function of the state variables. Each component
must define all its locally declared output flow variables, as well as all input flow variables of
its sub-components. Line 31 of Listing 1 defines the thrust output of the Engine component
to be Ok if the engine doesn’t have an internal failure and receives nominal power supply.
Alpacas offers an overloaded flow definition operator := which works with equally sized
vectors as left and right hand sides, as shown in line 57 of Listing 1. Functional iterators or
for comprehensions can also be used to define vectors of flows point-wise, as shown in line 60
of Listing 1. A flow variable can be defined using any expression over flow or state variables
as long as no cyclic flow dependency is introduced. Cyclic definitions are checked by the tool
and reported to the user as hard errors (see Section 6.1).
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4.3 Declaring transitions and synchronizations

Guarded transitions specify how the system state evolves over time. They are labeled by an
event, and composed of a guard (a Boolean expression that must be true for the transition
to be fired), and a set of state assertions (specifying how state variables are modified when
the transition is fired).

Events represent random faults or deterministic system reactions and carry their delay
distribution. Random faults are usually modeled using Exponential distributions, Weibull
distributions, etc. Deterministic failure propagation or functional reactions of the system
are modeled as events with Dirac distributions. When a transition is fireable, its firing
delay is sampled from the distribution associated to its event (Dirac distributions produce a
deterministic value). The default behaviour is to sample a new delay every time the transition
becomes fireable, but it is also possible to store the delay when the transition stops being
fireable and to use the stored delay value the next time it becomes fireable. This is called the
Memory policy, it is useful to model components that wear out during their use. In line 28
of Listing 1, the failure event for engines is declared with a Memory policy, to model that if
the engine is shut down because of a battery failure, when the battery is repaired the engine
has the same remaining life as when it stopped being powered.

In order to support common cause modeling, Alpacas offers event synchronization
constructs, which express that two or more events can occur simultaneously as a consequence
of another event named the common cause. The synchronized events can be either:

hard-synchronized: all guards have to be true for the synchronized transition to be fired,
soft-synchronized: at least one of the guards has to be satisfied for the synchronized
transition to be fired. The state variables of soft-synchronized transitions are updated
only if their guard was satisfied.

Line 52 of Listing 1 shows the hard-synchronization of the failures of two different
batteries under a common cause failure event ccf (declared on line 46) that models a failure
event affecting both engines at the same time (for instance a fire event, a lightning strike
event, etc.). The repair event of the Battery component is declared with Dirac(5) delay
distribution and weight parameter of 1.0 on line 16. The weight parameter is used to
handle tie breaks between concurrent events. Here, following a ccf event, both batteries’
repair events will be in concurrency. Tie breaks are achieved by selecting sampling a
categorical distribution built from the from the weights of the concurrent events, here such
that p(batteries(0).repair) = p(batteries(1).repair) = 1.0

1.0+1.0 = 0.5.
Line 28 of Listing 1 shows how to declare an Exponential distribution for the failure

event of an engine, and line 29 a Dirac distribution for the functional repair event.

4.4 Specifying failure conditions

Any Boolean-valued data-flow of the model can be used as failure condition. For instance,
the observer flow defined on line 49 of Listing 1 becomes false when the thrust of at least
one engine is not Ok. Such definitions are usually placed in observer components, which
are instantiated alongside the other components in the system. Several observers can exist
in the system, however analyses take a single failure condition as parameter. Minimal
sequences generation searches for event scenarios falsifying the condition. Unreliability
analysis estimates the probability of this data-flow becoming false over some mission time T .

ECOOP 2021
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4.5 Parameters, type parameters, higher-order parameters
Component constructors can take parameters, allowing for instance to parameterize the
number of sub-components or the number of state or flow variables of the component.
Functional iterators (map, fold, reduce, . . . ) and vector assertions allow to define size-
agnostic expressions, guards, assertions sets, etc.

Line 42 of Listing 1 declares the Powertrain Component, parameterized by the number
of engines and batteries. Batteries and engines are declared as vectors of identical size on
lines 43-44. Their data-flow connections are defined by a higher-order wiring parameter of
type Wiring. The Wiring type, declared on line 40, is a function type taking Batteries
and Engines vector inputs and producing an implicit function type Assertions (provided by
the Alpacas library) as output. The observer expression is defined as the conjunction of all
engines providing thrust using the reduce iterator. Wiring schemes 1-to-1 and 1-to-all are
defined respectively on lines 56-57 and 59-60. Two system variants with two engines and
batteries and different wiring schemes are created using the Powertrain constructor on lines
62 and 63.

Type-class polymorphism allows to abstract over failure modes and to define generic flow
aggregation logic, as shown in the voter example of Listing 3.

1 class Voter[A: Lifted :Ord ](n: Int) extends Component {
2 val inputs = InFlows [A](n)
3 val output = OutFlow [A]
4 assertions { output := inputs . reduce (_ max _) }
5 }

Listing 3 A generic voter component.

The example in Listing 4 shows how to use a trait and self-type annotation to define
a reusable unit of behaviour. Using this trait we could for instance factor the failure logic
between Engine and Battery components.

1 trait CanFail ( lambda : Double ) { self: Component =>
2 val state = State[ Failure ]( init = Ok)
3 val fail = Event( Exponential ( lambda ))
4 transitions { When (fail) If (state === Ok) Then { state := Fail } }
5 }
6 class Engine extends Component with CanFail ( lambda = 1E -7) { /* ... */ }
7 class Battery extends Component with CanFail ( lambda = 1E -5) { /* ... */ }

Listing 4 Using traits to encapsulate reusable behaviour.

