
Electronic Notes in Theoretical Computer Science 70 No. 2 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 14 pages

Memoization-Based Proof Search in LF:
An Experimental Evaluation of a Prototype

Brigitte Pientka 1

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract

Elf is a general meta-language for the specification and implementation of logical
systems in the style of the logical framework LF. Proof search in this framework is
based on the operational semantics of logic programming. In this paper, we discuss
experiments with a prototype for memoization-based proof search for Elf programs.
We compare the performance of memoization-based proof search, depth-first search
and iterative deepening search using two applications: 1) Bi-directional type-checker
with subtyping and intersection types 2) Parsing of formulas into higher-order ab-
stract syntax. These experiments indicate that memoization-based proof search is a
practical and overall more efficient alternative to depth-first and iterative deepening
search.

1 Introduction

Deductive systems, given via axioms and inference rules, play an important
role when formalizing the behavior of programs and providing some guaran-
tee about it. In research on “certifying code”, safety properties are expressed
as deductive systems and programs are equipped with a certificate (proof)
that asserts certain safety properties. Before executing the program, the host
machine can then quickly verify the code’s safety properties by checking the
certificate against the program. Several approaches to certifying code use
the logical framework LF [6] as a meta-language for specifying safety poli-
cies. Appel and Felty [1] implement their safety policy using the higher-order
logic programming language Elf [11] which is based on LF. To verify that a
given program fulfills a specified safety policy, the specification is executed
by the logic programming interpreter. Necula and Rahul [8] use a logic pro-
gramming interpreter based on a subset of LF for checking the correctness

1 Email: bp@cs.cmu.edu

c©2002 Published by Elsevier Science B. V.

110

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82174386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Pientka

of certificates. In their approach, the certificate is a bit-string which guides
a logic programming interpreter to resolve non-deterministic choices during
proof reconstruction. One major benefit of using a general framework such
as LF is that it reduces the effort required for each particular policy. By as-
signing a logic programming interpretation to LF, we obtain a generic proof
search procedure. The higher-order logic programming interpreter for Elf uses
a depth-first search strategy. This is unsatisfying as many straightforward
specifications are not executable at all. Moreover, performance may be un-
acceptable due to redundant computation. A fair search strategy such as
iterative deepening, as used in the meta-theorem-prover Twelf [17], makes
proof search over left-recursive grammars feasible, but as experiments show,
redundant computation also severely hampers performance.

In this paper, we discuss experiments with proof search based on memo-
ization. Some redundant computation is eliminated by memoizing sub-com-
putation and re-using their result later. This technique of memoization, also
known as tabling, has been successfully applied for first-order logic program-
ming to solve complex problems such as implementing recognizers and parsers
for grammars [20], representing transition systems CCS and writing model
checkers [3]. The XSB system [16] demonstrates that tabled logic programs
can be executed efficiently and in fact can be mixed with Prolog programs
to achieve the best of both worlds. In [15] we give a high-level description
of tabled higher-order logic programming based on sequent calculi and con-
trolled cuts. Based on it, we have implemented a prototype for evaluating Elf
programs. In this paper, we compare the performance of proof search based
memoization, depth-first search, iterative deepening using two applications:
1) bi-directional type checking using subtyping and intersection types and 2)
parsing into higher-order abstract syntax. As the experiments demonstrate
proof search based on memoization can lead to substantial performance im-
provements, making the execution of some queries at all feasible. Although
we concentrate here on the logical framework LF, which is the basis of Elf, it
seems possible to apply the presented approach to λProlog [7] or Isabelle [9],
which are based on hereditary Harrop formulas and simply typed terms.

The paper is organized as follows: In Sec. 2 we introduce a small functional
language with subtyping and present the idea behind higher-order tabled com-
putation. Challenges faced in the higher-order setting are described in Sec.
3. In Sec. 4 we discuss experiments with an bi-directional type checking al-
gorithm for this functional language and compare the performance of proof
search based on memoization with traditional logic programming. In Sec.
5, we discuss experiments with parsing first-order formulas into higher-order
abstract syntax and compare proof search based on memoization with proof
search based on iterative deepening. In Sec. 6 we discuss related work and
summarize the results and outline future work.

