76 research outputs found

    Study on operational space control of a redundant robot with un-actuated joints: experiments under actuation failure scenarios

    Get PDF
    This paper analyzes operational space dynamics for redundant robots with un-actuated joints and reveals their highly nonlinear dynamic impacts on operational space control (OSC) tasks. Unlike conventional OSC approaches that partly address the under-actuated system by introducing rigid grasping or contact constraints, we deal with the problem even without such physical constraints which have been overlooked, yet it includes a wide range of applications such as free-floating robots and manipulators with passive joints or unwanted actuation failure. In addition, as an intuitive application example of the drawn result, an OSC is formulated as an optimization problem to alleviate the dynamics disturbance stemmed from the un-actuated joints and to satisfy other inequality constraints. The dynamic analysis and the proposed control method are verified by a number of numerical simulations as well as physical experiments with a 7-degrees-of-freedom robotic arm. In particular, we consider joint actuation failure scenarios that can be occurred at certain joints of a torque-controlled robot and practical case studies are performed with an actual redundant robot arm

    Reinforcement Learning Adaptive PID Controller for an Under-actuated Robot Arm

    Get PDF
    Abstract: An adaptive PID controller is used to control of a two degrees of freedom under actuated manipulator. An actor-critic based reinforcement learning is employed for tuning of parameters of the adaptive PID controller. Reinforcement learning is an unsupervised scheme wherein no reference exists to which convergence of algorithm is anticipated. Thus, it is appropriate for real time applications. Controller structure and learning equations as well as update rules are provided. Simulations are performed in SIMULINK and performance of the controller is compared with NARMA-L2 controller. The results verified good performance of the controller in tracking and disturbance rejection tests

    Improving Automated Operations of Heavy-Duty Manipulators with Modular Model-Based Control Design

    Get PDF
    The rapid development of robotization and automation in mobile working machines aims to increase productivity and safety in many industrial sectors. In heavy-duty applications, hydraulically actuated manipulators are the common solution due to their large power-to-weight ratio. As hydraulic systems can exhibit nonlinear dynamic behavior, automated operations with closed-loop control become challenging. In industrial applications, the dexterity of operations for manipulators is ensured by providing interfaces to equip product variants with diļ¬€erent tool attachments. By considering these domain-speciļ¬c tool attachments for heavy-duty hydraulic manipulators (HHMs), the autonomous robotic operating development for all product variants might be a time-consuming process. This thesis aims to develop a modular nonlinear model-based (NMB) control method for HHMs to enable systematic NMB model reuse and control system modularity across diļ¬€erent HHM product variants with actuators and tool attachments. Equally importantly, the properties of NMB control are used to improve the high-performance control for multi degrees-of-freedom robotic HHMs, as rigorously stability-guaranteed control systems have been shown to provide superior performance. To achieve these objectives, four research problems (RPs) on HHM controls are addressed. The RPs are focused on damping control methods in underactuated tool attachments, compensating for static actuator nonlinearities, and, equally signiļ¬cantly, improving overall control performance. The fourth RP is introduced for hydraulic series elastic actuators (HSEAs) in HHM applications, which can be regarded as supplementing NMB control with the aim of improving force controllability. Six publications are presented to investigate the RPs in this thesis. The control development focus was on modular NMB control design for HHMs equipped with diļ¬€erent actuators and tool attachments consisting of passive and actuated joints. The designed control methods were demonstrated on a full-size HHM and a novel HSEA concept in a heavy-duty experimental setup. The results veriļ¬ed that modular control design for HHM systems can be used to decrease the modiļ¬cations required to use the manipulator with diļ¬€erent tool attachments and ļ¬‚oating-base environments

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Sample-based motion planning in high-dimensional and differentially-constrained systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 115-124).State of the art sample-based path planning algorithms, such as the Rapidly-exploring Random Tree (RRT), have proven to be effective in path planning for systems subject to complex kinematic and geometric constraints. The performance of these algorithms, however, degrade as the dimension of the system increases. Furthermore, sample-based planners rely on distance metrics which do not work well when the system has differential constraints. Such constraints are particularly challenging in systems with non-holonomic and underactuated dynamics. This thesis develops two intelligent sampling strategies to help guide the search process. To reduce sensitivity to dimension, sampling can be done in a low-dimensional task space rather than in the high-dimensional state space. Altering the sampling strategy in this way creates a Voronoi Bias in task space, which helps to guide the search, while the RRT continues to verify trajectory feasibility in the full state space. Fast path planning is demonstrated using this approach on a 1500-link manipulator. To enable task-space biasing for underactuated systems, a hierarchical task space controller is developed by utilizing partial feedback linearization. Another sampling strategy is also presented, where the local reachability of the tree is approximated, and used to bias the search, for systems subject to differential constraints. Reachability guidance is shown to improve search performance of the RRT by an order of magnitude when planning on a pendulum and non-holonomic car. The ideas of task-space biasing and reachability guidance are then combined for demonstration of a motion planning algorithm implemented on LittleDog, a quadruped robot. The motion planning algorithm successfully planned bounding trajectories over extremely rough terrain.by Alexander C. Shkolnik.Ph.D

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Rest-to-Rest Trajectory Planning for Underactuated Cable-Driven Parallel Robots