4.6 Abstract syntax for expressions
We use the initial algebra encoding approach for Alpacas. Expressions are represented by
abstract syntax trees defined inductively by a number of variants. Variants include flow
variables, state variables, literal constants and constructors for all supported operations. The
full abstract syntax is given below:

Expr ::= Const(value) | Svar(ident) | Fvar(ident) | Eq(Expr, Expr) |
Ite(Expr, Expr, Expr) | Lt(Expr, Expr) | Un(Unop, Expr) |
NumBin(NumBinop, Expr, Expr) | LogBin(LogBinop, Expr, Expr);

LogBinop ::= And | Or; NumBinop ::= Add | Sub | Mult | Div; Unop ::= Neg;
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The following rules define well-typed expressions, where T is a generic type variable:

v of type T

Const(v) : T

s state variable of type T

Svar(s) : T

f flow variable of type T

Fvar(f) : T

e1 : T e2 : T

Eq(e1, e2) : Boolean

c : Boolean e1 : T e2 : T

Ite(c, e1, e2) : T

The other constructs of the abstract syntax are defined only for some type-classes. We
now present these type-classes and the corresponding typing rules.

Numeric is the type-class for numeric operations (addition, subtraction, multiplication
and division), with typing rule:

e1 : T e2 : T NumBinop ∈ Add|Sub|Mult|Div Numeric[T ]
NumBin(NumBinop, e1, e2) : T

Logic is the type-class for Boolean operations (conjunction, disjunction and negation),
with typing rules:

e1 : T e2 : T LogBinop ∈ And|Or Logic[T ]
LogBin(LogBinop, e1, e2) : T

e : T Logic[T ]
Un(Neg, e) : T

Ord is the type-class of ordered types, with typing rule:
e1 : T e2 : T Ord[T ]

Lt(e1, e2) : Boolean
The expression language and typing constraints are implemented in Scala 3 using the

generalized algebraic datatype (GADT) shown in Listing 5. An implicit conversion for lifting
Scala constants to expressions is also provided. Alpacas expressions requiring a given
type-class can only be constructed if an implicit type-class instance can be derived by the
compiler for this type. This ensures that only well-typed expressions can be represented in
the DSL. The type-checking of Alpacas expressions is performed by the Scala compiler and
type errors are highlighted in the IDE used for editing the models.

1 enum Expr[T] {
2 case Const(value: T) extends Expr[T]
3

4 case Svar(uid: StateId , init: T) extends Expr[T]
5

6 case Fvar(uid: FlowId ) extends Expr[T]
7

8 case Eq(l: Expr[T], r: Expr[T]) extends Expr[ Boolean ]
9

10 case Ite(c: Expr[ Boolean ], t: Expr[T], e: Expr[T]) extends Expr[T]
11

12 case Lt(l: Expr[T], r: Expr[T])(using Ord[T]) extends Expr[ Boolean ]
13

14 case NumBin (b: NumBinop , l: Expr[T], r: Expr[T])(using Numeric [T])
15 extends Expr[T]
16

17 case LogBin (b: LogBinop , l: Expr[T], r: Expr[T])(using Logic[T])
18 extends Expr[T]
19

20 case Un(u: LogUnop , e: Expr[T])(using Logic[T]) extends Expr[T]
21 }
22

23 given [T]: Conversion [T, Expr[T]] with {
24 def apply(t:T): Expr[T] = Expr.Const(t)
25 }

Listing 5 Scala GADT for Alpacas expressions.
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4.7 Syntax extensions
As seen in the code examples of sections 4.1 to 4.3, Alpacas provides constructs allowing
to declare variables, assertions, transitions and expressions with a natural syntax. We use
Scala 3’s context abstraction capabilities to perform the required book-keeping of state and
flow variables, events, assertions and transition declarations without adding clutter for the
end-user. The code of Listing 6 presents the State variable constructor (InFlow and OutFlow
variable constructors definitions are similar). This constructor takes an implicit argument of
type StateVarSet from the surrounding Component instance, and creates a new Expr.Svar
instance representing a state variable, adds it to the set of variables of the component, and
returns it.

1 object State {
2 def apply[T]( init: T)(using svar: StateVarSet ): Expr.Svar[T] =
3 val res = new Expr.Svar[T]( StateId (), init)
4 svar += res
5 res
6 }

Listing 6 State variable constructor.

To group assertions declarations in an assertions block, we use context functions and
Odersky’s builder pattern [40]. The builder pattern allows to build data structures with
a declarative syntax, hiding side effects performed by builder methods. Multiple builder
patterns can be nested by introducing intermediary builder methods.

Listing 7 shows the assertions builder method. It takes an implicit ComponentBuilder
argument, used to perform all book-keeping declarations and definitions found inside
a component, that is only available when in a surrounding Component instance. The
field flowAssertionBuilder of the builder object is placed in the implicit scope of the
assertions method to make it available to the := assertion definition operator (itself de-
fined as an extension method in the derived Lifted instance, see Listing 9). The init
argument of the assertions method, with implicit function type FlowAssertionBuilder
?=> Unit, is provided by the user as a block containing flow assertions. Nesting the
FlowAssertionBuilder inside the ComponentBuilder ensures that a compile-time error
occurs when attempting to define flow assertions outside of an assertions builder method.

1 def assertions (init: FlowAssertionBuilder ?=> Unit)
2 (using builder : ComponentBuilder ) =
3 given FlowAssertionBuilder = builder . flowAssertionBuilder
4 init

Listing 7 assertions function for the builder pattern defining flow assertions.

The transitions builder uses three levels of nesting: the transitions builder method
takes an implicit ComponentBuilder, which contains a TransitionBuilder object pro-
vided to the When(e) If(g) Then { v := expr } builder construct, which itself contains
a StateAssertionsBuilder object provided to the := state assertion definition operator.

Lifted, shown in Listing 8, is the type-class for types that can be lifted to Alpacas
expressions. It allows to compare expressions using the equality === operator. The :=
overloaded operator allows to define state variables in transitions (cf. Section 4.3) and to
define flow variables in assertions (cf. Section 4.2).
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1 trait Lifted [T] {
2 extension (x: Expr[T])
3 def === (y: Expr[T]): Expr[ Boolean ]
4

5 extension (x: Expr.Svar[T])
6 def := (y: Expr[T]) (using a: StateAssertionBuilder ): Unit
7

8 extension (x: Expr.Fvar[T])
9 def := (y: Expr[T]) (using a: FlowAssertionBuilder ): Unit

10 }

Listing 8 Lifted type-class.