111

Pientka

2 Illustrating example: subtyping

As a starting point, we introduce a small functional language with subtyping.
We also include an example data-type bit for strings of bits along with the
subtypes nat for natural numbers (without leading zeroes), pos for positive
numbers and zero for 0.

expressions e ::= ε | e 0 | e 1 | lam x.e | app e1 e2 | let u = e1 in e2 |
case e of ε ⇒ e1|x 0 ⇒ e2|x 1 ⇒ e3

types τ :: = | zero | pos | nat | bit | τ1 → τ2

We represent 0 and 1 as constructors and ε represents the empty string.
For example, 6 is represented as ε110. This example is small enough that it
allows us to illustrate the basic principles and challenges of proof search based
on memoization in the setting of LF.

refl: sub T T. zn: sub zero nat. arr: sub (T1 => T2) (S1 => S2)
tr: sub T S pn: sub pos nat. <- sub S1 T1

<- sub T R nb: sub nat bit. <- sub T2 S2.
<- sub R S.

tp_sub: of E T tp_lam: of (lam ([x] E x)) (T1 => T2)
<- of E T’ <- ({x:exp} of x T1 -> of (E x) T2)}.
<- sub T’ T.

For implementing the subtyping relations logic programming based on
Horn clauses suffices. However, Elf is much richer than first-order logic pro-
gramming and also supports elegant encodings based on higher-order abstract
syntax [14]. Variables bound in constructors such as lam will be bound with
λ in Elf. The binding described by λ-expression λx.Ex is denoted by [x] E x

using Elf syntax and the Mini-ML expression lam x.e is represented as lam [x]

E x in Elf. Substitution is modeled via application and β-reduction. In addi-
tion to the variable binding construct, Elf supports reasoning from hypotheses
and handling parameters. The premise of the typing rule for lam depends on
the new parameter x and the hypothesis that x is of type τ1. Moreover, we
assume that it is possible to rename all variables in e, if necessary. In Elf this is
represented by ({x:exp} of x T1 -> of (E x) T2) where {x:exp} denotes
the universal quantifier Πx: exp. We can show of (lam ([x] E x)) (T1 =>

T2), if we can prove that for a new variable x, if x has type T1 then the body
of the function (E x) has type T2. For a more detailed discussion see [12] 2 .
Type inference in the give system is highly non-deterministic. For example, a
logic programming interpreter might get trapped in applying the transitivity
rule leading to an infinite loop. In addition, we repeatedly type-check sub-
expressions, which occur more than once. This might severely hamper the
performance.

2 The code to all examples can be found at http://www.cs.cmu.edu/~bp/LFM02

112

Pientka

Tabling methods evaluate programs by maintaining tables of subgoals and
their answers and by resolving repeated occurrences of subgoals against an-
swers from the table. We review briefly Tamaki and Sato’s multi-stage strat-
egy [18], which differs only insignificantly from SLG resolution [2] for programs
without negation. To demonstrate tabled computation, we consider the eval-
uation of the query sub zero T in more detail. The search proceeds in multiple
stages. The table serves two purposes: 1) We record all sub-goals encoun-
tered during search. If the current goal is not in the table, then we add it
to the table and proceed with the computation. Computation at a node is
suspended, if the current goal is a variant of a table entry. 2) In addition to
the sub-goals we are trying to solve, we also store the results of computation
in the table as a list of answers to the sub-goals. To simplify the table in this
presentation, we do not record the certificate (proof term) explicitly in the
table, although we do record a proof skeleton in the actual implementation.
Using the skeleton, we can reconstruct the proof, if desired. This means we
can not only detect infinite and redundant paths, but also make progress by
re-using the answers from the table. In each stage we apply program clauses
and answers from the table. Figure 1 illustrates the search process.

