49 research outputs found

    Intelligent image-driven motion modelling for adaptive radiotherapy

    Get PDF
    Internal anatomical motion (e.g. respiration-induced motion) confounds the precise delivery of radiation to target volumes during external beam radiotherapy. Precision is, however, critical to ensure prescribed radiation doses are delivered to the target (tumour) while surrounding healthy tissues are preserved from damage. If the motion itself can be accurately estimated, the treatment plan and/or delivery can be adapted to compensate. Current methods for motion estimation rely either on invasive implanted fiducial markers, imperfect surrogate models based, for example, on external optical measurements or breathing traces, or expensive and rare systems like in-treatment MRI. These methods have limitations such as invasiveness, imperfect modelling, or high costs, underscoring the need for more efficient and accessible approaches to accurately estimate motion during radiation treatment. This research, in contrast, aims to achieve accurate motion prediction using only relatively low-quality, but almost universally available planar X-ray imaging. This is challenging since such images have poor soft tissue contrast and provide only 2D projections through the anatomy. However, our hypothesis suggests that, with strong priors in the form of learnt models for anatomical motion and image appearance, these images can provide sufficient information for accurate 3D motion reconstruction. We initially proposed an end-to-end graph neural network (GNN) architecture aimed at learning mesh regression using a patient-specific template organ geometry and deep features extracted from kV images at arbitrary projection angles. However, this approach proved to be more time-consuming during training. As an alternative, a second framework was proposed, based on a self-attention convolutional neural network (CNN) architecture. This model focuses on learning mappings between deep semantic angle-dependent X-ray image features and the corresponding encoded deformation latent representations of deformed point clouds of the patient's organ geometry. Both frameworks underwent quantitative testing on synthetic respiratory motion scenarios and qualitative assessment on in-treatment images obtained over a full scan series for liver cancer patients. For the first framework, the overall mean prediction errors on synthetic motion test datasets were 0.16±0.13 mm, 0.18±0.19 mm, 0.22±0.34 mm, and 0.12±0.11 mm, with mean peak prediction errors of 1.39 mm, 1.99 mm, 3.29 mm, and 1.16 mm. As for the second framework, the overall mean prediction errors on synthetic motion test datasets were 0.065±0.04 mm, 0.088±0.06 mm, 0.084±0.04 mm, and 0.059±0.04 mm, with mean peak prediction errors of 0.29 mm, 0.39 mm, 0.30 mm, and 0.25 mm

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Motion Tracking for Medical Applications using Hierarchical Filter Models

    Get PDF
    A medical intervention often requires relating treatment to the situation, which it was planned on. In order to circumvent undesirable effects of motion during the intervention, positional differences must be detected in real-time. To this end, in this thesis a hierarchical Particle Filter based tracking algorithm is developed in three stages. Initially, a model description of the individual nodes in the aspired hierarchical tree is presented. Using different approaches, properties of such a node are derived and approximated, leading to a parametrization scheme. Secondly, transformations and appearance of the data are described by a fixed hierarchical tree. A sparse description for typical landmarks in medical image data is presented. A static tree model with two levels is developed and investigated. Finally, the notion of 'association' between landmarks and nodes is introduced in order to allow for dynamic adaptation to the underlying structure of the data. Processes for tree maintenance using clustering and sequential reinforcement are implemented. The function of the full algorithm is demonstrated on data of abdominal breathing motion

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Algorithmic Analysis Techniques for Molecular Imaging

