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Abstract
The interest in reasoning over stream data is growing as quickly as the amount of data generated.
Our intention is to change the way stream data is analyzed. This is an important problem because
we constantly have new sensors collecting information, new events from electronic devices and/or
from customers and we want to reason about this information. For example, information about
traffic jams and costumer order could be used to define a deliverer route. When there is a new
order or a new traffic jam, we usually restart from scratch in order to recompute the route.
However, if we have several deliveries and we analyze the information from thousands of sensors,
we would like to reduce the computation requirements, e.g. reusing results from the previous
computation. Nowadays, most of the applications that analyze stream data are specialized for
specific problems (using complex algorithms and heuristics) and combine a computation language
with a query language. As a result, when the problems become more complex (in e.g. reasoning
requirements), in order to modify the application complex and error prone coding is required.

We propose a framework based on a high-level language rooted in logic and constraints that
will be able to provide customized services to different problems. The framework will discard
wrong solutions in early stages and will reuse previous results that are still consistent with the
current data set. The use of a constraint logic programming language will make it easier to
translate the problem requirements into the code and will minimize the amount of re-engineering
needed to comply with the requirements when they change.
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1 Introduction and Problem Description

In recent years, wired and wireless sensors, social media and the Internet of Things generate
data (stream data) which is expanding in three fronts: velocity (speed of data generation),
variety (types of data) and volume (amount of data). As a result the demand for analysis
and reasoning over stream data (stream data mining) has exploded [17].

The main property of stream data is that the sets of data change due to insertion,
modification and/or deletion of data. In most cases, the subset of changed data is substantially
smaller than the complete amount of data which is analyzed. The objective of stream data
mining is to find relations and associations between the values of categorical variables in big
sets of data (millions of items or more), which are dynamically updated.
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Datalog, a high level language based on logic, has demonstrated its efficiency in stream
reasoning (systems like Deductive Applications Language System (DeALS) [9] developed in
UCLA, StreamLog [33] and Yedalog [6] by Google, are based on Datalog), and in machine
learning where the queries are executed in parallel over big databases distributed in different
clusters.

Our system is based on Prolog because it is more expressive (Datalog is semantically
a subset of Prolog) and its native search strategy is top-down instead of bottom-up. This
means that the search is guided by the query reducing the search tree. Our system also
provides two extensions: constraints logic programming, which discards search options in
early stages reducing the search tree, and tabling, an execution strategy which avoids entering
loops in some cases and reuses previous results. As a result these extensions not only increase
the performance of Prolog but also its expressiveness as we show in Sec. 4.

When data changes, most current approaches have to recompute the analysis over the
complete data set. With our system, the combination of tabling and constraints will minimize
or override the recomputation overhead by computing only the subset of data affected by
the modified data, because:

The tabling engine will invalidate results that are inconsistent with the current data set
in order to reuse previous results in such a way that we can ensure they are correct.
New constraints solvers will make it possible to define restriction to prune the search
tree during the data analysis. A pruned search tree reduces the number of accesses to
databases and/or tables.

2 Background and Overview of the existing literature

In this section we will describe the framework (TCLP) which make it possible to integrate
constraints solvers in the tabling engine; the data model that will be used to represent data;
the constraints needed to deal with the dynamic nature of the data; and a brief state of the
art.

2.1 TCLP: Tabling + Constraints
Constraint Logic Programming (CLP) [12] extends Logic Programming (LP) with variables
which can belong to arbitrary constraint domains and the ability to incrementally solve the
equations involving these variables. CLP brings additional expressive power to LP, since
constraints can very concisely capture complex relationships between variables. Also, shifting
from “generate-and-test” to “constrain-and-generate” patterns reduces the search tree and
therefore improves performance, even if constraint solving is in general more expensive than
unification.

Tabling [26, 30] is an execution strategy for logic programs which suspends repeated calls
which would cause infinite loops. Answers from other, non-looping branches, are used to
resume suspended calls which can in turn generate more answers. Only new answers are
saved, and evaluation finishes when no new answers can be generated. Tabled evaluation
always terminates for calls / programs with the bounded term depth property and can
improve efficiency for programs which repeat computations, as it automatically implements
a variant of dynamic programming. Tabling has been successfully applied in a variety of
contexts, including deductive databases, program analysis, semantic Web reasoning, and
model checking [31, 8, 34, 20].

The combination of CLP and tabling [28, 23, 7, 4], called TCLP, brings several advantages.
It improves termination properties and increases speed in a range of programs. It has been



J. Arias 17:3

person { triple (s01 , type , person )
name: "John Doe" triple (s01 , name , "John Doe ")
email: " jdoe@gmail .com" triple (s01 , email , " jdoe@gmail .com ")

}

Figure 1 A person model in Protocol Buffers (left) and Prolog syntax (right).

applied in several areas, including constraint databases [13, 28], verification of timed automata
and infinite systems [3], and abstract interpretation [27].