Automatic type-class derivation is used to relieve the user from manually defining the
type-class instance (as shown in Section 4.1). For equality, the operator === lifts the
comparison to an expression. The polymorphic variable assignment operators := takes
implicit FlowAssertionBuilder and StateAssertionBuilder and adds the corresponding
assertion to it.

1 object Lifted {
2 def derived [T]: Lifted [T] = new Lifted [T] {
3 extension (x: Expr[T])
4 def === (y: Expr[T]): Expr[ Boolean ] = Expr.Eq(x, y)
5

6 extension (x: Expr.Svar[T])
7 def := (y: Expr[T]) (using a: StateAssertionBuilder ): Unit =
8 a += StateAssertion (x, y)
9

10 extension (x: Expr.Fvar[T])
11 def := (y: Expr[T]) (using a: FlowAssertionBuilder ): Unit =
12 a += FlowAssertion (x, y)
13 }
14 }

Listing 9 Derived instance of type-class Lifted.

Type-classes Numeric, Logic and Ord are implemented using generic traits defining
the necessary operations on an abstract type. We have other type-classes defining the
corresponding operations on Alpacas Expressions as extension methods, and we use type-
parametric givens to automatically derive instances of these type-classes.

Listing 10 shows the Ord syntax extensions for expressions. The user provides an instance
of type-class Ord for lifted type T (see Section 4.1). The type-class DSLord provides syntax
extensions for expressions of the Ord type, and the corresponding type-parametric given
ensures DSLord instances can be derived from Ord instances.

1 trait Ord[T: Lifted ] {
2 def lt(x: T, y: T): Boolean
3 }
4

5 trait DSLord [T: Lifted ] {
6 extension (x: Expr[T])
7 def < (y: Expr[T]): Expr[ Boolean ]
8 def > (y: Expr[T]): Expr[ Boolean ] = !(x < y) && !(x === y)
9 def <= (y: Expr[T]): Expr[ Boolean ] = x < y || x === y

10 def >= (y: Expr[T]): Expr[ Boolean ] = !(x < y)
11 def min (y: Expr[T]): Expr[T] = If (x < y) Then x Else y
12 def max (y: Expr[T]): Expr[T] = If (x < y) Then y Else x
13 }
14

15 given [T: Lifted :Ord ]: DSLord [T] with {
16 extension (x: Expr[T])
17 def < (y: Expr[T]): Expr[ Boolean ] = Expr.Lt(x, y)
18 }

Listing 10 Type-class mechanism for ordered types.
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For conditional flow selection, we use functions and infix methods to produce IfThenElse
expressions as presented in Listing 11. Due to Scala parsing rules, the parenthesis are
mandatory around the conditional but optional around the branches

1 def If(c: Expr[ Boolean ]): Ift = Ift(c)
2

3 case class Ift(c: Expr[ Boolean ]){
4 def Then[T] (t: Expr[T]): IfThent [T] = IfThent (c, t)
5 }
6

7 case class IfThent [T](c: Expr[ Boolean ], t: Expr[T]){
8 def Else (e: Expr[T]): Expr[T] = Expr.Ite(c, t, e)
9 }

Listing 11 Implementation of conditional statements.

5 Stochastic guarded transition systems

The semantics of an Alpacas model is given by a Stochastic Guarded Transition System
(SGTS). Our version of SGTS is largely inspired from [42, 9]. This formalism allows to
model dynamic, repairable and re-configurable systems. From [42, 9], we reuse the notions
of state and flow variables, Restart and Memory transitions, event concurrency resolution
mechanisms and event synchronization mechanisms. However, we only accept causal systems
and we add the notion of Urgent events. Urgent events have priority over all other events.

5.1 Definitions
▶ Definition 1 (Stochastic Guarded Transition System). A Stochastic Guarded Transition
System is a tuple:

SGTS = ⟨S , F , AF , T , E⟩ (1)

Where:
S is a vector of typed state variables. Each state variable has an initial value vinit;
F is a vector of typed flow variables propagating failure modes through the system;
AF is a set of flow assertions of the form v := expr , with v ∈ F and expr an expression
over state and flow variables defining v at all times;
T is a set of guarded transitions of the form g

e−→ AS where:
e is an event, the trigger of the transition;
g is a Boolean expression over state and flow variables, the guard of the transition;
AS is a set of state assertions of the form v := expr with v ∈ S and expr an
expression over sate and flow variables, describing updates applied to state variables
when the transition is fired.

Transitions are of three different types, which condition the way they are scheduled in the
system’s behaviour:

Urgent transitions have priority over all other transitions and are fired immediately
after their guard becomes true, without delay.
Restart transitions have an associated firing delay distribution dist(e) and an optional
real-valued weight parameter W (e). The firing delay is sampled from the distribution
each time a state where the guard is true is reached.
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Memory transitions have an associated firing delay distribution dist(e) and an optional
real-valued weight parameter W (e). The firing delay is sampled the first time the guard
becomes true, and sampled again only after the transition is fired, when the guard
becomes true again. When the guard becomes false, the current delay value is saved
and restored the next time the guard becomes true.

The different transition types entail a partition of the set of transitions T = TU ∪TR ∪TM ;
E = EU ∪ ER ∪ EM is the set of events, partitioned by event type.

Example 2 shows the flat SGTS encoding of the powertrain running example presented
in Listing 1. The If-Then-Else expressions appearing in flow definitions are the result of
rewriting the min operator in terms of core operators. The common cause ccf transition
was rewritten using the rules presented in Section 5.3.

▶ Example 2 (Powertrain SGTS, one2all wiring).

