10 research outputs found

    The theory of interface slicing

    Get PDF
    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed

    A survey of program slicing for software engineering

    Get PDF
    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field

    A survey of program slicing techniques

    Get PDF

    Conceptual roles of data in program: analyses and applications

    Get PDF
    Program comprehension is the prerequisite for many software evolution and maintenance tasks. Currently, the research falls short in addressing how to build tools that can use domain-specific knowledge to provide powerful capabilities for extracting valuable information for facilitating program comprehension. Such capabilities are critical for working with large and complex program where program comprehension often is not possible without the help of domain-specific knowledge.;Our research advances the state-of-art in program analysis techniques based on domain-specific knowledge. The program artifacts including variables and methods are carriers of domain concepts that provide the key to understand programs. Our program analysis is directed by domain knowledge stored as domain-specific rules. Our analysis is iterative and interactive. It is based on flexible inference rules and inter-exchangeable and extensible information storage. We designed and developed a comprehensive software environment SeeCORE based on our knowledge-centric analysis methodology. The SeeCORE tool provides multiple views and abstractions to assist in understanding complex programs. The case studies demonstrate the effectiveness of our method. We demonstrate the flexibility of our approach by analyzing two legacy programs in distinct domains

    srcSlice: very efficient and scalable forward static slicing

    Full text link
    A highly efficient lightweight forward static slicing approach is presented and evaluated. The approach does not compute the program/system dependence graph but instead dependence and control information is com-puted as needed while computing the slice on a variable. The result is a list of line numbers, dependent vari-ables, aliases, and function calls that are part of the slice for all variables (both local and global) for the entire system. The method is implemented as a tool, called srcSlice, on top of srcML, an XML representation of source code. The approach is highly scalable and can generate the slices for all variables of the Linux kernel in approximately 20min on a typical desktop. Benchmark results are compared with the CodeSurfer slicing tool from GrammaTech Inc., and the approach compares well with regard to accuracy of slices. Copyright

    Towards an Interactive Debugging Tool for C++ Based on Program Slicing

    Get PDF
    The purpose of this thesis work was to develop an interactive debugging tool for programs written in a subset of C++, based on the program slicing method under the DYNIX/ptx operating system. The topics that were covered as background and context in this work consisted ofa review of debugging approaches, an introduction to program slicing and its types: static slicing and dynamic slicing, and a brief review of the different approaches used in implementing dynamic slicing. The programming part of this thesis work consisted of the design and implementation of a program slicing tool, called cppslicer, for debugging programs written in a subset of C++. The cppslicer software tool is an interactive debugging tool that can be used to help debug simple C++ programs. The cppslicer tool can be used to debug programs with or without classes, operator overloading, and pointers to int, char, float, and classes. The cppslicer program is written in C++. It has about 4900 lines of code distributed around four classes

    Structural testing techniques for the selective revalidation of software

    Get PDF
    The research in this thesis addresses the subject of regression testing. Emphasis is placed on developing a technique for selective revalidation which can be used during software maintenance to analyse and retest only those parts of the program affected by changes. In response to proposed program modifications, the technique assists the maintenance programmer in assessing the extent of the program alterations, in selecting a representative set of test cases to rerun, and in identifying any test cases in the test suite which are no longer required because of the program changes. The proposed technique involves the application of code analysis techniques and operations research. Code analysis techniques are described which derive information about the structure of a program and are used to determine the impact of any modifications on the existing program code. Methods adopted from operations research are then used to select an optimal set of regression tests and to identify any redundant test cases. These methods enable software, which has been validated using a variety of structural testing techniques, to be retested. The development of a prototype tool suite, which can be used to realise the technique for selective revalidation, is described. In particular, the interface between the prototype and existing regression testing tools is discussed. Moreover, the effectiveness of the technique is demonstrated by means of a case study and the results are compared with traditional regression testing strategies and other selective revalidation techniques described in this thesis

    Malware variant detection

    Get PDF
    Malware programs (e.g., viruses, worms, Trojans, etc.) are a worldwide epidemic. Studies and statistics show that the impact of malware is getting worse. Malware detectors are the primary tools in the defence against malware. Most commercial anti-malware scanners maintain a database of malware patterns and heuristic signatures for detecting malicious programs within a computer system. Malware writers use semantic-preserving code transformation (obfuscation) techniques to produce new stealth variants of their malware programs. Malware variants are hard to detect with today's detection technologies as these tools rely mostly on syntactic properties and ignore the semantics of malicious executable programs. A robust malware detection technique is required to handle this emerging security threat. In this thesis, we propose a new methodology that overcomes the drawback of existing malware detection methods by analysing the semantics of known malicious code. The methodology consists of three major analysis techniques: the development of a semantic signature, slicing analysis and test data generation analysis. The core element in this approach is to specify an approximation for malware code semantics and to produce signatures for identifying, possibly obfuscated but semantically equivalent, variants of a sample of malware. A semantic signature consists of a program test input and semantic traces of a known malware code. The key challenge in developing our semantics-based approach to malware variant detection is to achieve a balance between improving the detection rate (i.e. matching semantic traces) and performance, with or without the e ects of obfuscation on malware variants. We develop slicing analysis to improve the construction of semantic signatures. We back our trace-slicing method with a theoretical result that shows the notion of correctness of the slicer. A proof-of-concept implementation of our malware detector demonstrates that the semantics-based analysis approach could improve current detection tools and make the task more di cult for malware authors. Another important part of this thesis is exploring program semantics for the selection of a suitable part of the semantic signature, for which we provide two new theoretical results. In particular, this dissertation includes a test data generation method that works for binary executables and the notion of correctness of the method

    Dynamic Slicing in the Presence of Unconstrained Pointers

    No full text
    Program slices are useful in debugging. Most work on program slicing to date has concentrated on finding slices of programs involving only scalar variables. Pointers and composite variables do not lend themselves well to static analysis, especially when the language involved is not strongly-typed. When debugging a program, however, we are interested in analyzing the program behavior for testcases that reveal a fault. In this paper, we present a uniform approach to handling pointers and composite variables such as arrays, records, and unions for the purpose of obtaining dynamic program slices. The dynamic approach proposed works well even when the language involved allows unconstrained pointers and performs no runtime checks, as in C
    corecore