2.2 Graph Databases
Graph Databases are increasingly used to store data and most of the current data, such as
linked data on the Web and social network data, are graph-structured [32]. A graph database
is essentially a collection of nodes and edges. There are different graph data models but
we will limit our research to the directed labeled graphs where the edges are directed and
identified with a label.

The Resource Description Framework (RDF) [21] is a standard model for data interchange
on the Web. RDF referees an edge as a “triple” <subject> <predicate> <object> and allows
structured and semi-structured data to be mixed, exposed, and shared across different
applications. As a result, it facilitates the integration of data from different sources. The
RDF model theory also formalizes the notion of inference in RDF and provides a basis for
computing deductive closure of RDF graphs.

The OWL Web Ontology Language [16], based on the RDF framework, was designed to
represent rich and complex knowledge about things, groups of things, and relations between
things. OWL documents, known as ontologies, define concept type hierarchies in such a way
that a property defined for a more general concept is also defined for the concept subsumed
by the more general concept. It is also possible to define various hierarchical relations.

OWL is a computational logic-based language that can be exploited to verify the con-
sistency of the database knowledge or to make explicit an implicit knowledge. As a result,
since Prolog is also a logic-based language, there are several RDF-APIs in Prolog which
provide an interface to RDF databases and engine interfaces based on Prolog like F-OWL [34]
to reasoning over OWL ontologies. The RDF triples can be easily translated into Prolog
i.e. using facts of the form triple(Subject, Predicate, Object).

Other languages, like Protocol Buffers [19] based on name-value pairs, which Google uses
as a common representation of data, can also be modelled as a directed labeled graph. Fig 1
shows the model of a person with a name and an email in protocol buffer test format (left)
and in Prolog syntax (right).

The data model based on directed labeled graphs combined with the unification of Prolog,
makes it easy to read, write, match and transform the data. Additionally, Sec. 4 shows that
TCLP will increase the performance and termination properties of Prolog in most of the
reasoning problems over graph databases because they can be solved in terms of reachability,
connectivity, and distance in graphs.

2.3 Stream Time Constraints
The analysis of stream data has to deal with the unbounded nature of the data. First, it is
not possible to store all the generated data, therefore several techniques have been developed
to process the data and to store only the relevant information. Second, the queries have to
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Figure 2 Sliding time window from time t to t+1. Gt will be updated by deleting subgraph Gold

and adding subgraph Gnew. Example from [15].

be re-evaluated periodically and in one pass because the source data is not stored for further
evaluation.

Usually the reasoning is performed over a snapshot of a finite amount of data (a window).
A window is defined by its size (a fixed time interval or a number of data items) and, since
the queries are repeated in the time, it is also defined by a slide distance (the time between
two consecutive queries). In many applications, the time interval size of the window is larger
than the slide distance, so the set of data that is modified (due to addition or deletion) is
smaller than the set of data contained in the window. Our intention is to design a system
that updates the results recomputing the part of the modified data instead of recomputing
the query over the complete data set. Similar work presented in [15] applied an incremental
tracking framework (see Fig 2) to the event evolution tracking task in social streams, showing
much better efficiency than other approaches.

Constraint logic programming provides arithmetical constraint solvers that can deal with
the window definition in a natural manner (i.e. interval constraint solvers), and the operations
required to deal with temporal reasoning [1] can be evaluated by the constraint solver.

2.4 State of the Art
In recent years several new logic languages, most of which are based on Datalog, have been
developed to reason over stream data. Two of them are: Yedalog [6] developed by Google,
an extension of Datalog that seamlessly mixes data-parallel pipelines and computation in a
single language, and adds features for working with data structured as nested records; and
LogiQL [11] developed by LogicBlox, a unified and declarative language based on Datalog
with advanced incremental maintenance (changes are computed in an incremental fashion)
and live programming facilities (changes to application code are quickly compiled and “hot-
swapped” into the running program). There is more research done in this direction and some
of its results are described in the surveys [17, 32].

3 Goal of the Research

Our goal is to extend the functionality of Prolog (logic programming language) to provide a
full high level programming language which can be used to reason over stream data, reusing
previous results instead of recomputing them from scratch when new data arrives.

We intend to make the stream analysis a native capability of our system by using the
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dist(X, Y, D) :-
dist(X, Z, D1),
edge(Z, Y, D2),
D is D1 + D2.

dist(X, Y, D) :-
edge(X, Y, D).

dist(X, Y, D) :-
D1 #> 0, D2 #> 0,
D #= D1 + D2 ,
dist(X, Z, D1),
edge(Z, Y, D2).

dist(X, Y, D) :-
edge(X, Y, D).

Figure 3 Versions of distance in a graph: Prolog / tabling (left) and CLP / TCLP (right).
The symbols #> and #= are (in)equalities in CLP.

monotonicity of logic programming and by introducing the revision of previous inferences
when facts are removed, which is a form of non-monotonicity.

