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Abstract. The advantages of tabled evaluation regarding program ter­
mination and reduction of complexity are well known —as are the sig­
nificant implementation, portability, and maintenance efforts that some 
proposals (especially those based on suspension) require. This implemen­
tation effort is reduced by program transformation-based continuation 
call techniques, at some efficiency cost. However, the traditional formu­
lation of this proposal by Ramesh and Cheng limits the interleaving of 
tabled and non-tabled predicates and thus cannot be used as-is for ar­
bitrary programs. In this paper we present a complete translation for 
the continuation call technique which, using the runtime support needed 
for the traditional proposal, solves these problems and makes it possible 
to execute arbitrary tabled programs. We present performance results 
which show that CCall offers a useful tradeoff that can be competitive 
with state-of-the-art implementations. 
Keywords: Tabled logic programming, Continuation-call tabling, Im­
plementation, Performance, Program transformation. 

1 Introduction 

Tabling [19,4,18] is a strategy for executing logic programs which uses memoiza-
tion of already processed calls and their answers to improve several of the limi­
tations of SLD resolution. It brings termination for bounded term-size programs 
and improves efficiency in programs which perform repeated computations and 
has been successfully applied to deductive databases [14], program analysis [20. 
5], reasoning in the semantic Web [23], model checking [13], etc. 

However, tabling also has certain drawbacks, including tha t predicates to be 
tabled have to be selected carefully3 in order not to incur in undesired slow­
downs and, specially relevant to our discussion, tha t its efficient implementation 
is generally complex. In suspension-based tabling the computation s tate of sus­
pended tabled subgoals has to be preserved to avoid backtracking over them. 
This is done either by freezing the stacks, as in XSB [17], by copying to another 
area, as in CAT [8], or by using an intermediate solution as in CHAT [9]. Linear 
tabling maintains instead a single execution tree without requiring suspension 
and resumption of sub-computations. The computation of the (local) fixpoint is 
performed by making subgoals "loop" in their alternatives until no more solu­
tions are found. This may make some computations to be repeated. Examples of 

3 XSB includes an auto_table declaration which triggers a conservative analysis to 
detect which predicates are to be tabled in order to ensure termination. However, 
more predicates than needed can be selected. 
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this method are the linear tabling of B-Prolog [22, 21] and the DRA scheme [10]. 
Suspension-based mechanisms achieve very good performance but, in general, 
require deeper changes to the underlying implementation. Linear mechanisms, 
on the other hand, can usually be implemented on top of existing sequential 
engines without major modifications. 

The Continuation Call (CCall) approach to tabling [15,16] tries to combine 
the best of both worlds: it is a reasonably efficient suspension-based mechanism 
which requires relatively simple additions to the Prolog implementation / com­
piler,4 thus making maintenance and porting much easier. In [6] we proposed a 
number of optimizations to the CCall approach and showed that with such op­
timizations performance could be competitive with traditional implementations. 
However, this was only partially satisfactory since the CCall tabling approach 
is restricted to programs with a certain interleaving of tabled and non-tabled 
predicate calls (see Figure 3 and Section 3.1), and thus cannot execute general 
tabled programs. 

In this paper we present an extension of the CCall translation which, using 
the same runtime support of the traditional proposal, overcomes the problems 
pointed out above. In Section 5 we present a complexity comparison of the 
proposed approach with CHAT. Finally, we present performance results from our 
implementation. These results show that our approach offers a useful tradeoff 
which can be competitive with state of the art implementations, while keeping 
implementation efforts relatively low. 

2 The Continuation Call Technique 

We sketch now how tabled evaluation [4,17] works from a user point of view and 
we briefly describe the Continuation Call technique, on which we base our work. 

