4,231 research outputs found

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    Automated Pattern Detection and Generalization of Building Groups

    Get PDF
    This dissertation focuses on the topic of building group generalization by considering the detection of building patterns. Generalization is an important research field in cartography, which is part of map production and the basis for the derivation of multiple representation. As one of the most important features on map, buildings occupy large amount of map space and normally have complex shape and spatial distribution, which leads to that the generalization of buildings has long been an important and challenging task. For social, architectural and geographical reasons, the buildings were built with some special rules which forms different building patterns. Building patterns are crucial structures which should be carefully considered during graphical representation and generalization. Although people can effortlessly perceive these patterns, however, building patterns are not explicitly described in building datasets. Therefore, to better support the subsequent generalization process, it is important to automatically recognize building patterns. The objective of this dissertation is to develop effective methods to detect building patterns from building groups. Based on the identified patterns, some generalization methods are proposed to fulfill the task of building generalization. The main contribution of the dissertation is described as the following five aspects: (1) The terminology and concept of building pattern has been clearly explained; a detailed and relative complete typology of building patterns has been proposed by summarizing the previous researches as well as extending by the author; (2) A stroke-mesh based method has been developed to group buildings and detect different patterns from the building groups; (3) Through the analogy between line simplification and linear building group typification, a stroke simplification based typification method has been developed aiming at solving the generalization of building groups with linear patterns; (4) A mesh-based typification method has been developed for the generalization of the building groups with grid patterns; (5) A method of extracting hierarchical skeleton structures from discrete buildings have been proposed. The extracted hierarchical skeleton structures are regarded as the representations of the global shape of the entire region, which is used to control the generalization process. With the above methods, the building patterns are detected from the building groups and the generalization of building groups are executed based on the patterns. In addition, the thesis has also discussed the drawbacks of the methods and gave the potential solutions.:Abstract I Kurzfassung III Contents V List of Figures IX List of Tables XIII List of Abbreviations XIV Chapter 1 Introduction 1 1.1 Background and motivation 1 1.1.1 Cartographic generalization 1 1.1.2 Urban building and building patterns 1 1.1.3 Building generalization 3 1.1.4 Hierarchical property in geographical objects 3 1.2 Research objectives 4 1.3 Study area 5 1.4 Thesis structure 6 Chapter 2 State of the Art 8 2.1 Operators for building generalization 8 2.1.1 Selection 9 2.1.2 Aggregation 9 2.1.3 Simplification 10 2.1.4 Displacement 10 2.2 Researches of building grouping and pattern detection 11 2.2.1 Building grouping 11 2.2.2 Pattern detection 12 2.2.3 Problem analysis . 14 2.3 Researches of building typification 14 2.3.1 Global typification 15 2.3.2 Local typification 15 2.3.3 Comparison analysis 16 2.3.4 Problem analysis 17 2.4 Summary 17 Chapter 3 Using stroke and mesh to recognize building group patterns 18 3.1 Abstract 19 3.2 Introduction 19 3.3 Literature review 20 3.4 Building pattern typology and study area 22 3.4.1 Building pattern typology 22 3.4.2 Study area 24 3.5 Methodology 25 3.5.1 Generating and refining proximity graph 25 3.5.2 Generating stroke and mesh 29 3.5.3 Building pattern recognition 31 3.6 Experiments 33 3.6.1 Data derivation and test framework 33 3.6.2 Pattern recognition results 35 3.6.3 Evaluation 39 3.7 Discussion 40 3.7.1 Adaptation of parameters 40 3.7.2 Ambiguity of building patterns 44 3.7.3 Advantage and Limitation 45 3.8 Conclusion 46 Chapter 4 A typification method for linear building groups based on stroke simplification 47 4.1 Abstract 48 4.2 Introduction 48 4.3 Detection of linear building groups 50 4.3.1 Stroke-based detection method 50 4.3.2 Distinguishing collinear and curvilinear patterns 53 4.4 Typification method 55 4.4.1 Analogy of building typification and line simplification 55 4.4.2 Stroke generation 56 4.4.3 Stroke simplification 57 4.5 Representation of newly typified buildings 60 4.6 Experiment 63 4.6.1 Linear building group detection 63 4.6.2 Typification results 65 4.7 Discussion 66 4.7.1 Comparison of reallocating remained nodes 66 4.7.2 Comparison with classic line simplification method 67 4.7.3 Advantage 69 4.7.4 Further improvement 71 4.8 Conclusion 71 Chapter 5 A mesh-based typification method for building groups with grid patterns 73 5.1 Abstract 74 5.2 Introduction 74 5.3 Related work 75 5.4 Methodology of mesh-based typification 78 5.4.1 Grid pattern classification 78 5.4.2 Mesh generation 79 5.4.3 Triangular mesh elimination 80 5.4.4 Number and positioning of typified buildings 82 5.4.5 Representation of typified buildings 83 5.4.6 Resizing Newly Typified Buildings 85 5.5 Experiments 86 5.5.1 Data derivation 86 5.5.2 Typification results and evaluation 87 5.5.3 Comparison with official map 91 5.6 Discussion 92 5.6.1 Advantages 92 5.6.2 Further improvements 93 5.7 Conclusion 94 Chapter 6 Hierarchical extraction of skeleton structures from discrete buildings 95 6.1 Abstract 96 6.2 Introduction 96 6.3 Related work 97 6.4 Study area 99 6.5 Hierarchical extraction of skeleton structures 100 6.5.1 Proximity Graph Network (PGN) of buildings 100 6.5.2 Centrality analysis of proximity graph network 103 6.5.3 Hierarchical skeleton structures of buildings 108 6.6 Generalization application 111 6.7 Experiment and discussion 114 6.7.1 Data statement 114 6.7.2 Experimental results 115 6.7.3 Discussion 118 6.8 Conclusions 120 Chapter 7 Discussion 121 7.1 Revisiting the research problems 121 7.2 Evaluation of the presented methodology 123 7.2.1 Strengths 123 7.2.2 Limitations 125 Chapter 8 Conclusions 127 8.1 Main contributions 127 8.2 Outlook 128 8.3 Final thoughts 131 Bibliography 132 Acknowledgements 142 Publications 14