    Get PDF
    This study addresses image processing techniques for two medical imaging modalities: Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), which can be used in studies of human body functions and anatomy in a non-invasive manner. In PET, the so-called Partial Volume Effect (PVE) is caused by low spatial resolution of the modality. The efficiency of a set of PVE-correction methods is evaluated in the present study. These methods use information about tissue borders which have been acquired with the MRI technique. As another technique, a novel method is proposed for MRI brain image segmen- tation. A standard way of brain MRI is to use spatial prior information in image segmentation. While this works for adults and healthy neonates, the large variations in premature infants preclude its direct application. The proposed technique can be applied to both healthy and non-healthy premature infant brain MR images. Diffusion Weighted Imaging (DWI) is a MRI-based technique that can be used to create images for measuring physiological properties of cells on the structural level. We optimise the scanning parameters of DWI so that the required acquisition time can be reduced while still maintaining good image quality. In the present work, PVE correction methods, and physiological DWI models are evaluated in terms of repeatabilityof the results. This gives in- formation on the reliability of the measures given by the methods. The evaluations are done using physical phantom objects, correlation measure- ments against expert segmentations, computer simulations with realistic noise modelling, and with repeated measurements conducted on real pa- tients. In PET, the applicability and selection of a suitable partial volume correction method was found to depend on the target application. For MRI, the data-driven segmentation offers an alternative when using spatial prior is not feasible. For DWI, the distribution of b-values turns out to be a central factor affecting the time-quality ratio of the DWI acquisition. An optimal b-value distribution was determined. This helps to shorten the imaging time without hampering the diagnostic accuracy.Siirretty Doriast

    Image Processing and Analysis for Preclinical and Clinical Applications

    Get PDF
    Radiomics is one of the most successful branches of research in the field of image processing and analysis, as it provides valuable quantitative information for the personalized medicine. It has the potential to discover features of the disease that cannot be appreciated with the naked eye in both preclinical and clinical studies. In general, all quantitative approaches based on biomedical images, such as positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI), have a positive clinical impact in the detection of biological processes and diseases as well as in predicting response to treatment. This Special Issue, “Image Processing and Analysis for Preclinical and Clinical Applications”, addresses some gaps in this field to improve the quality of research in the clinical and preclinical environment. It consists of fourteen peer-reviewed papers covering a range of topics and applications related to biomedical image processing and analysis

    The role of deep learning in structural and functional lung imaging

    Get PDF
    Background: Structural and functional lung imaging are critical components of pulmonary patient care. Image analysis methods, such as image segmentation, applied to structural and functional lung images, have significant benefits for patients with lung pathologies, including the computation of clinical biomarkers. Traditionally, machine learning (ML) approaches, such as clustering, and computational modelling techniques, such as CT-ventilation imaging, have been used for segmentation and synthesis, respectively. Deep learning (DL) has shown promise in medical image analysis tasks, often outperforming alternative methods. Purpose: To address the hypothesis that DL can outperform conventional ML and classical image analysis methods for the segmentation and synthesis of structural and functional lung imaging via: i. development and comparison of 3D convolutional neural networks (CNNs) for the segmentation of ventilated lung using hyperpolarised (HP) gas MRI. ii. development of a generalisable, multi-centre CNN for segmentation of the lung cavity using 1H-MRI. iii. the proposal of a framework for estimating the lung cavity in the spatial domain of HP gas MRI. iv. development of a workflow to synthesise HP gas MRI from multi-inflation, non-contrast CT. v. the proposal of a framework for the synthesis of fully-volumetric HP gas MRI ventilation from a large, diverse dataset of non-contrast, multi-inflation 1H-MRI scans. Methods: i. A 3D CNN-based method for the segmentation of ventilated lung using HP gas MRI was developed and CNN parameters, such as architecture, loss function and pre-processing were optimised. ii. A 3D CNN trained on a multi-acquisition dataset and validated on data from external centres was compared with a 2D alternative for the segmentation of the lung cavity using 1H-MRI. iii. A dual-channel, multi-modal segmentation framework was compared to single-channel approaches for estimation of the lung cavity in the domain of HP gas MRI. iv. A hybrid data-driven and model-based approach for the synthesis of HP gas MRI ventilation from CT was compared to approaches utilising DL or computational modelling alone. v. A physics-constrained, multi-channel framework for the synthesis of fully-volumetric ventilation surrogates from 1H-MRI was validated using five-fold cross-validation and an external test data set. Results: i. The 3D CNN, developed via parameterisation experiments, accurately segmented ventilation scans and outperformed conventional ML methods. ii. The 3D CNN produced more accurate segmentations than its 2D analogues for the segmentation of the lung cavity, exhibiting minimal variation in performance between centres, vendors and acquisitions. iii. Dual-channel, multi-modal approaches generate significant improvements compared to methods which use a single imaging modality for the estimation of the lung cavity. iv. The hybrid approach produced synthetic ventilation scans which correlate with HP gas MRI. v. The physics-constrained, 3D multi-channel synthesis framework outperformed approaches which did not integrate computational modelling, demonstrating generalisability to external data. Conclusion: DL approaches demonstrate the ability to segment and synthesise lung MRI across a range of modalities and pulmonary pathologies. These methods outperform computational modelling and classical ML approaches, reducing the time required to adequately edit segmentations and improving the modelling of synthetic ventilation, which may facilitate the clinical translation of DL in structural and functional lung imaging

