62,442 research outputs found

    Model-Based Iterative Learning Control Applied to an Industrial Robot with Elasticity

    Get PDF
    In this paper model-based Iterative Learning Control (ILC) is applied to improve the tracking accuracy of an industrial robot with elasticity. The ILC algorithm iteratively updates the reference trajectory for the robot such that the predicted tracking error in the next iteration is minimised. The tracking error is predicted by a model of the closed-loop dynamics of the robot. The model includes the servo resonance frequency, the first resonance frequency caused by elasticity in the mechanism and the variation of both frequencies along the trajectory. Experimental results show that the tracking error of the robot can be reduced, even at frequencies beyond the first elastic resonance frequency

    Application of a Combined Active Control and Fault Detection Scheme to an Active Composite Flexible Structure.

    Get PDF
    In this paper, the problem of increasing reliability of active control procedure is considered. Indeed, a design method of rejection perturbation in presence of potentially faults, on a flexible structure with integrated piezo-ceramics, is presented. The piezo-ceramics are used as actuators and sensors. A single unit based solution, which handles both control action and fault diagnosis is proposed. The algorithm uses H∞ optimization techniques. A full order model of the structure is first obtained via both finite-element (FE) approach and identification procedure. This model is then reduced in order to be used in our robust approach. By a suitable choice of weightings functions, the provided method is able to reject disturbance robustly and to estimate occurred faults. The case of sensors and actuators faults is discussed. The choice of weightings for diagnosis and control systems is also tackled. Finally, the effectiveness of this integrated method is confirmed by both simulation and experimental results

    Development of an automatic lameness detection system for dairy cattle : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University, Manawatu, New Zealand

    Get PDF
    Lameness in dairy cattle negatively effects the welfare of affected cows and is the third biggest cause of economic loss to the dairy industry in New Zealand. As the cost and frequency of lameness continues to increase, profitability will further decrease, unless a more effective and efficient method of detecting cattle lameness is found. The main objective of this study was to investigate whether differences between healthy and lame cattle could be identified by capturing ground reaction forces when the dairy cattle walked over the designed platform. [Partial abstract

    New possibilities of calculating the volumes of extracted masses in the surface mining of brown coal

    Get PDF
    The companies engaged in brown coal mining are looking for ways of managing the mining process as efficiently as possible. The principal mining technology used for brown coal mining in our country, but also in Germany and Poland, are wheel excavators. The evolving GNSS technology has enabled designing and realisation of systems for determining the spatial position of the excavator wheel. The visualisation of the wheel's spatial position and tracking of its real-time motion is performed in the Czech Republic by the program Mine Model developed by the company KVASoftware. One of the most important tasks of mine surveyors is the calculation of the volumes of the extracted masses. The described system performs this task in real-time. This article describes an application that is used to automate volume calculations

    Physics-based prognostic modelling of filter clogging phenomena

    Get PDF
    In industry, contaminant filtration is a common process to achieve a desired level of purification, since contaminants in liquids such as fuel may lead to performance drop and rapid wear propagation. Generally, clogging of filter phenomena is the primary failure mode leading to the replacement or cleansing of filter. Cascading failures and weak performance of the system are the unfortunate outcomes due to a clogged filter. Even though filtration and clogging phenomena and their effects of several observable parameters have been studied for quite some time in the literature, progression of clogging and its use for prognostics purposes have not been addressed yet. In this work, a physics based clogging progression model is presented. The proposed model that bases on a well-known pressure drop equation is able to model three phases of the clogging phenomena, last of which has not been modelled in the literature yet. In addition, the presented model is integrated with particle filters to predict the future clogging levels and to estimate the remaining useful life of fuel filters. The presented model has been implemented on the data collected from an experimental rig in the lab environment. In the rig, pressure drop across the filter, flow rate, and filter mesh images are recorded throughout the accelerated degradation experiments. The presented physics based model has been applied to the data obtained from the rig. The remaining useful lives of the filters used in the experimental rig have been reported in the paper. The results show that the presented methodology provides significantly accurate and precise prognostic results

    Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach

    Get PDF
    It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV

    Feedback control of unsupported standing in paraplegia. Part I: optimal control approach

    Get PDF
    This is the first of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantarflexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors extend the design of the controllers to a nested-loop LQG (linear quadratic Gaussian) stimulation controller which has ankle moment feedback (inner loops) and inverted pendulum angle feedback (outer loop). Each control loop is tuned by two parameters, the control weighting and an observer rise-time, which together determine the behavior. The nested structure was chosen because it is robust, despite changes in the muscle properties (fatigue) and interference from spasticity

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    An Enhanced Bridge Weigh-in-motion Methodology and A Bayesian Framework for Predicting Extreme Traffic Load Effects of Bridges

    Get PDF
    In the past few decades, the rapid growth of traffic volume and weight, and the aging of transportation infrastructures have raised serious concerns over transportation safety. Under these circumstances, vehicle overweight enforcement and bridge condition assessment through structural health monitoring (SHM) have become critical to the protection of the safety of the public and transportation infrastructures. The main objectives of this dissertation are to: (1) develop an enhanced bridge weigh-in-motion (BWIM) methodology that can be integrated into the SHM system for overweight enforcement and monitoring traffic loading; (2) present a Bayesian framework to predict the extreme traffic load effects (LEs) of bridges and assess the implication of the growing traffic on bridge safety. Firstly, an enhanced BWIM methodology is developed. A comprehensive review on the BWIM technology is first presented. Then, a novel axle detection method using wavelet transformation of the bridge global response is proposed. Simulation results demonstrate that the proposed axle detection method can accurately identify vehicle axles, except for cases with rough road surface profiles or relatively high measurement noises. Furthermore, a two-dimensional nothing-on-road (NOR) BWIM algorithm that is able to identify the transverse position (TP) and axle weight of vehicles using only weighing sensors is proposed. Results from numerical and experimental studies show that the proposed algorithm can accurately identify the vehicle’s TP under various conditions and significantly improve the identification accuracy of vehicle weight compared with the traditional Moses’s algorithm. Secondly, a Bayesian framework for predicting extreme traffic LEs of bridges is presented. The Bayesian method offers a natural framework for uncertainty quantification in parameter estimation and thus can provide more reliable predictions compared with conventional methods. A framework for bridge condition assessment that utilizes the predicted traffic LEs is proposed and a case study on the condition assessment of an instrumented field bridge is presented to demonstrate the proposed methodology. Moreover, the non-stationary Bayesian method is adopted to predict the maximum traffic LEs during the lifetime of bridges subject to different types of traffic growth and the influence of the traffic growth on the bridge safety is investigated
    corecore