    A regional land use survey based on remote sensing and other data: A report on a LANDSAT and computer mapping project, volume 2

    Get PDF
    The author has identified the following significant results. The project mapped land use/cover classifications from LANDSAT computer compatible tape data and combined those results with other multisource data via computer mapping/compositing techniques to analyze various land use planning/natural resource management problems. Data were analyzed on 1:24,000 scale maps at 1.1 acre resolution. LANDSAT analysis software and linkages with other computer mapping software were developed. Significant results were also achieved in training, communication, and identification of needs for developing the LANDSAT/computer mapping technologies into operational tools for use by decision makers

    Dwelling on ontology - semantic reasoning over topographic maps

    Get PDF
    The thesis builds upon the hypothesis that the spatial arrangement of topographic features, such as buildings, roads and other land cover parcels, indicates how land is used. The aim is to make this kind of high-level semantic information explicit within topographic data. There is an increasing need to share and use data for a wider range of purposes, and to make data more definitive, intelligent and accessible. Unfortunately, we still encounter a gap between low-level data representations and high-level concepts that typify human qualitative spatial reasoning. The thesis adopts an ontological approach to bridge this gap and to derive functional information by using standard reasoning mechanisms offered by logic-based knowledge representation formalisms. It formulates a framework for the processes involved in interpreting land use information from topographic maps. Land use is a high-level abstract concept, but it is also an observable fact intimately tied to geography. By decomposing this relationship, the thesis correlates a one-to-one mapping between high-level conceptualisations established from human knowledge and real world entities represented in the data. Based on a middle-out approach, it develops a conceptual model that incrementally links different levels of detail, and thereby derives coarser, more meaningful descriptions from more detailed ones. The thesis verifies its proposed ideas by implementing an ontology describing the land use ‘residential area’ in the ontology editor ProtĂ©gĂ©. By asserting knowledge about high-level concepts such as types of dwellings, urban blocks and residential districts as well as individuals that link directly to topographic features stored in the database, the reasoner successfully infers instances of the defined classes. Despite current technological limitations, ontologies are a promising way forward in the manner we handle and integrate geographic data, especially with respect to how humans conceptualise geographic space