    Get PDF
    This article studies the trajectory planning for underactuated cable-driven parallel robots (CDPRs) in the case of rest-to-rest motions, when both the motion time and the path geometry are prescribed. For underactuated manipulators, it is possible to prescribe a control law only for a subset of the generalized coordinates of the system. However, if an arbitrary trajectory is prescribed for a suitable subset of these coordinates, the constraint deficiency on the end-effector leads to the impossibility of bringing the system at rest in a prescribed time. In addition, the behavior of the system may not be stable, that is, unbounded oscillatory motions of the end-effector may arise. In this article, we propose a novel trajectory-planning technique that allows the end effector to track a constrained geometric path in a specified time, and allows it to transition between stable static poses. The design of such a motion is based on the solution of a boundary value problem, aimed at a finding solution to the differential equations of motion with constraints on position and velocity at start and end times. To prove the effectiveness of such a method, the trajectory planning of a six-degrees-of-freedom spatial CDPR suspended by three cables is investigated. Trajectories of a reference point on the moving platform are designed so as to ensure that the assigned path is tracked accurately, and the system is brought to a static condition in a prescribed time. Experimental validation is presented and discussed

    From Underactuation to Quasiā€Full Actuation: A Unifying Control Framework for Rigid and Elastic Joint Robot

    Get PDF
    The quest for animal-like performance in robots has driven the integration of elastic elements in their drive trains, sparking a revolution in robot design. Elastic robots can store and release potential energy, providing distinct advantages over traditional robots, such as enhanced safety in human-robot interaction, resilience to mechanical shocks, improved energy efficiency in cyclic tasks, and dynamic motion capabilities. Exploiting their full potential, however, necessitates novel control methods. This thesis advances the field of nonlinear control for underactuated systems and utilizes the results to push the boundaries of motion and interaction performance of elastic robots. Through real-life experiments and applications, the proposed controllers demonstrate that compliant robots hold promise as groundbreaking robotic technology. To achieve these objectives, we first derive a simultaneous phase space and input transformation that enables a specific class of underactuated Lagrangian systems to be treated as if fully actuated. These systems can be represented as the interconnection of actuated and underactuated subsystems, with the kinetic energy of each subsystem depending only on its own velocity. Elastic robots are typical representatives. We refer to the transformed system as quasi-fully actuated due to weak constraints on the new inputs. Fundamental aspects of the transforming equations are 1) the same Lagrangian function characterizes both the original and transformed systems, 2) the transformed system establishes a passive mapping between inputs and outputs, and 3) the solutions of both systems are in a one-to-one correspondence, describing the same physical reality. This correspondence allows us to study and control the behavior of the quasi-fully actuated system instead of the underactuated one. Thus, this approach unifies the control design for rigid and elastic joint robots, enabling the direct application of control results inherited from the fully-actuated case while ensuring closed-loop system stability and passivity. Unlike existing methods, the quasi-full actuation concept does not rely on inner control loops or the neglect and cancellation of dynamics. Notably, as joint stiffness values approach infinity, the control equivalent of a rigid robot is recovered. Building upon the quasi-full actuation concept, we extend energy-based control schemes such as energy shaping and damping injection, Euler-Lagrange controllers, and impedance control. Moreover, we introduce Elastic Structure Preserving (ESP) control, a passivity-based control scheme designed for robots with elastic or viscoelastic joints, guided by the principle of ``do as little as possible''. The underlying hope is that reducing the system shaping, i.e., having a closed-loop dynamics match in some way the robot's intrinsic structure, will award high performance with little control effort. By minimizing the system shaping, we obtain low-gain designs, which are favorable concerning robustness and facilitate the emergence of natural motions. A comparison with state-of-the-art controllers highlights the minimalistic nature of ESP control. Additionally, we present a synthesis method, based on purely geometric arguments, for achieving time-optimal rest-to-rest motions of an elastic joint with bounded input. Finally, we showcase the remarkable performance and robustness of the proposed ESP controllers on DLR David, an anthropomorphic robot implemented with variable impedance actuators. Experimental evidence reveals that ESP designs enable safe and compliant interaction with the environment and rigid-robot-level accuracy in free motion. Additionally, we introduce a control framework that allows DLR David to perform commercially relevant tasks, such as pick and place, teleoperation, hammer drilling into a concrete block, and unloading a dishwasher. The successful execution of these tasks provides compelling evidence that compliant robots have a promising future in commercial applications

    Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems

    Full text link
    Applying Deep Learning to control has a lot of potential for enabling the intelligent design of robot control laws. Unfortunately common deep learning approaches to control, such as deep reinforcement learning, require an unrealistic amount of interaction with the real system, do not yield any performance guarantees, and do not make good use of extensive insights from model-based control. In particular, common black-box approaches -- that abandon all insight from control -- are not suitable for complex robot systems. We propose a deep control approach as a bridge between the solid theoretical foundations of energy-based control and the flexibility of deep learning. To accomplish this goal, we extend Deep Lagrangian Networks (DeLaN) to not only adhere to Lagrangian Mechanics but also ensure conservation of energy and passivity of the learned representation. This novel extension is embedded within generic model-based control laws to enable energy control of under-actuated systems. The resulting DeLaN for energy control (DeLaN 4EC) is the first model learning approach using generic function approximation that is capable of learning energy control. DeLaN 4EC exhibits excellent real-time control on the physical Furuta Pendulum and learns to swing-up the pendulum while the control law using system identification does not.Comment: Published at IROS 201
    • ā€¦
    corecore