2.1 Tabling Basics 

We will use as example the program in Figure 1, whose purpose is to determine 
the reachability of nodes in a graph. If the graph contains cycles, there will 
be queries which will make the program loop forever under the standard SLD 
resolution strategy, regardless of the order of the clauses. Tabling changes the 
operational semantics for predicates marked with the : - table declaration, 
which forces the compiler and runtime system to distinguish the first occurrence 
of a tabled goal (the generator) and subsequent calls which are identical up to 
variable renaming (the consumers). The generator applies resolution using the 
program clauses to derive answers for the goal. Consumers suspend the current 
execution path (using implementation-dependent means) and start execution 
on a different branch corresponding to another clause of the predicate within 
which the execution was suspended. When such an alternative branch finally 
succeeds, the answer generated for the initial query (the generator) is inserted 
in a table associated with that generator. This makes it possible to reactivate 
consumers and to continue execution at the point where they were stopped. 
Thus, consumers do not use SLD resolution, but obtain instead the answers 

4 As an example, no modification to the underlying engine is needed. 



from the table where they were previously inserted by the generator. Predicates 
not marked as tabled are executed according to SLD resolution, hopefully with 
minimal overhead due to the availability of tabling. This can be graphically seen 
as the ability to suspend execution in a part of the tree which cannot progress 
(because it enters a loop) and continue it somewhere else, where a solution for 
the looping goal can be produced. 

2.2 CCall by Example 

CCall implements tabling by a combination of program transformation and side 
effects in the form of insertions into and retrievals from a table which relates 
calls, answers, and the continuation code to be executed after consumers read 
answers from the table. We will now sketch how the mechanism works using the 
path/2 example (Figure 1). The original code is transformed into the program 
in Figure 2 which is the one actually executed. 

Roughly speaking, the transformation for tabling is as follows: an auxiliary 
predicate (slg_path/2) for path/2 is introduced so that calls to path/2 made 
from regular (SLD) Prolog execution do not need to be aware of the fact that 
path/2 is being tabled. The primitive s lg /1 will make sure that its argument is 
executed to completion and will return, on backtracking, all the solutions found 
for the tabled predicate. To this end, s lg /1 checks if the call has already been 
executed. If so, all its answers are returned by backtracking. Otherwise, control 
is passed to a new predicate (slg_path/2 in this case).5 slg_path/2 receives in 
its first argument the original call to path/2 and in the second argument the 
identifier of its generator, which is used to relate operations on the table with 
this initial call. Each clause of slg_path/2 is derived from a clause of the original 
path/2 predicate by: 

— Adding an answer/2 primitive at the end of each clause of the original tabled 
predicate, answer/2 is responsible for checking for redundant answers and 
inserting them in the table. 

— Instrumenting calls to tabled predicates using the s l g c a l l / 1 primitive. If 
this tabled call is a consumer, path_cont/3, along with its arguments, is 
recorded as (one of) the continuation(s) of its generator. If the tabled call 
is a generator, it is associated with a new call identifier and execution fol­
lows using the slg_path/2 program clauses to derive new answers (as done 
by s lg/1) . Besides, path_cont/3 will be recorded as a continuation of the 
generator identified by Id if the tabled call cannot be completed (there were 
dependencies on previous generators). The path_cont/3 continuation will be 
called consuming found answers or erased upon completion of its generator. 

— Encoding the remaining of the clause body of path/2 after the recursive call 
by using path_cont/3. It is constructed similarly to slg_path/2, i.e., apply­
ing the same transformation as for the initial clauses and calling s l g c a l l / 1 . 

The second argument of path_cont/3 is a list of bindings needed to recover 
the environment of the continuation call. Note that, in the program in Figure 1. 

5 The unique name has been created for simplicity by prepending slg_ to the predicate 
name -any safe means of constructing a unique predicate symbol can be used. 



path(X, Y):- slg(path(X, Y)) . 
slg_path(path(X, Y), ld):-

:- table path/2. e d g e ( x Y)_ 

u , v 7 . slgcal l(path.cont( ld, [X], path(Y, Z)) ) . 
? A 7 Y VA slg_path(path(X, Y), ld):-

e d g e X ' Y ' edge(X, Y), 
Pa t h(Y, Z ) - answer(ld, path(X, Y)) . 

path(X, Z):-

edge(X, Z). path_cont(ld, [X], path(Y, Z)):-
answer(ld, path(X, Z)). 