    Historic Landscape Assessment: the East of England Experience

    Get PDF

    Family names as indicators of Britain’s changing regional geography

    Get PDF
    In recent years the geography of surnames has become increasingly researched in genetics, epidemiology, linguistics and geography. Surnames provide a useful data source for the analysis of population structure, migrations, genetic relationships and levels of cultural diffusion and interaction between communities. The Worldnames database (www.publicprofiler.org/worldnames) of 300 million people from 26 countries georeferenced in many cases to the equivalent of UK Postcode level provides a rich source of surname data. This work has focused on the UK component of this dataset, that is the 2001 Enhanced Electoral Role, georeferenced to Output Area level. Exploratory analysis of the distribution of surnames across the UK shows that clear regions exist, such as Cornwall, Central Wales and Scotland, in agreement with anecdotal evidence. This study is concerned with applying a wide range of methods to the UK dataset to test their sensitivity and consistency to surname regions. Methods used thus far are hierarchical and non-hierarchical clustering, barrier algorithms, such as the Monmonier Algorithm, and Multidimensional Scaling. These, to varying degrees, have highlighted the regionality of UK surnames and provide strong foundations to future work and refinement in the UK context. Establishing a firm methodology has enabled comparisons to be made with data from the Great British 1881 census, developing insights into population movements from within and outside Great Britain

    Validation Protocol for Emergency Response Geo-information Products

    Get PDF
    Europe is making a significant effort to develop (geo)information services for crisis management as part of the Global Monitoring for Environment and Security GMES) programme. Recognising the importance of coordinated European response to crises and the potential contribution of GMES, the Commission launched a number of preparatory activities in coordination with relevant stakeholders for the establishment of an Emergency Response GMES Core Service (ERCS). GMES Emergency Response Services will rely on information provided by advanced technical and operational capabilities making full use of space earth observation and supporting their integration with other sources of data and information. Data and information generated by these services can be used to enhance emergency preparedness and early reaction to foreseeable or imminent crises and disasters. From a technical point of view, the use of geo-information for emergency response poses significant challenges for spatial data collection, data management, information extraction and communication. The need for an independent formal assessment of crisis products to provide operational services with homogeneous and reliable standards has recently become recognized as an integral component of service development. Validation is intended to help end-users decide how much to trust geo-information products (maps, spatial dataset). The focus, in this document, is on geo-information products, in particular those derived from Earth Observation data. Validation principles have been implemented into a protocol, as a tool to check whether the products meet standards and user needs. The validation principles, methods, rules and guidelines provided in this document aim to give a structure that guarantees an overall documented and continuous quality of ERCS products.JRC.DG.G.2-Global security and crisis managemen