S = { b0 .state(init := Ok), b1 .state(init := Ok), e0 .state(init := Ok), e1 .state(init := Ok) }
F = { observer , b0 .power , b1 .power , e0 .power , e0 .thrust, e1 .power , e1 .thrust }
Af = { b0 .power := b0 .state, b1 .power := b1 .state,

e0 .power := Ite(b0 .power < b1 .power , b0 .power , b1 .power),
e1 .power := Ite(b0 .power < b1 .power , b0 .power , b1 .power),
e0 .thrust := Ite(e0 .power = Ok ∧ e0 .state = Ok, Ok, Fail),
e1 .thrust := Ite(e1 .power = Ok ∧ e1 .state = Ok, Ok, Fail),
observer := e0 .thrust = Ok ∧ e1 .thrust = Ok }

TR = { b0 .state = Ok ∧ b1 .state = Ok ccf ∼Exp(1e−7)−−−−−−−−−→ {b0 .state := Fail, b1 .state := Fail},

b0 .state = Ok b0 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {b0 .state := Fail},

b0 .state = Fail b0 .repair∼Dirac(5),W =1−−−−−−−−−−−−−−−→ {b0 .state := Ok},

b1 .state = Ok b1 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {b1 .state := Fail},

b1 .state = Fail b1 .repair∼Dirac(5),W =1−−−−−−−−−−−−−−−→ {b1 .state := Ok},

e0 .state = Fail e0 .repair∼Dirac(1)−−−−−−−−−−−−→ {e0 .state := Ok},

e1 .state = Fail e1 .repair∼Dirac(1)−−−−−−−−−−−−→ {e1 .state := Ok} }
TM = { e0 .state = Ok ∧ e0 .power = Ok e0 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {e0 .state := Fail},

e1 .state = Ok ∧ e1 .power = Ok e1 .failure∼Exp(1e−5)−−−−−−−−−−−−−→ {e1 .state := Fail} }
TU = { }

The expression language used in assertions (already detailed in section 4.6) supports
Boolean expressions, integer and floating point numeric expressions as well as equality checks
over user-defined enumerations types. We only consider well typed expressions and assertions.
A total valuation α is a total function over S ∪ F assigning a value to each state variable and
flow variable, that can be decomposed into a state variable valuation αS and a flow variable
valuation αF . We assume a function eval which evaluates an expression in the context of
a valuation α. In a given state, the valuation αS is defined relative to the previous state’s
total valuation α, whereas the valuation αF is defined relative to the current αS .

We assume that AF contains a definition for each flow variable. A flow variable v depends
on a state or flow variable v′ if v′ occurs in the expression defining v in AF . We only consider
causal systems where flow dependency is acyclic, so that there exists a topological ordering of
flow variables allowing to evaluate all flow assertions in a single pass to obtain a flow valuation
αF = propagate(αS). A transition g

e−→ AS is fireable in the context of a total valuation α if
and only if eval(g, α) is true. We say that a valuation α is stable if no urgent transition is
fireable in α, and unstable otherwise. Urgent transitions allow to model immediate feedback
loops while preserving causality: a cycle in data-flow definitions is broken by introducing a
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stateful element in the cycle and delaying flow propagation to the next logical step using
urgent transitions. Restart transitions allow to model random failure events for memoryless
components for which state history has no influence. Memory transitions allow to model
random failures of components for which the state history has an influence.

5.2 Stochastic timed trace semantics
▶ Definition 3 (Timed Trace). The semantics of stochastic guarded transition system is given
by timed traces of the form:

TimedTrace = S0
e0−→S1 · · · ei−1−−−→Si

ei−→Si+1 . . .
en−1−−−→Sn (2)

A trace is a sequence of states Si connected by Restart or Memory transitions where

S = ⟨α, α, Σ, Mem, t⟩

is such that:
α is a (possibly unstable) valuation,
α is a stable valuation,
Σ : ER ∪ EM → R+ ∪ {+∞} is an event schedule associating a firing delay to each restart
and memory event,
Mem : EM → R+ is an event delay memory associating a memorized delay to each
memory event,
t is a positive real value representing the timestamp of the state.

Firing a transition g
e−→ AS in the context of a stable or unstable valuation α (decomposed

in αS and αF) yields a new valuation α′ decomposed in α′
S and α′

F defined by:

α′
S(v) =

{
eval(expr , α) if {v := expr} ∈ AS

αS(v) otherwise
(3)

α′
F = propagate(α′

S) (4)

When in a state Si, the Restart or Memory transition to fire is the one with the smallest
delay in the event schedule, ei = argmin(Σi). If several events have the same minimum delay
value, the weight values of the concurrent events are used to break the tie. A categorical
distribution is created such that p(e) = W (e)∑

e∈argmin(Σi)
W (e)

, and the event ei is sampled from

this distribution.
The (possibly unstable) valuation αi+1 is the result of firing the transition associated to

event ei in the stable valuation αi.
The stable valuation αi+1 is determined by exploring all possible interleavings of fireable

urgent transitions starting from αi+1, transitively across unstable valuations. If all inter-
leavings lead to the same stable valuation αi+1, it is taken as the stable valuation for the
successor state Si+1, otherwise the trace is considered invalid.
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For each Restart event e, the schedule at state i + 1 is defined depending on whether e is
the event ei that was fired in state i or not, and on its fireability in states i and i + 1:

e = ei fireable(e, αi) fireable(e, αi+1) Σi+1(e)
⊤ ⊤ ⊤ d ∼ dist(e)
⊤ ⊤ ⊥ +∞
⊥ ⊤ ⊤ Σi(e) − Σi(ei)
⊥ ⊤ ⊥ +∞
⊥ ⊥ ⊤ d ∼ dist(e)
⊥ ⊥ ⊥ +∞

For each Memory event e, the schedule and memory functions at state i + 1 are defined
depending on whether e is the event ei that was fired in state i or not, on its fireability
in states i and i + 1, and on the value of its delay memory in state i:

e = ei fireable(e, αi) fireable(e, αi+1) Memi+1(e) Σi+1(e)
⊤ ⊤ ⊤ d ∼ dist(e) Memi+1(e)
⊤ ⊤ ⊥ d ∼ dist(e) +∞
⊥ ⊤ ⊤ Σi(e) − Σi(ei) Memi+1(e)
⊥ ⊤ ⊥ Σi(e) − Σi(ei) +∞
⊥ ⊥ ⊤ Memi(e) Memi+1(e)
⊥ ⊥ ⊥ Memi(e) +∞

ti+1 = ti + Σi(ei) (the time progresses by the fired event’s delay value).