Fig. 2. The program in Figure 1 after being trans-
Fig. 1. A sample program. formed for tabled execution. 

an answer to a query such as ?- path(X, Y) may need to bind variable X. This 
variable does not appear in the recursive call to path/2, and hence it does not 
appear in the path/2 term passed on to s l g c a l l / 1 either. In order for the body 
of path_cont/3 to insert in the table the answer corresponding to the initial 
query, variable X (and, in general, any other necessary variable) has to be passed 
down to answer/2. This is done with the list [X], which is inserted in the table 
as well and completes the environment needed for the continuation path_cont/3 
to resume the previously suspended call. 

A safe approximation of the variables which should appear in this list is the 
set of variables which appear in the clause before the tabled goal and which are 
used in the continuation, including the answer/2 primitive. Variables appearing 
in the tabled call itself do not need to be included, as they will be passed along 
anyway. This list of bindings corresponds to the frame of the parent call if the 
answer/2 primitive is added to the end of the body being translated. 

Key Contribution of CCall: a new predicate name is created for all points 
where suspension can happen. Suspension is performed by saving this predicate 
name, a list of bindings, and a generator identifier. Resumption is performed by 
constructing a Prolog goal with the information saved on suspension plus the 
answer which raised the resumption. It is clear that this is significantly simpler 
to implement than other approaches as XSB or CHAT, where changes in the ab­
stract machine have to be introduced. Consequently, porting and maintainability 
are simpler too, since CCall is independent of the compiler and how to create a 
Prolog term on the heap is the only one low level operation to implement. 

3 Mixing Tabled and Non-Tabled Predicates 

A continuation is the way CCall tabling preserves both the environment and the 
code of a consumer to be resumed. The list of bindings contains the same vari­
ables as the frame of the predicate where the s l g c a l l / 1 primitive is executed, 
taking into account the answer/2 primitive added at the end of the clause. How­
ever, the CCall approach to tabling, as originally proposed, has a problem when 
Prolog predicates appear between generators and consumers: the environments 
created by the non-tabled predicates are not taken into account, and they may 



:- table t / 1 . 

t(A):-
P(B), 
A is B + 1. 

t(0). 

p(B):-t(B), B < 1. 

Fig. 3. A program for which the origi­
nal CCall transformation fails. 

t(A):- slg(t(A)). 
slg_t(t(A), ld):-

p(B), A is B + 1, 
answer(ld, t(A)). 

slg.t(t(0), Id):-
answer(ld, t(0)). 

p(B):-t(B), B < 1. 

Fig. 4. The program in Figure 3 after being 
transformed for tabled execution. 

?-t(A). 

l.slg(t(A)). 
10. Complete. 

2. slg_t(t(A),id). 7.slgJ(t(0),id). 

3. p(B), A is B + 1, answerljd, t (A)). 8. answerlld, t(0)). 

4. t(B), B < 1, A is B + 1, answerljd, t (A)). 

5. slg(t(B)), B < 1, A is B + 1, answer(id,t(A). 

Fig. 5. Tabling execution of example of Figure 1. 

be needed to correctly suspend and resume tabled predicates, as the example in 
the following section shows. 

3.1 A n I l l -Behaved Transformat ion 

Figure 3 shows an example of a tabled program, where tabled and non-tabled 
execution ( t / 1 and p /1 ) are mixed. The translation of the program is shown in 
Figure 4, taking into account the rules in Section 2.2. 