sub zero A

A = zero

A = nat

sub zero R ,
sub R A.

sub nat A
sub zero A

A = zero

A = nat

A = nat

sub nat A

sub bit A

sub bit A

A = nat

A = bit

A = bit

A = zero
A = nat

sub zero A

A = bit

sub nat A A = nat

sub bit A

refl

tr

zn

Stage 1

refl

tr

nb

sub R A.
sub nat R ,

refl
zn

(tr zn nb)

refl

nb

refl

zn

Stage 2

refl

nb

(tr zn nb)

Stage 3

refl

refl refl

Stage 4

Entry Answers
A A = zero

A = nat
sub zero

A = bit
sub nat A A = nat

A = bit

bitsub bit A A =

AnswersEntry

A = bit

Entry Answers
A A = zero

A = nat
sub zero

A =

A = bit

Entry Answers
A A = zero

A = nat
sub zero

A = bit
sub nat A A = nat

A = bit

A = bit

A = bit

sub R A.

refl

tr sub bit R ,
A = bitsub bit A

bit

Fig. 1. Staged computation

The root of the search tree is labeled with the goal sub zero A. Each node
is labeled with a goal statement and each child node is the result of applying a
program clause or an answer from the table to the leftmost atom of the parent
node. Applying a clause H ← A1 ← A2 . . . ← An results in the subgoals
A1, A2, . . . , An where all of these subgoals need to be satisfied. We will then
expand the first subgoal A1 carrying the rest of the subgoals A2, . . . , An along.
If a branch is successfully solved, we show the obtained answer. To distin-
guish between program clause resolution and re-using of answers, we have two
different kinds of edges in the tree. The edges obtained by program clause

113

Pientka

tp_sub

tp_lam u:of x T1 of x T2

sub R T
sub (P => P) R,

R1 = zero, P = nat
R1 = pos, P = nat

T = P => P

T1 = P, T2= P

T = P => P

u:of x T1 of x T2

R1 = S, P = S

sub (P => P) T

sub R1 P.

Entry Answers

. . .

of (lam [x] x) T

u:of x T1 of x T2

of (lam [x] x) T T = P => P

T1 = P, T2= P

Entry Answers

u:of x P sub P T2u:of x T1 of x R, u

sub R T2

tp_sub

. . .

of (lam [x] x) T

of (lam [x] x) R,

sub R T

Stage 1 Stage 2

(tp_lam [u] u) sub (P => P) T

refl

tr

arr sub R1 P.
sub P R2

T = P => T

u
T1 = P, T2 = P, T = P => P

Fig. 2. Staged computation for identity function

resolution are solid while edges obtained by reusing answers from the table
are dashed. Both are labeled with the clause name that was used to derive
the child node. Using the labels at the edges we can reconstruct the proof
term for a given query. In general, we will omit the actual substitution under
that the parent node unifies with the program clause to avoid cluttering the
example. To ensure we generate all possible answers for the query, we restrict
the re-use of answers from the table. In each stage, we are only allowed to
re-use answers that were generated in previous stages. Answers from previous
stages (available for answer resolution) are marked gray, while current answers
(not available yet) are black.

3 Challenges in LF

In tabled higher-order logic programming, we extend tabling to handle sub-
goals that may contain implication and universal quantification and our term
language is the dependently typed λ-calculus. The table entries are no longer
atomic goals, but goals A together with a context Γ of assumptions. In ad-
dition, terms might depend on assumptions on Γ. To highlight some of the
challenges we discuss the evaluation of query of (lam [x] x) T (see Fig. 2).