    Rapid methods of landslide hazard mapping : Fiji case study

    Get PDF
    A landslide hazard probability map can help planners (1) prepare for, and/or mitigate against, the effects of landsliding on communities and infrastructure, and (2) avoid or minimise the risks associated with new developments. The aims of the project were to establish, by means of studies in a few test areas, a generic method by which remote sensing and data analysis using a geographic information system (GIS) could provide a provisional landslide hazard zonation map. The provision of basic hazard information is an underpinning theme of the UN’s International Decade for Natural Disaster Reduction (IDNDR). It is an essential requirement for disaster preparedness and mitigation planning. This report forms part of BGS project 92/7 (R5554) ‘Rapid assessment of landslip hazards’ Carried out under the ODA/BGS Technology Development and Research Programme as part of the British Government’s provision of aid to developing countries. It provides a detailed technical account of work undertaken in a test area in Viti Levu in collaboration with Fiji Mineral Resources Department. The study represents a demonstration of a methodology that is applicable to many developing countries. The underlying principle is that relationships between past landsliding events, interpreted from remote sensing, and factors such as the geology, relief, soils etc provide the basis for modelling where future landslides are most likely to occur. This is achieved using a GIS by ‘weighting’ each class of each variable (e.g. each lithology ‘class’ of the variable ‘geology’) according to the proportion of landslides occurring within it compared to the regional average. Combinations of variables, produced by summing the weights in individual classes, provide ‘models’ of landslide probability. The approach is empirical but has the advantage of potentially being able to provide regional scale hazard maps over large areas quickly and cheaply; this is unlikely to be achieved using conventional ground-based geotechnical methods. In Fiji, landslides are usually triggered by intense rain storms commonly associated with tropical cyclones. However, the regional distribution of landslides has not been mapped nor is it known how far geology and landscape influence the location and severity of landsliding events. The report discusses the remote sensing and GIS methodology, and describes the results of the pilot study over an area of 713 km2 in south east Viti Levu. The landslide model uses geology, elevation, slope angle, slope aspect, soil type, and forest cover as inputs. The resulting provisional landslide hazard zonation map, divided into high, medium and low zones of landslide hazard probability, suggests that whilst rainfall is the immediate cause, others controls do exert a significant influence. It is recommended that consideration be given in Fiji to implementing the techniques as part of a national strategic plan for landslide hazard zonation mapping

    A methodology for landscape characterisation based on GIS and spatially constrained multivariate analysis

    Get PDF
    Landscape is about the relationship between people and place and in 2000 was defined by the European Landscape Commission (ELC) as "an area as perceived by people whose character is the result of natural and human actions and interactions”. In the 70s the reason for studying the landscape was because of the necessity of attributing a value to it. Nowadays the motivations behind managing, conserving and enhancing the landscape is because the landscape is the place where people belong to and, consciously or not, recognise themselves. In addition, people identify different landscapes on the basis of the particular combinations of the elements in the landscape. As a consequence a landscape can be distinguished from another on the basis of its character which, according to the Landscape Character Assessment (LCA) guidance for England and Scotland (C. Swanwick and Land Use Consultant, 2002), is defined as “a distinct, recognisable and consistent pattern of elements in the landscape that makes one landscape different from the other rather than better or worse”. This definition was the starting point of a PhD research project aimed at developing and implementing a methodology able to identify and quantify the character of the Scottish landscape through the application of GIS and statistics. The reason for doing this research was to provide the landscape architects and practitioners with a tool that could help them to define the landscape character types in a more consistent, objective, and scientifically robust way. One of the objectives of the research was to identify the spatial patterns formed by the landscape elements by taking into account the influence of the spatial location. The first law of geography, which states that "everything is related to everything else but near things are more related than distant ones" (W Tobler, 1970), was transposed in the assumption of the presence of spatial autocorrelation amongst the data which contributes to form spatial patterns within the data. Since landscape comprises of many elements, data were also multivariate, thus the analysis required a method of calculation able to deal simultaneously with multivariate and spatial autocorrelation issues. MULTISPATI-PCA, a spatially constrained Principal Component Analysis, was the statistical technique applied for the analysis of the data whose results showed that it was possible to detect the spatial structure of the data and that each spatial pattern corresponded to a distinct landscape. Despite their importance in forming the character of the landscape, aesthetic and perceptual aspects were not inlcuded in MULTISPATI-PCA analysis. It was preferred to test the technique only on data that were quantifiable in a more objective way. Perhaps taking into account the human perception of the landscape can be the starting point for future investigation
    • 

    corecore