5,006 research outputs found

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Self-Positioning Smart Buoys, The \u27Un-Buoy\u27 Solution: Logistic Considerations Using Autonomous Surface Craft Technology and Improved Communications Infrastructure

    Get PDF
    Moored buoys have long served national interests, but incur high development, construction, installation, and maintenance costs. Buoys which drift off-location can pose hazards to mariners, and in coastal waters may cause environmental damage. Moreover, retrieval, repair and replacement of drifting buoys may be delayed when data would be most useful. Such gaps in coastal buoy data can pose a threat to national security by reducing maritime domain awareness. The concept of self-positioning buoys has been advanced to reduce installation cost by eliminating mooring hardware. We here describe technology for operation of reduced cost self-positioning buoys which can be used in coastal or oceanic waters. The ASC SCOUT model is based on a self-propelled, GPS-positioned, autonomous surface craft that can be pre-programmed, autonomous, or directed in real time. Each vessel can communicate wirelessly with deployment vessels and other similar buoys directly or via satellite. Engineering options for short or longer term power requirements are considered, in addition to future options for improved energy delivery systems. Methods of reducing buoy drift and position-maintaining energy requirements for self-locating buoys are also discussed, based on the potential of incorporating traditional maritime solutions to these problems. We here include discussion of the advanced Delay Tolerant Networking (DTN) communications draft protocol which offers improved wireless communication capabilities underwater, to adjacent vessels, and to satellites. DTN is particularly adapted for noisy or loss-prone environments, thus it improves reliability. In addition to existing buoy communication via commercial satellites, a growing network of small satellites known as PICOSATs can be readily adapted to provide low-cost communications nodes for buoys. Coordination with planned vessel Automated Identification Systems (AIS) and International Maritime Organization standards for buoy and vessel notificat- - ion systems are reviewed and the legal framework for deployment of autonomous surface vessels is considered

    Sensor-assisted Video Mapping of the Seafloor

    Get PDF
    In recent years video surveys have become an increasingly important ground-truthing of acousticseafloor characterization and benthic habitat mapping studies. However, the ground-truthing and detailed characterization provided by video are still typically done using sparse sample imagery supplemented by physical samples. Combining single video frames in a seamless mosaic can provide a tool by which imagery has significant areal coverage, while at the same time showing small fauna and biological features at mm resolution. The generation of such a mosaic is a challenging task due to height variations of the imaged terrain and decimeter scale knowledge of camera position. This paper discusses the current role of underwater video survey, and the potential for generating consistent, quantitative image maps using video data, accompanied by data that can be measured by auxiliary sensors with sufficient accuracy, such as camera tilt and heading, and their use in automated mosaicking techniques. The camera attitude data also provide the necessary information to support the development of a video collage. The collage provides a quick look at the large spatial scale features in a scene and can be used to pinpoint regions that are likely to yield useful information when rendered into high-resolution mosaics. It is proposed that high quality mosaics can be produced using consumer-grade cameras and low-cost sensors, thereby allowing for the economical scientific video surveys. A case study is presented with the results from benthic habitat mapping and the ground-truthing ofseafloor acoustic data using both real underwater imagery and simulations. A computer modeling of the process of video data acquisition (in particular on a non-flat terrain) allows for a better understanding of the main sources of error in mosaic generation and for the choice of near-optimal processing strategies. Various spatial patterns of video survey coverage are compared and it is shown that some patterns have certain advantages in the sense of accumulated error and overall mosaic accuracy

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Preliminary assessment of industrial needs for an advanced ocean technology

    Get PDF
    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed

    Satellite applications to marine geodesy

    Get PDF
    Potential use of satellites for enhancing positioning capabilities and for marine geodetic contro

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects

    Underwater Robots Part I: Current Systems and Problem Pose

    Get PDF
    International audienceThis paper constitutes the first part of a general overview of underwater robotics. The second part is titled: Underwater Robots Part II: existing solutions and open issues

    Maritime archaeology in the Mediterranean

    Get PDF
    The archaeological study of the Mediterranean sea and its coasts is, for the most part, thought of as underwater archaeology, and the history of maritime archaeology in the Mediterranean has conventionally been conceived as the story of underwater exploration. However, the discipline of archaeology as a whole has continued to develop, and the concern with conceptual issues which has characterized much archaeological scholarship in recent years is having an effect on the study of cultural remains found, not just on land, but in the sea as well. This paper will start with a brief review of the history of maritime archaeology in the Mediterranean region, and proceed to consider some of the new approaches which promise to deliver stimulating insights into the function of the sea and the role of seafarers during prehistoric and historic times.peer-reviewe
    corecore