The possibility of nested implications and universal quantifiers adds a new
degree of complexity to memoization-based computation. Retrieval operations
on the table need to be redesigned. One central question is how to look up
whether a goal Γ � a is already in the table. There are two options: In the
first option we only retrieve answers for a goal a given a context Γ, if the
goal together with the context matches an entry Γ′ � a′ in the table. In
the second option we match the subgoal a against the goal a′ of the table
entry Γ′ � a′, and treat the assumptions in Γ′ as additional subgoals, thereby
delaying satisfying these assumptions. We choose the first option of retrieving

114

Pientka

goals together with their dynamic context Γ′. One reason is that it restricts
the number of possible retrievals early on in the search and the possible ways
these dynamic assumptions could be satisfied. For example, to solve subgoal
u:of x T1 � of x R, sub R T2, we concentrate on solving the left-most goal
u:of x T1 � of x R keeping in mind that we still need to solve u:of x T1 �
sub R T2. as there exists a table entry u:of x T1 � of x T2, which is a variant
of the current goal u:of x T1 � of x R, computation is suspended.

Due to the higher-order setting, the predicates and terms might depend
on Γ. Virga [19] developed in his PhD thesis techniques, called subordination
checking, to analyze Elf programs statically before execution and construct
a dependency graph. Using type dependency analysis based on subordina-
tion [19] we can detect and eliminate such dependencies. This allows us to
detect more loops in the search tree, i.e. more nodes can be suspended be-
cause a variant of it is already in the table. Another optimization concerns the
handling of assumptions in context Γ. When storing a goal A together with
a context Γ, not all assumptions in the dynamic context Γ might contribute
to the proof of goal G. For example, during the second stage of evaluating
the query above we derive the following two subgoals: of x T1 � sub R T2

and sub R T2. Any solution to the goal sub R T2 will be independent of the
assumption of x T1. We can again use type dependency analysis based on
subordination to strengthen the context Γ leading to smaller tables and the
elimination of more redundant and infinite paths.

While computation using memoization yields better performance for pro-
grams with transitive closure or left-recursion, Prolog-style evaluation is more
efficient for right recursion. For example, Prolog has linear complexity for a
simple right recursive grammar, but with memoization the evaluation could
be quadratic as calls need to be recorded in the tables using explicit copy-
ing. Therefore it is important to allow tabled and non-tabled predicates to
be freely intermixed and be able to choose the strategy that is most efficient
for the situation at hand. Hence in the current prototype, the user declares
predicates to be tabled, if he/she wishes to use memoization for it. Mixing
tabled and non-tabled predicates is essential, in order to obtain an efficient
proof search engine.

4 Example: Refinement type checking

In this section, we discuss experiments with a bi-directional type-checking al-
gorithm for a small functional language with intersection types which has been
developed by Davies and Pfenning [4]. Type inference in a functional language
with subtyping and intersection types is usually considered impractical, as no
principal types exist. The idea behind bi-directional type-checking is to distin-
guish expressions for which a type can be synthesized from expressions which
can be checked against a given type. The programmer specifies some types to
guide inferring a type for certain expressions.

115

Pientka

Inferable I ::= x | ε | I 0 | I 1 | app IC | C : τ

Checkable C :: = I | lam x.C | let u = I in C |
case I of ε ⇒ C1|x 0 ⇒ C2|x 1 ⇒ C3

The intention is that given a context Γ and an expression I, we use type-
inference to show expression I has type τ and type-checking for verifying that
expression C has type τ . In an implementation of the bi-directional type
checking algorithm, there may be many ways to derive that I has a type τ
and similarly there are more than one way to check that C has a given type τ .
To discuss the full bi-directional type-checking algorithm is beyond the scope
of this paper and the interested reader is referred to the original paper by
Davies and Pfenning [4].