The initial state S0 of a timed trace is defined by:

αS0(v) = vinit for all state variables,
αF 0(v) = propagate(αS0(v)),
α0 is obtained by exploring all interleavings of Urgent events starting from α0 as described
above,
For each Restart event e:

Σ0(e) =
{

d ∼ dist(e) if fireable(e, α0)
+∞ otherwise

For each Memory event e:
Mem0(e) = d ∼ dist(e),

Σ0(e) =
{

Mem0(e) if fireable(e, α0)
+∞ otherwise

t0 = 0

5.3 Event synchronizations
It is possible to define synchronizations of several Restart and Memory events (but not
Urgent events) with another event called the common cause event. The common cause event
can have its own delay distribution and weight parameter.

▶ Definition 4 (Synchronization). A synchronization has the form:

(e : a1.hard & · · · & am.hard & b1.soft & · · · & bn.soft) g−→ AS

Where
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e is the common cause event,
{ai.hard | 0 ≤ i ≤ m} are the mandatory events of the synchronization,
{bi.soft | 0 ≤ i ≤ n} are the optional events of the synchronization,
g is a (possibly true) guard,
AS is a (possibly empty) set of state assertions.

The semantics of a synchronization is defined by translation to the core formalism. We
assume that the transitions corresponding to synchronized events are already rewritten to
standard transitions if they were synchronized transitions, so that we have a set of mandatory
transitions of the form: M = {h1 −→ As1 , ..., hl −→ Asl

} and a set of optional transitions of
the form: O = {j1 −→ Bs1 , ..., jn −→ Bsn

}.
We denote by If g Then Bs the set of state assertions Bs where each assertion v := expr

is rewritten to v := If g Then e Else v. The translation is defined as follows:
Case l > 0: The synchronization rewrites to:

h1 && ... && hl
e−→ As1 ∪ ... ∪ Asl

∪ If j1 Then Bs1 ∪ .. ∪ If jn Then Bsn

Case l = 0 and n > 1: The synchronization rewrites to:

j1 || ... || jl
e−→ If j1 Then Bs1 ∪ .. ∪ If jn Then Bsn

Case l = 0 and n = 1: The synchronization rewrites to:

true
e−→ If j1 Then Bs1

5.4 Instability, Zeno phenomena and other issues
The definitions given in the previous sections do not prohibit ill-conditioned systems where
the following issues occur:

multiple distinct stable valuations are reachable from a given unstable valuations,
the system exhibits Zeno behaviour, i.e. can take an infinite number of transitions through
unstable valuations, or through stable states or a combination of both in a finite amount
of time,
event concurrency situations which cannot be solved because of a missing weight parameter
(which we handle as a modeling error from the user),
systems with unwanted deadlock states due to synchronizations of transitions with
incompatible guards, etc.
runtime errors in expression evaluation such as arithmetic underflow/overflow, division
by zero, etc.

Static analysis or model-checking algorithms allow to detect such issues ahead of time,
however in this first version of Alpacas we detect such problems at run-time when exploring
event sequences or simulating the system, leaving the more advanced method for future
work. Detection is performed by monitoring diverging interleavings of urgent transitions;
monitoring for cycles of unstable states; exiting in error if a threshold was exceeded on the
number of fired events (including urgent events) without having time progress; exiting in
error in case an event without weight parameter is involved in a concurrent race. We also
offer an interactive step simulator that allows the user to test the model against their own
expectations.
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6 Alpacas algorithms

This section presents the main algorithms available in Alpacas allowing to process a model
and compute its safety indicators: flattening, basic evaluation and step simulation, minimal
cut sequence enumeration, stochastic simulation.

6.1 Translating a hierarchical model to a flat stochastic guarded
transition system

Hierarchical models need to be translated to the underlying SGTS representation to be
analyzed. Since the hierarchy is flattened in the process, this translation is called flattening.

The first part of the flattening is to traverse the structure recursively to collect all
variables, assertions and transitions of the model. We store them in adequate structures
referencing them by their unique identifiers. We also generate human-readable names for
variables and events reflecting to their full path in the component hierarchy.

Then several checks are performed. We use the cats library’s Validated type to
accumulate errors of several parallel validation tasks. The first check is for flow definitions:
we verify that each component actually defines exactly once all the flows it must define (its
output flows and its sub-components’ input flows). If it is not the case, we accumulate all
errors corresponding to missing or redundant definitions (with variables names and line of
declaration) and send back the errors to the user. The second check is for model causality: we
verify that the flow dependency is not cyclic. To do this, we generate the graph representing
the dependency relation between flow variables defined by flow definitions (we use the
scalagraph library). The absence of cyclic definitions is verified if and only if every strongly
connected component of the graph contains only one node and flow assertions do not create
direct self-dependencies. We check this using scalagraph, and in case of failure produce an
error describing all variables involved in every cyclic component of the dependency graph. If
no error is found, we compute a topological ordering on the graph that allows to compute
flow variable assignments in sequential order.

Finally, we rewrite synchronizations to standard transitions according to the definitions
presented in Section 5.3. This is done thanks to a recursive function that we call on every
transition. Every time a synchronization is found, we recursively flatten the synchronized
events (that can themselves correspond to synchronizations).

6.2 Transition firing and state updates

The basis of all analyses that can be made on an SGTS is the representation of αS and αF
valuations and how they are updated to reflect the firing of a transition, moving one step
forward in the trace of a valid run of the SGTS.