The execution of the program with the query t (A) is shown in Figure 5. The 
execution is correct until s l g / 1 is called again by p / 1 . At tha t point execution 
should suspend (and later resume), but s l g / 1 does not have any associated 
continuation, and it does not have any pointer to the code to be executed on 
resumption (partially in p / 1 and partially in s l g _ t / 2 ) : B < 1, A i s B + 1 , 
answer ( I d , t (A)) is lost on backtracking and it is not reachable when resuming. 
Consequently, the second answer to the query, t ( l ) , is lost. 

The call to t ( B ) made by p(B) could have been translated as if it were in 
the body of a tabled clause, but in tha t case the piece of code A i s B + 1 in 
the first clause of t / 1 would be lost anyway. This is an example of why all the 



frames between a consumer and its nearest generator have to be saved when 
suspending, and it is not enough to save just the last one, as in the original 
CCall proposal [15], which does work, however, when all the calls to the tabled 
predicates appear in the body of the clause of a tabled predicate. In that case, it 
is enough to save the last frame with the associated continuation code. Note that 
all the suspension-based tabling approaches preserve the frames / environments 
from the consumer until the corresponding generator. 

To solve this problem, we have extended the translation to take into account 
a new kind of predicates, named bridges. A bridge predicate is a non-tabled 
Prolog predicate whose clauses generate frames which have to be saved in the 
continuation of a consumer. In the example of Figure 3, p/1 is a bridge predicate. 

3.2 Marking Predicates as Bridges 

Bridge predicates are all the non-tabled predicates which can appear in the 
execution tree of a query between a generator and each of its consumers, i.e., the 
predicates whose environments are in the local stack between the environment 
of the generator and the environment of each of its consumers. Note that tabled 
predicates do not need to be included as bridge predicates as their environment 
will be already saved by the translation. Additionally, only recursive calls which 
can lead to infinite loops under SLD resolution have to actually be taken into 
account, because these are the only ones which can suspend and later be resumed. 
Programs for which tabling merely speeds up already terminating computations 
are not subject to the problem outlined above, and therefore do not benefit from 
the improved translation shown herein. 

Thus, in order to determine a minimal set of bridge predicates, Bmin, we need 
to determine before the minimum set of tabled predicates, Tmj„, which ensures 
termination. When Tmin is found, Bmin is the set of non-tabled predicates which 
are "in the middle" of two calls to predicates belonging to Tmin. Since looking 
for Tmin is undecidable (because it implies detecting infinite failures), looking for 
Bmin is also undecidable and a safe approximation, which may mark as bridge 
some predicates which do not need to be, is needed. 

As we will see in Section 4.2, the only disadvantage of such an over-approximation 
is that some code will be duplicated (to accept a new argument for the case where 
a bridge predicate is called from a tabled execution), and that bridge predicates, 
having an extra argument, can be called when this is not needed. The algorithm 
we have implemented (Figure 6) only looks for tabled predicates which can re­
cursively call themselves. For the examples used for performance evaluation in 
Section 6, using the safe approximation algorithm produces an average slowdown 
of only 3% with respect to a perfect characterization of bridge predicates. 

4 A General Translation for Tabled Programs 

In this section we present program transformation rules which take into account 
bridge predicates. This transformation assumes that the safe approximation al­
gorithm for bridge predicates has already been run, and all the bridge predicates 
have been marked by adding a : - bridge P/N declaration in the program. 



Make a graph G with an edge (pl/nl, p2/n2) <̂> p2/n2 is called from pl/nl 
Bridges = 0 
FOR each predicate T in TABLED PREDICATES 

Forward = All predicates reached from T in G 
Backward = All predicates from which T is reached in G 
Bridges = Bridges U (Forward n Backward) 

Bridges = Bridges - TABLED PREDICATES 

Fig. 6. Safe approximation to look for bridge predicates. 