    On Motion Parameterizations in Image Sequences from Fixed Viewpoints

    Get PDF
    This dissertation addresses the problem of parameterizing object motion within a set of images taken with a stationary camera. We develop data-driven methods across all image scales: characterizing motion observed at the scale of individual pixels, along extended structures such as roads, and whole image deformations such as lungs deforming over time. The primary contributions include: a) fundamental studies of the relationship between spatio-temporal image derivatives accumulated at a pixel, and the object motions at that pixel,: b) data driven approaches to parameterize breath motion and reconstruct lung CT data volumes, and: c) defining and offering initial results for a new class of Partially Unsupervised Manifold Learning: PUML) problems, which often arise in medical imagery. Specifically, we create energy functions for measuring how consistent a given velocity vector is with observed spatio-temporal image derivatives. These energy functions are used to fit parametric snake models to roads using velocity constraints. We create an automatic data-driven technique for finding the breath phase of lung CT scans which is able to replace external belt measurements currently in use clinically. This approach is extended to automatically create a full deformation model of a CT lung volume during breathing or heart MRI during breathing and heartbeat. Additionally, motivated by real use cases, we address a scenario in which a dataset is collected along with meta-data which describes some, but not all, aspects of the dataset. We create an embedding which displays the remaining variability in a dataset after accounting for variability related to the meta-data

    Image synthesis for the attenuation correction and analysis of PET/MR data

    Get PDF
    While magnetic resonance imaging (MRI) provides high-resolution anatomical information, positron emission tomography (PET) provides functional information. Combined PET/MR scanners are expected to offer a new range of clinical applications but efforts are still necessary to mitigate some limitations of this promising technology. One of the factors limiting the use of PET/MR scanners, especially in the case of neurology studies, is the imperfect attenuation correction, leading to a strong bias of the PET activity. Exploiting the simultaneous acquisition of both modalities, I explored a new family of methods to synthesise X-ray computed tomography (CT) images from MR images. The synthetic images are generated through a multi-atlas information propagation scheme, locally matching the MRI-derived patient's morphology to a database of MR/CT image pairs, using a local image similarity measure. The proposed algorithm provides a significant improvement in PET reconstruction accuracy when compared with the current correction, allowing an unbiased analysis of the PET images. A similar image synthesis scheme was then used to better identify abnormalities in cerebral glucose metabolism measured by [18]F-fluorodeoxyglucose (FDG) PET. This framework consists of creating a subject-specific healthy PET model based on the propagation of morphologically-matched PET images, and comparing the subject's PET image to the model via a Z-score. By accounting for inter-subject morphological differences, the proposed method reduces the variance of the normal population used for comparison in the Z-score, thus increasing the sensitivity. To demonstrate that the applicability of the proposed CT synthesis method is not limited to PET/MR attenuation correction, I redesigned the synthesis process to derive tissue attenuation properties from MR images in the head & neck and pelvic regions to facilitate MR-based radiotherapy treatment planning
    corecore