As described in Section 5.2, firing a transition consists in computing the new state
valuation according to the previous total valuation and to the state assertions of the fired
transition, followed by computing the flow valuation according to the new state valuation and
to all flow assertions in topological order, iterating this process as long as urgent transitions
are possible, to finally reach a stable valuation or exit in error if divergent urgent behaviour
is detected or Zeno behaviour is detected.

Another important basic function used in all algorithms is the computation of the list of
fireable transitions. This is straightforward from the evaluation of all transitions guards in a
given state.
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These two building blocks allow us to provide an interactive step simulator. When in this
mode, the values of variables and fireable transitions in the current assignment are displayed
to the user who can manually choose the next transition to fire (instead of using the minimum
delay rule of the timed trace semantics). The next state is then displayed (with an option for
displaying only the state and flow variable delta with respect to the previous state), so on
and so forth until the user stops the simulation. Thanks to the functional immutable data
structures backing this simulation mode, the user can undo previous decisions at any point
and backtrack in the simulation in order to explore another branch.

6.3 Qualitative indicators
The enumeration of minimal sequences requires to produce traces that lead to a state
satisfying a failure condition. To avoid redundancies, only minimal failure scenarios according
to a given partial ordering over sequences are considered in safety analysis. We support the
most common ordering used in the safety literature, which is the subsequence relation. To
generate all possible minimal sequences, we explore the set of possible failure sequences using
a bounded breadth-first search algorithm, allowing to generate sequences that are minimal
by construction: sequences of size n are naturally explored only after all sequences of smaller
sizes are explored. We also avoid visiting extensions of sequences that are already known to
satisfy the failure condition.

1 val queue = Queue (( immutableInitialState (model), List[ EventId ]()))
2 var res: List[List[ EventId ]] = Nil
3 while (! queue. isEmpty )
4 val (state , seq) = queue. dequeue ()
5 if (eval( failureCondition , state) && !res. exists ( subSequence (_, seq)))
6 res = seq :: res
7 else if (seq.size < maxSize )
8 val ftrans = fireable (model , state)
9 ftrans . foreach {t =>

10 val newSeq = t.id:: seq
11 if (! res. exists ( subSequence (_, seq)))
12 val newstate = fire(state , t.id)
13 queue. enqueue (( newState , newSeq ))
14 }
15 res

Listing 12 Breadth-first search with online minimization for minimal sequences enumeration.

From the minimal cut sequences we can deduce the minimal cutsets by forgetting the
order and eliminating redundancies. If the system is static, this operation doesn’t remove any
information (the minimal sequences correspond to all permutations of the minimal cutsets),
but if it is dynamic, we possibly lose information about the dysfunctional behaviour of the
system (the exact ordering of events required to trigger a failure condition), which however
translates to safe pessimism for the analysis. Due to the combinatorial explosion of the
exploration for large systems, very high order cutsets are often neglected in order to scale
the computations on large models. Low order cutsets (up to order 3) are the direct target
of regulations and hence have the strongest impact on design decisions, and are the largest
contributors to unreliability. Nevertheless, the probability of unexplored scenarios can be
soundly approximated by considering they all trigger the failure condition.

We give in Table 1 the output given by the tool for minimal cutsets of the example given
in Listing 1. The failure condition is the loss of thrust for one or more engine, the results
are as expected: the intrinsic failure of either one engine or the other trigger the failure
condition, as does the loss of both batteries, either by the combination of their failure events,
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Table 1 MCS for powertrain12all.

Order Minimal cutset
1 ccf
1 engines(0).failure
1 engines(1).failure
2 batteries(0).failure, batteries(1).failure

or by a common cause failure triggering the simultaneous loss of both batteries (a single
battery loss is tolerated thanks to the one-to-all wiring). More efficient SAT or SMT-based
model-checking techniques can also be used for minimal cutset [21] or minimal sequence
enumeration [14], with an explicit time model [1] or without. Our initial focus being on
language expressivity, we leave this as future work.

6.4 Quantitative indicators
▶ Definition 5 (Reliability, Unreliability). Let tfail be the random variable describing the instant
at which system failure occurs. Reliability for a mission time T is defined as the probability
that the system failure does not occur in the interval [0, T ], knowing that the system is in
perfect nominal condition at time 0. Unreliability is the complement of reliability.

R(T ) = p(tfail > T ), U(T ) = 1 − R(T )

The reliability of the system can be computed from minimal cutsets using a BDD-based
algorithm [41]. We provide an implementation of this algorithm using the JavaBDD library.
It relies on the user-specified delay distributions for events (this analysis is offered only if all
distributions are specified), and is evaluated for a given mission time T . The computation
yields an exact result if it is based on all cutsets for a static system, and becomes a safe
under-approximation if the system is dynamic. The computation yields a possibly unsafe
approximation for both static and dynamic systems if cutsets of high order are neglected.
This BDD-based analysis cannot take dynamic repair or reconfiguration events into account.

Monte-Carlo simulation on the other hand allows to take into account the dynamic repair
and reconfiguration of a system without approximation. The Alpacas stochastic simulator
allows to sample finite traces of an SGTS and to compute safety indicators on the fly, by
directly folding traces using a statistics aggregation function, without storing the traces. We
provide aggregators for usual safety indicators such as (un)reliability, availability, mean time
between failures, etc. The Monte-Carlo estimates converge in 1√

#samples
and high-confidence

intervals can be computed based on the empirical sample mean and variance. The Alpacas
simulator supports multi-core parallelism thanks to Scala’s parallel collections library.