We use an implementation of the bi-directional type-checker in Elf by Pfen-
ning. The type-checker is executable with the original logic programming
interpreter, which performs a depth-first search. However, redundant compu-
tation may severely hamper its performance as there are several derivations
for proving that a program has a specified type. For example, there are 20,000
ways to show that the program plus has the intersection type (nat → nat →
nat)∧ (nat → pos → pos)∧ (pos → nat → pos)∧ (pos → pos → pos). It might
be argued that we are only interested in one proof for showing that plus has the
specified type and not in all of them. However, it indicates that already fairly
small programs involve a lot of redundant computation. More importantly
than succeeding quickly may be to fail quickly, if plus has not the specified
type. Failing quickly is essential in debugging programs and response times of
several minutes are unacceptable. In the experiments, we are measuring the
time it takes to explore the whole proof tree. This gives us an indication how
much redundancy is in the search space. When checking a term C against
a type τ , we use memoization. The proof search based on memoization uses
strengthening and variant checking. We have tested programs for addition,
subtraction and multiplication. Note that in order to for example type-check
the multiplication program, we need to also type-check any auxiliary programs
used such as addition and shift. The number associated to each program name
denotes the depth of the intersection type associated to it. For example, plus4
means we assigned 4 types by using intersections to plus. mult1a indicates
we associated one possible type to multiplication program. If a program label
is marked with (np), it means this query does not have a solution and the
type-checker should reject the query.

For type-checking programs plus and multiplication proofs search based
on memoization outperforms depth-first search. This is surprising, as cur-
rently no sophisticated indexing is used for accessing the table. It indicates
that already simple memoization mechanism can substantially improve per-
formance. In the case of multiplication, it makes type-checking possible at all.
We stopped the depth-first search procedure after 10h. Of course proof search

116

Pientka

Program Depth-First Memoization #Entries #SuspGoals

plus’4 483.070 sec 2.330 sec 151 48

plus4 696.730 sec 3.150 sec 171 74

plus4(np) 22.770 sec 1.95 sec 143 56

sub’1a 0.070 sec 0.240 sec 58 11

sub’3a 0.130 sec 0.490 sec 92 20

sub1a 3.52 sec 7.430 sec 251 135

sub1b 3.88 sec 7.560 sec 252 138

sub3a 10.950 sec 9.970 sec 277 167

sub3b 10.440 sec 11.200 sec 278 170

mult1(np) 1133.490 sec 4.690 sec 217 83

mult1a 807.730 sec 4.730 sec 211 78

mult1b 2315.690 sec 6.050 sec 226 101

mult1c 2963.370 sec 5.310 sec 226 107

mult4 ∞ 17.900 sec 298 270

mult4(np) ∞ 13.140 sec 275 194

Table 1
Finding all solutions: depth-first vs. memoization-based search

based on memoization has some overhead in storing and accessing goals in the
table. As indicated with subtraction programs, this overhead might degrade
the performance of memoization based proof search. When type-checking sub-
traction program depth-first search performs better than memoization-based
search for the first 5 sample programs. In the last example sub3b however
memoization-based search wins over depth-first search.

For fairness, we include also a comparison between the two search strate-
gies, when we stop after the first answer has been found. It is apparent that
currently finding the first solution to a solvable type-checking problem (i.e. it
is provable that the program has the specified type) always takes longer with
proof search based on memoization – in some cases considerably longer (see
subtraction and multiplication). This is an indication that accessing the table
is still quite expensive in the current implementation. This comes as no real
surprise, because no indexing has been implemented so far. The other rea-
son memoization-based search does fairly badly is due the multi-stage search
strategy. Although this strategy is relatively easy to implement and under-
stand, it restricts retrieval of answers present in the table to answers generated