We envision advantages in several fronts: complex queries and non-trivial reasoning will
be easier to express thanks to the higher-level of logic programming and constraints; fewer
computations will be necessary thanks to the automatic reuse of previous inferences brought
by tabling (which in a certain sense performs dynamic programming in an automatic way);
queries and associated actions (if any) can be programmed using the same syntax.

4 Current Status of the Research and Results Accomplished

During my first year of PhD I have been designing and implementing the TCLP framework
which eases the integration of additional constraint solvers in an existing tabling module in
Ciao Prolog1.

The main goal of the TCLP framework is to make the addition of constraint solvers easier.
In order to achieve this goal, we determined the services that a constraint solver should
provide to the tabling engine. The constraint solver can freely implement them and has been
designed to cover many different implementations.

To validate our design we have interfaced: one solver for difference constraints, previously
written in C, existing classical solvers (CLP(Q/R)), and a new solver for constraints over
finite lattices. We have found the integration to be easy – certainly easier than with other
designs, given the capabilities that our system provides. We evaluate the performance of
our framework in several benchmarks using the aforementioned constraint solvers. All the
development work and evaluation was done in Ciao Prolog and is described in [2].

In order to highlight some of the advantages of TCLP versus Prolog, CLP and tabling with
respect to declarativeness and logical reading, we compare the behavior of these paradigms
and strategies using different versions of a program to compute distances between nodes in a
graph. Each version is adapted to a different paradigm, but trying to stay as close as possible
to the original code, so that the additional expressiveness can ultimately be attributed to
the semantics of the programming language and not to differences in the code itself.

The code in Fig. 3, left, is the Prolog / tabling version of the program dist/3 to find
nodes in a graph within a distance K from each other. Fig. 3, right, is the CLP / TCLP
version of the same code. In order to find the nodes X and Y within a maximum distance K
from each other we use the queries ?- dist(X,Y,D), D < K. and ?- D #< K, dist(X,Y,D). in

1 A robust, mature, next-generation Prolog system. Stable versions of Ciao Prolog are available at
http://www.ciao-lang.org.
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Table 1 Run time (ms) for dist/3. A ‘–’ means no termination.

Prolog CLP Tabling TCLP
Left recursion – – 144 45 Without
Right recursion 1917 200 291 184 cycles

Left recursion – – – 420 With
Right recursion – 4261 – 1027 cycles

Prolog / tabling and CLP / TCLP, respectively. To evaluate the performance, we use a
graph of 25 nodes without cycles (with 584 edges) or with cycles (with 785 edges).

Table 1 shows the termination properties and speed of dist/3 in the four paradigms. It
highlights that TCLP terminates in all the cases and it is also the fastest one. Additionally, it
shows, in line with the experience on tabling, that left-recursive implementations are usually
faster and preferable.

These results are relevant because most of the reasoning problems over graph databases
are solved in terms of reachability, connectivity and distances in graphs. In fact, this example
is a typical query for the analysis of social networks [25].

5 Open Issues and Expected Achievements

Constraint solver over ontologies. The idea of answer subsumption (which only stores an
answer if it is more general than the previous answers according to a defined partial
order) was presented in [25]. The paper also analyzes its application in social network
analysis. From our point of view, the TCLP framework will increase this performance
because it can be used not only to check answer subsumption, but also to avoid the
execution of queries where the concepts are more particular (they are entailed in terms of
the ontology hierarchy) than the concepts of a previous query. Moreover, the constraint
solver can be used to state the relationships defined in the ontology as constraint before
the analysis starts. These relations can propagate and prune the search space reducing
the computation and eventually avoiding accesses to databases.

Temporal constraint solver. The analysis should be done over a finite window of time,
therefore a constraint solver is needed to deal with the operation required by the temporal
reasoning tasks [1]. Moreover, the integration of the solver with the TCLP framework
will increase its benefits because some of its operations will explode the stored results
stored.

Stream-TCLP. In order to apply our framework to stream data, the answers must be
returned as soon as they are available. Instead of the local scheduling which tries to
find all the answers before returning them, the tabling engine should use an incremental
answering strategy similar to batch scheduling [10], JET mechanism [22] or swapping
evaluation [5].

Dynamic tabling. A more complex technique - similar to incremental tabling [24] - has to be
defined in order to: invalidate knowledge inferred by data which is updated / removed;
update the knowledge when the temporal window slides; and remove previous tabled
results to make place for more recent results.

Stream recursive aggregates. Some research has been done in the field of aggregates (see [14,
18, 29]) regarding the Prolog program semantic in tabled execution and with recursive
queries. And since most of the queries are defined in terms of aggregates as min, sum or
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count, it is relevant to take into consideration this research problem which is unclear and
related with non-monotonic properties.
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