Table 2 gives a comparison of the runtimes and results of the Minimal Cutsets + BDD
method vs the Monte-Carlo method for unreliability estimation. Results were obtained on a
quad core MacBook Pro 13” 2019 with 16gigs of Ram. For mission times up to 103 time
units, Minimal Cutsets + BDD and Monte-Carlo results are equal up to the third decimal.
The difference on the remaining decimals can be attributed to the natural imprecision of
Monte-Carlo methods. For longer mission times, the Monte-Carlo unreliability is lower than
the MCS unreliability. This is due to the repairability of the system which is neglected by the
Minimal Cutsets + BDD technique. The computation cost for an estimation of the reliability
is significantly higher for the Monte-Carlo method, and it increases with the duration of
mission time, which is not the case for the Minimal Cutsets + BDD method. However,
the cost of preliminary computations needed for each analyzed architecture must be taken
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into account. Flattening is necessary for both analyses while the computation of Minimal
Custsets and the structure function’s BDD are necessary only for the Minimal Custsets +
BDD algorithm. For large models, the BDD computation typically becomes the bottleneck.

Table 2 Runtimes (ms) per preprocessing phase, MCS+BDD vs Monte-Carlo (105 samples, 95%
confidence interval) and runtimes (ms) for Unreliability of powertrain12all.

Preprocessing CPU
Phase time

Flattening 377
MCS 13
BDD 18

T U(T ) CPU U(T ) CPU
MCS+BDD time Monte-Carlo time

102 0.0020 < 1 0.00213 ± 0.00003 271
103 0.0201 < 1 0.0209 ± 0.0003 266
104 0.189 < 1 0.181 ± 0.002 307
105 0.919 < 1 0.867 ± 0.001 456

Importance sampling or importance splitting algorithms [29, 15] are well known techniques
for rare event estimation that can scale better and converge faster than unbiased Monte-
Carlo. However, deriving meaningful importance functions (typically real-valued functions)
in our discrete setting requires further research. Recent property-directed algorithms for
probabilistic model checking [10] mixing symbolic and quantitative analysis for Markov
Processes look very promising, but would need to be generalized to be applicable to Alpacas
models (Alpacas models can be semi-Markov and even more general due to the Memory
transitions).

7 Design-space exploration for an eVTOL thrust reallocation function

The main objective of this case study is to demonstrate that the Alpacas feature set makes it
indeed well suited for safety modeling (including dysfunctional and functional behaviour) and
design-space exploration for system architectures involving varying numbers of components,
and alternative data-flow connections schemes. Another goal is to illustrate the kind of
system design tradeoffs that can be analyzed through design-space exploration.

For this purpose, we chose to model a thrust system for a multi-rotor eVTOL able to
tolerate any single fault while preserving safe hovering capability. It requires to compensate
thrust loss while preserving thrust symmetry. The approach used for thrust compensation
is described in [7]. It consists in shutting down the engine opposite to the failing engine to
maintain symmetry with respect to all rotational axes, and to reallocate the missing lift on
the remaining engines by increasing (trimming) their default thrust value.

The choice of architecture for this thrust function is not obvious, and requires automatic
exploration. We must take into account the failure modes of all components involved:
Batteries, Engines, Sensors, and CPUs executing the thrust reallocation logic. Thrust loss
can be due to a intrinsic engine failure, or to a failure of the batteries powering the engine.
It can also be due to a failure of a sensor triggering a spurious trim. The reallocation logic
itself can also be lost due to CPU malfunction, or due to a battery failure, etc. From a
cost/reliability trade-off perspective, a design using few engines requires high trim levels and
high nominal engine thrust, and hence larger and more powerful engines and batteries, which
comes at a cost. A design using more engines requires smaller nominal thrusts and trim
levels in single failure cases, possibly cheaper engines, and could tolerate double failures. It
has other downsides like wiring complexity and increased weight and it still requires high
trim values in double failure scenarios, possibly quickly degrading the health of small engines.
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We propose a parametric family of architectures allowing to implement the reconfiguration
logic. In this study, we propose a parametric Alpacas model capturing the design-space,
and compute safety indicators for a number of configurations to identify design tradeoffs,
and select the safest architecture(s).

Figure 3 shows one of the many possible architectures for the system (engine positions
in the picture do not reflect their actual position in the aircraft): 6 batteries, 6 engines,
one sensor per engine, dual computing units, dual power redundancy for all components,
shared power sources for diagonally opposed engines and sensors, segregated power sources
for axially opposed engines.

The design-space to explore is parameterized by the number of batteries, engines and
sensors n ∈ {6, 8, 10}, by the battery failure rate λb, by the sensor failure rate λs ∈
{1E-5, 1E-10}, by the default sensor readout when it is not working properly (either optimistic
or pessimistic, Boolean parameter opt). The engine failure rate is a piecewise constant function
of the trim value: λ0 when in [0%,10%], λ1 when in [10%, 50%], λ2 when in [50%,100%]. We
model two computing units of failure rates λc = 1E-10. We model dual redundant power
source for engines, sensors and one-to-all wiring for computing units. We consider two power
source segregation cases (Boolean parameter seg): one where a sensor and its engine have the
same power source, another where they use different sources. For n = 6, the reconfiguration
logic doesn’t cover double engine failures as this could yield a situation with only 2 engines
functioning (2 are failed and 2 are shutdown) resulting in a loss of control and out of range
trim values. For n ∈ {8, 10}, the logic does trigger a reconfiguration in case of a double
engine failure.

The failure rates and mission time chosen for this study are not realistic. Their relative
orders of magnitude were simply chosen to illustrate their influence on reliability, and give
the reader an idea of the kind of design decisions that can be studied using Alpacas models
and algorithms.

Engine

Battery Battery

Sensor

Thrust control

Thrust state

Electrical power

Electrical power

Compute power

Engine

Battery Battery

Sensor Engine

Battery Battery

Sensor

Engine Sensor Engine Sensor Engine Sensor

Electrical power

Thrust 
Reallocation

CPU

CPU

Figure 3 Conceptual diagram of the thrust reallocation system with 6 engines.

The design space exploration results are presented in Table 3. Results are obtained with
100 seconds of computation on a quad core MacBook Pro 13” 2019 with 16gigs of Ram. We
use depth-first search for minimal sequences enumeration. We use Monte-Carlo with 100k
simulations for unreliability estimation, to properly take the dynamic thrust reallocation
behaviour into account. All configurations are immune to single failures (no minimal cutset of
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Table 3 Design-space exploration results (mission time 103 time units).

n λ0 λ1 λ2 λb λs opt seg # order 1 mcs # order 2 mcs # order 3 mcs U (T ) 95% conf. int.