117

Pientka

Program Depth-First Memoization #Entries #SuspGoals

plus’4 0.08 sec 0.180 sec 54 0

plus4 0.1 sec 0.430 sec 72 0

plus4(np) 22.770 sec 1.95 sec 143 56

sub’1a 0.050 sec 0.240 sec 64 11

sub’3a 0.110 sec 0.410 sec 92 20

sub1a 0.250 sec 6.210 sec 251 135

sub1b 0.250 sec 5.020 sec 242 121

sub3a 0.280 sec 7.80 sec 277 161

sub3b 0.350 sec 8.160 sec 278 164

mult1(np) 1133.490 sec 4.690 sec 217 83

mult1a 0.160 sec 2.900 sec 201 60

mult1b 0.180 sec 4.090 sec 222 90

mult1c 0.170 sec 2.930 sec 211 60

mult4 0.250 sec 7.150 sec 272 181

mult4(np) ∞ 13.020 sec 275 194

Table 2
Finding the first solution: depth-first vs. memoization-based search

in previous stages. This causes subgoals to be suspended, although answers
might be available, and solving those subgoals is delayed. For this reason,
XSB uses SCC (strongly connected component) scheduling strategy, which
allows to re-use answers from the table as soon as they are available. But the
benefits of memoization-based search are apparent when comparing the time
it takes to reject a program by the type-checker as the examples plus4(np)
and mult1(np) indicate. Overall, the performance of the memoization based
search is much more consistent, i.e. it takes approximately the same time to
accept or reject a program.

To make bi-directional type-checking reasonably efficient in practice, Davies
and Pfenning currently investigate an algorithm which synthesizes all types of
an inferable term and tracks applicable ones through the use of boolean con-
straints. This is however far from trivial and refining the Elf implementation
by adding explicit support for memoization, complicates the type checker. As
a consequence, the certificates, which are produced as a result of the execution,
are larger and contain references to the explicit memoization data-structure.
This is especially undesirable in the context of certified code where certificates

118

Pientka

are transmitted to and checked by a consumer, as sending larger certificates
takes up more bandwidth and checking them takes more time. Moreover, prov-
ing the correctness of the type-checker with special memoization support will
be hard, because we need to reason explicitly about the structure of memoiza-
tion. The experiments demonstrate that proof search based on memoization
has the potential to turn the bi-directional type-checking algorithm into a
quite efficient type-checker without any extra effort on behalf of the user.

5 Example: Parser for formulas

Recognition algorithms and parsers for grammars are an excellent way to
illustrate the benefits of tabled evaluation. Warren [20] notes that implemen-
tations of context-free grammars in Prolog result in a recursive descent recog-
nizer, while tabled logic programming turns the same grammar into a variant
of Early’s algorithm (also known as active chart recognition algorithm) whose
complexity is polynomial. Moreover, tabled logic programming allows us to
execute left and right recursive grammars that would otherwise loop under
Prolog-style execution (e.g. left recursive ones). We illustrate tabled compu-
tation with parsing of first-order formulas into higher-order abstract syntax.
First-order formulas are defined as usual.

Propositions A ::= atom P | ¬A | A & A | A v A | A ⇒ A | true | false |
forall x.A | exists x.A | (A)

Terms are either constants or variables or functions with arguments. Atomic
propositions are either propositional constant or a predicate with terms as
arguments. In addition to the given grammar, we impose the following prece-
dence ordering: ¬ > & > v > ⇒. Conjunction and disjunction are left
associative, while implication is right associative.

fall: fq C (’forall’ ; I ; F) F’ (forall P)}
<- ({x:id} fq ((bvar I x) # C) F F’ (P x)).

fex: fq C (’exist’ ; I ; F) F’ (exist P)}
<- ({x:id} fq ((bvar I x) # C) F F’ (P x)).

cq : fq C F F’
<- fi C F F’ P.

% implication -- right associative
fimp: fi C F F’ (P1 => P2)

<- fo C F (’imp’ ; F1) P1
<- fi C F1 F’ P2.

ci: fi C F F’ P
<- fo C F F’ P.

% disjunction -- left associative
for: fo C F F’ (P1 v P2)

<- fo C F (’or’ ; F1) P1
<- fa C F1 F’ P2.

The parser takes a context for the bound variables, two lists of tokens and

119

Pientka

returns a valid formula represented in higher-order abstract syntax [14]. Ini-
tially the context of bound variables is empty, the first list of tokens represents
the input stream, the second list is empty and P will eventually contain the
result. Using higher-order abstract syntax, variables bound in constructors
such as forall and exists will be bound with λ in Elf. The simplest way to
implement left and right associativity properties of implications, conjunction
and disjunction is to mix right and left recursive program clauses. Clauses for
conjunction and disjunction are left recursive, while the program clause for
implication is right recursive.

