4,740 research outputs found

    Tabling as a Library with Delimited Control

    Get PDF
    Tabling is probably the most widely studied extension of Prolog. But despite its importance and practicality, tabling is not implemented by most Prolog systems. Existing approaches require substantial changes to the Prolog engine, which is an investment out of reach of most systems. To enable more widespread adoption, we present a new implementation of tabling in under 600 lines of Prolog code. Our lightweight approach relies on delimited control and provides reasonable performance.Comment: 15 pages. To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Tabled CLP for Reasoning Over Stream Data

    Get PDF
    The interest in reasoning over stream data is growing as quickly as the amount of data generated. Our intention is to change the way stream data is analyzed. This is an important problem because we constantly have new sensors collecting information, new events from electronic devices and/or from customers and we want to reason about this information. For example, information about traffic jams and costumer order could be used to define a deliverer route. When there is a new order or a new traffic jam, we usually restart from scratch in order to recompute the route. However, if we have several deliveries and we analyze the information from thousands of sensors, we would like to reduce the computation requirements, e.g. reusing results from the previous computation. Nowadays, most of the applications that analyze stream data are specialized for specific problems (using complex algorithms and heuristics) and combine a computation language with a query language. As a result, when the problems become more complex (in e.g. reasoning requirements), in order to modify the application complex and error prone coding is required. We propose a framework based on a high-level language rooted in logic and constraints that will be able to provide customized services to different problems. The framework will discard wrong solutions in early stages and will reuse previous results that are still consistent with the current data set. The use of a constraint logic programming language will make it easier to translate the problem requirements into the code and will minimize the amount of re-engineering needed to comply with the requirements when they change

    Towards a Complete Scheme for Tabled Execution Based on Program Transformation

    Get PDF
    The advantages of tabled evaluation regarding program termination and reduction of complexity are well known —as are the significant implementation, portability, and maintenance efforts that some proposals (especially those based on suspension) require. This implementation effort is reduced by program transformation-based continuation call techniques, at some efficiency cost. However, the traditional formulation of this proposal [1] limits the interleaving of tabled and non-tabled predicates and thus cannot be used as-is for arbitrary programs. In this paper we present a complete translation for the continuation call technique which, while requiring the same runtime support as the traditional approach, solves these problems and makes it possible to execute arbitrary tabled programs. We also present performance results which show that the resulting CCall approach offers a useful tradeoff that can be competitive with other state-of-the-art implementation

    Bridge transformation for continuation call-based tabled execution.

    Get PDF
    The advantages of tabled evaluation regarding program termination and reduction of complexity are well known —as are the significant implementation, portability, and maintenance efforts that some proposals (especially those based on suspension) require. This implementation effort is reduced by program transformation-based continuation call techniques, at some efficiency cost. However, the traditional formulation of this proposal by Ramesh and Cheng limits the interleaving of tabled and non-tabled predicates and thus cannot be used as-is for arbitrary programs. In this paper we present a complete translation for the continuation call technique which, using the runtime support needed for the traditional proposal, solves these problems and makes it possible to execute arbitrary tabled programs. We present performance results which show that CCall offers a useful tradeoff that can be competitive with state-of-the-art implementations

    A Program Transformation for Continuation Call-Based Tabled Execution

    Full text link
    The advantages of tabled evaluation regarding program termination and reduction of complexity are well known --as are the significant implementation, portability, and maintenance efforts that some proposals (especially those based on suspension) require. This implementation effort is reduced by program transformation-based continuation call techniques, at some efficiency cost. However, the traditional formulation of this proposal by Ramesh and Cheng limits the interleaving of tabled and non-tabled predicates and thus cannot be used as-is for arbitrary programs. In this paper we present a complete translation for the continuation call technique which, using the runtime support needed for the traditional proposal, solves these problems and makes it possible to execute arbitrary tabled programs. We present performance results which show that CCall offers a useful tradeoff that can be competitive with state-of-the-art implementations.Comment: Part of the proceedings of CICLOPS 200

    Memoization-Based Proof Search in LF An Experimental Evaluation of a Prototype

    Get PDF
    AbstractElf is a general meta-language for the specification and implementation of logical systems in the style of the logical framework LF. Proof search in this framework is based on the operational semantics of logic programming. In this paper, we discuss experiments with a prototype for memoization-based proof search for Elf programs. We compare the performance of memoization-based proof search, depth-first search and iterative deepening search using two applications: 1) Bi-directional type-checker with subtyping and intersection types 2) Parsing of formulas into higher-order abstract syntax. These experiments indicate that memoization-based proof search is a practical and overall more efficient alternative to depth-first and iterative deepening search
    • …
    corecore