6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true false 0 57 6 0.0252 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true true 0 54 42 0.0253 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false false 0 120 54 0.0481 ± 0.0006
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false true 0 123 6 0.0480 ± 0.0006
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true false 0 57 6 0.0248 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true true 0 54 42 0.0234 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false false 0 120 54 0.0247 ± 0.0003
6 1.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false true 0 123 6 0.0251 ± 0.0003
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true false 0 12 320 0.0102 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true true 0 8 368 0.0106 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false false 0 0 1568 0.0157 ± 0.0002
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false true 0 4 1496 0.0153 ± 0.0002
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true false 0 12 320 0.0094 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true true 0 8 368 0.0094 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false false 0 0 1568 0.0093 ± 0.0001
8 2.0E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false true 0 4 1496 0.0102 ± 0.0001
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true false 0 15 690 0.0260 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 true true 0 10 770 0.0264 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false false 0 0 3490 0.0383 ± 0.0005
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-5 false true 0 5 3370 0.0381 ± 0.0005
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true false 0 15 690 0.0236 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 true true 0 10 770 0.0247 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false false 0 0 3490 0.0238 ± 0.0003
10 2.5E-5 1.0E-4 2.0E-4 1.0E-5 1.0E-10 false true 0 5 3370 0.0253 ± 0.0003

order 1). Configurations with 8 and 10 engines can tolerate double failures using pessimistic
sensor defaults and non-segregated power wirings. Using pessimistic sensor defaults leads to
an explosion of the number of minimal cutsets of order 3, which can increase unreliability
if sensors are not sufficiently reliable. Indeed, a failing pessimistic sensor causes a spurious
thrust reallocation, which leads to a trimming regime where engines fail more often. This
results in a higher unreliability for the configurations that tolerate double failures. This
tradeoff can be solved by increasing sensor reliability but this is to balance with cost aspects.

Listing 13 shows the Alpacas code which generates the design-space of the system and
selects the configuration without MCS of order 1 and with the lowest unreliability. The
results can be further processed using the full Scala language, opening the door to design
optimization taking into account other aspects such as the cost of the components, etc.

1 case class EngParams (nEng: Int , lam0: Double , lam1: Double , lam2: Double )
2

3 class ThrustRealloc (
4 val engineParams : EngParams ,
5 val lambdaSensor : Double ,
6 val optimisticSensor : Boolean ,
7 val wiring : Wiring ,
8 ) extends Component { /* Model declaration */ }
9

10 val systems = for {
11 eps <- List(
12 EngParams (6, 1E-5, 1E-4, 2E -4) ,
13 EngParams (8, 2E-5, 1E-4, 2E -4) ,
14 EngParams (10, 2.5E-5, 1E-4, 2E -4)
15 )
16 lamSens <- List (1E-5, 1E -10)
17 optSens <- List(true , false)
18 wiring <- List( stdWiring (eps.nEng), segWiring (eps.nEng))
19 } yield ThrustRealloc (eps , lamSens , optSens , wiring )
20

21 var minUR = Double . PositiveInfinity
22 var bestSystem : Option [ GenericPowertrain ] = None
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23

24 for {
25 system <- systems
26 model <- stochasticCheck ( system )
27 mcs <- minimalCutSetsBFS (model , system . observer .isOk , 3)
28 urRes <- unreliability (model , system . observer .isOk , 1E3 , nbSimus , 8)
29 (_, urmax) = urRes
30 } {
31 if (mcs. forall (_. events .size > 1) && urmax < minUR) then
32 bestSystem = Some( system )
33 minUR = urmax
34 }

Listing 13 Design-space exploration example.

This study confirms that Alpacas is adapted to safety modeling of parametric families
of architectures, and allows to compute safety indicators on the formalized design-space
allowing to identify design tradeoffs and possibly to determine the optimal architecture with
regard to a chosen metric (which might include other parameters than safety indicators, like
cost).

8 Conclusion and Future Work

In this paper we presented Alpacas, a domain-specific language for system safety modeling
and analysis. Using stochastic guarded transition systems as underlying formalism, it allows
to model a large class of dynamic and re-configurable systems. It extends the state of the art
in model-based safety assessment by bringing many cutting edge features from Scala 3 for
generic programming thanks to a deep embedding. Parametric polymorphism, type-class
polymorphism, higher-order parameters, higher-kinded types, etc. open the way to more
efficient modeling and design-space formalization and exploration for safety critical systems.
The Alpacas feature set was tested on a representative case study modeling a family of
architectures for a thrust reallocation function for electric Vertical Takeoff and Landing
aircraft. The scope of applications of Alpacas is not limited to aerospace systems and can
benefit other domains such as automotive, railway, etc. which have similar safety processes
[39, 46]. Alpacas is available under an academic open-source license on this repository
https://gitlab.com/maximebuyse/alpacas.

The future work planned for Alpacas is the following. First, we will study how Scala 3’s
new macro system can improve the Monte-Carlo simulation performance, by inlining and
specializing assertion, guards and transition evaluation functions, removing boxing as much
as possible and distributing simulations on several computing cores. Second, we would like
to connect this safety-oriented framework to existing Scala frameworks for temporal logic
property monitoring such as DejaVu [27] or TraceContract [6]. This would allow to validate
temporal logic properties on complex re-configurable system before deploying the temporal
logic monitors for runtime safety assurance, and to derive process and reliability requirements
for various autonomy functions. This would allow to monitor divergence between system
models and actual system behaviour, and to trigger model updates to bridge the modeling
gap. Third, we will study the connection of Alpacas to reinforcement learning frameworks,
in order to study the synthesis of optimal policies for reconfiguration, repair and maintenance
of complex critical systems.
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