Such an implementation of the grammar is straightforward mirroring the
defined properties such as left and right associativity and precedence ordering.
However, the execution of the grammar will loop infinitely when executed with
a traditional logic programming interpreter. Hence we compare execution of
some sample programs using proof search based on memoization and with
proof search based on iterative deepening, as performed by the current theorem
prover Twelf [17]. Iterative deepening search requires the user to provide a
depth-bound. It is worth pointing out that iterative deepening search will
stop after it found its first solution or it hits a depth-bound, while search
based on memoization will stop after it found a solution (and showed that
no other solution exists) or proved no other solution exists. This means, we
cannot use iterative deepening search to decide whether a given stream of
tokens should be accepted or not, while the memoization-based search yields
a decision procedure.

Length of input Iter. deepening Memoization #Entries #SuspGoals

5 0.020 sec 0.010 sec 15 11

20 1.610 sec 0.260 sec 60 54

32 208.010 sec 2.020 sec 176 197

56 ∞ 7.980 sec 371 439

107 ∞ 86.320 sec 929 1185

Table 3
Comparison between iterative deepening and memoization based search

The experiments indicate that proof search based on memoization provides
a more efficient way to decide whether a given stream of tokens belongs to the
language of formulas. In fact for input streams whose length is greater than
50 tokens, we stopped the iterative deepening procedure after several hours.

Remark 1: It is worth noting that in general the straightforward approach
of adding an extra argument to the non-terminals of the input grammar –
representing the portion of the parse tree that each rule generates – and nat-
urally to also add the necessary code that constructs the parse tree can be

120

Pientka

extremely unsatisfactory from a complexity standpoint. Polynomial recogni-
tion algorithms might be turned into exponential algorithm since there may
be exponentially many parse trees for a given input string. However in this
example, there is exactly one parse trace associated to each formula, therefore
adding an extra argument to the recognizer only adds a constant factor.

Remark 2: Instead of representing the input string as a list, we can store
it in the database as a set of facts. We can think of each token in the input
stream being numbered starting from 1. Then we will store the string as a
set of facts of the form word 1 ’forall’. word 2 ’x’. etc. where word i

tok i represents the ith token of the input stream.

6 Related Work and Conclusion

A number of different frameworks similar to Elf have been proposed such
as λProlog [7,5] or Isabelle [9,10]. While Elf is based on the LF type theory,
λProlog and Isabelle are based on hereditary Harrop formulas. The traditional
approach for supporting theorem proving in these frameworks is to guide proof
search using tactics and tacticals. Tactics transform a proof structure with
some unproven leaves into another. Tacticals combine tactics to perform more
complex steps in the proof. Tactics and tacticals are written in ML or some
other strategy language. To reason efficiently about some specification, the
user implements specific tactics to guide the search. This means that tactics
have to be rewritten for different specifications. Moreover, the user has to
understand how to guide the prover to find the proof, which often requires
expert knowledge about the systems. Proving the correctness of the tactic is
itself a complex theorem proving problem. The approach taken in Elf is to
endow the framework with the operational semantics of logic programming
and design general proof search strategies for it. The user can concentrate
on developing the high-level specification rather than getting the proof search
to work. The correctness of the implementation is enforced by type-checking
alone. The preliminary experiments demonstrate that proof search based on
memoization offers a powerful search engine.

Proof search based on memoization will only find one representative proof
for a given query, and for this reason it is inherently incomplete. For example,
when type-checking plus (nat → nat → nat) ∧ (nat → pos → pos) ∧ (pos →
nat → pos) ∧ (pos → pos → pos) has many proofs under the traditional logic
programming interpretation, but we will find only one with memoization-
based search. However, we often do not want and need to distinguish between
different proofs for a formula A, but only care about the existence of a proof
for A together with a proof term. In [13] Pfenning develops a dependent type
theory for proof irrelevance and discusses potential applications in the logical
framework. This allows us to treat all proofs for A as equal where two proofs
are considered equal if they produce the same answer substitution. In the
future we plan to combine the efforts on proof search based on memoization

121

Pientka

and proof irrelevance into one framework.

From the experience gathered with the prototype, it seems that also other
logic programming languages such as λProlog would profit from memoization-
based search. While we have taken care in the design of the prototype, there
is much room for improvements. The most pressing issue currently is to im-
plement indexing for the table to enable fast table access.

Acknowledgment: The author gratefully acknowledges numerous discussion
with Frank Pfenning and David S.Warren concerning this work. Thanks also
to many useful comments from Carsten Schürmann, Bob Harper and Kevin
Watkins. This work was partially supported by NSF Grant CCR-9988281.

References

[1] Andrew W. Appel and Amy P. Felty. A semantic model of types and
machine instructions for proof-carrying code. In 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’00), pages 243–
253, Jan. 2000.

[2] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20–74, January 1996.

[3] B. Cui, Y. Dong, X. Du, K. N. Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan,
A. Roychoudhury, S.A. Smolka, and D.S. Warren. Logic programming and
model checking. In Principles of Declarative Programming (Proceedings of
PLILP/ALP’98), volume 1490 of Lecture Notes in Computer Science, pages
1–20. Springer-Verlag, 1998.

[4] Rowan Davies and Frank Pfenning. Intersection types and computational
effects. In Proceedings of the International Conference on Functional
Programming (ICFP 2000), Montreal, Canada, pages 198–208. ACM Press,
2000.

[5] Amy Felty. Implementing tactics and tacticals in a higher-order logic
programming language. Journal of Automated Reasoning, 11(1):43–81, August
1993.

[6] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[7] Gopalan Nadathur and Dale Miller. An overview of λProlog. In
Fifth International Logic Programming Conference, pages 810–827, Seattle,
Washington, August 1988. MIT Press.

[8] G. Necula and S. Rahul. Oracle-based checking of untrusted software. In 28th
ACM Symposium on Principles of Programming Languages (POPL01), 2001.

[9] Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of
Logic Programming, 3:237–258, 1986.

122

Pientka

[10] Lawrence C. Paulson. Isabelle: The next seven hundred theorem provers. In
Proceedings of the 9th International Conference on Automated Deduction, pages
772–773, Argonne, Illinois, 1988. Springer Verlag LNCS 310. System abstract.

[11] Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Science,
pages 313–322, Pacific Grove, California, June 1989. IEEE Computer Society
Press.

[12] Frank Pfenning. Computation and Deduction. Cambridge University Press,
2000. In preparation. Draft from April 1997 available electronically.

[13] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal
type theory. In 16th Annual IEEE Symposium on Logic in Computer Science,
Boston, USA, 2001.

[14] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’88 Symposium on Language Design and
Implementation, pages 199–208, Atlanta, Georgia, June 1988.

[15] Brigitte Pientka. A proof-theoretic foundation for tabled higher-order
logic programs. In 18th International Conference on Logic Programming,
Copenhagen, Denmark, LNCS, page to appear. Springer-Verlag, 2002.

[16] Konstantinos Sagonas and Terrance Swift. An abstract machine for tabled
execution of fixed-order stratified logic programs. ACM Transactions on
Programming Languages and Systems, 20(3):586–634, 1998.

[17] Carsten Schürmann and Frank Pfenning. Automated theorem proving in a
simple meta-logic for LF. In Proceedings of the 15th International Conference
on Automated Deduction (CADE-15), pages 286–300, Lindau, Germany, July
1998. Springer-Verlag LNCS 1421.

[18] H. Tamaki and T. Sato. OLD resolution with tabulation. In Proceedings of
the 3rd International Conference on Logic Programming, volume 225 of Lecture
Notes in Computer Science, pages 84–98. Springer, 1986.

[19] Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis,
Department of Mathematical Sciences, Carnegie Mellon University, 2000.

[20] David S. Warren. Programming in tabled logic programming. draft available
from http://www.cs.sunysb.edu/˜warren/xsbbook/book.html, 1999.

123