As seen in Section 2.2, a continuation is the way to save an environment, 
because the predicate name is the same as the P C counter of the environment 
and the list of bindings is the same as the variables tha t a environment saves. 
Consequently, the goal of the new translation is to associate a continuation with 
each of the bridge predicates to save their associated environment. Continuations 
have a new argument (the next continuation to be executed) and they are be 
pushed onto the local stack in the same way as the environments. 

4.1 Trans la t ion R u l e s 

The rules for the original translation have three different goals: to maintain the 
interface with the rest of the code, to manage tabled calls which appear in the 
body of the clauses of a tabled predicate, and to insert answers at the end of 
the evaluation of each clause. The same points have to be addressed for bridge 
clauses, taking into account that a tabled or bridge call has to be translated if 
it appears in the body of a tabled predicate or a bridge predicate. 

The rules for the new translation are shown in Figure 7, where we have used 
a sugared Prolog-like language. For example, a functional syntax is implicitly 
assumed where needed, and infix V is a general append function which joins 
either (linear) structures or, when applied to atoms, concatenates them. It may 
appear in an output head position with the expected semantics. 

The t r a n s / 2 predicate receives a clause to be translated and returns the list 
of clauses resulting from the translation. Its first clause ensures tha t predicates 
which are non-tabled and non-bridge are not transformed.6 The second one is to 
generate the interface of table predicates with the rest of the code: if there is a 
tabled declaration, the interface is generated. The third clause translates clauses 
of tabled predicates, and the fourth one translates clauses of bridge predicates, 
where the original one is maintained in case it is called outside a tabled call 
(this is in order to preserve the interface with non-tabled code). They generate 
the new head of the clause, Head.tr, and the code which has to be appended 
at the end of the body, End, before calling t r a n s B o d y / 6 with these arguments. 
End can be the a n s w e r s / 2 primitive for tabled clauses or a r g ( 3 , Cont, Head) , 
c a l l ( C o n t ) , which updates the answer found for a bridge predicate in the next 
continuation to be resumed before calling it. 

6 The predicates t a b l e / 1 and b r idge /1 are dynamically generated by the compiler 
from the corresponding declaration. They check if their argument is a clause of a 
tabled or bridge predicate, or if their argument is a functor corresponding to a tabled 
or bridge predicate, respectively. 
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trans(C, C) : - \ + table(C), \ + bridge(C). 
trans (( : - table P/N ), ( P(Xl..Xn) : - slg(P(Xl..Xn)) )). 
trans (( Head : - Body ), LC) : -

table(Head), 
Head.tr =. . [' slg_ ' o Head, Head, Id], 
End = answer(ld, Head), 
transBody(Head_tr, Body, Id, \\, End, LC). 

trans(( Head : - Body ), ( Head : - Body ) o LC) : -
bridge(Head), 
Head.tr =. . [Head o '.bridge', Head, Id, Cont], 
End = (arg(3, Cont, Head), call (Cont)), 
transBody(Head_tr, Body, Id, Cont, End, LC). 

transBody(D, Q, . , . , Q, Q). 
transBody(Head, Body, Id, ContPrev, End, ( Head : - Body_tr ) o RestBody.tr) : -

following (Body, Pref, Pred, Suff), 
getLBinds(Pref, Suff, LBinds), 
updateBody(Pred, End, Id, Pref, LBinds, ContPrev, Cont, Body_tr), 
transBody(Cont, Suff, Id, ContPrev, End, RestBody_tr). 

following (Body, Pref, Pred, Suff) : -
member(Body, Pred), 
(table(Pred); bridge(Pred)), !, 
Body = Pref o Pred o Suff. 

updateBody(0, End, _ld , Pref, _LBinds, .ContPrev, 0, Pref o End). 
updateBody(Pred, _End, Id, Pref, LBinds, ContPrev, Cont, Pref o slgcall (Cont)) : — 

table(Pred), 
getNameCont(NameCont), 
Cont = NameCont(ld, LBinds, Pred, ContPrev). 

updateBody(Pred, _End, Id, Pref, LBinds, ContPrev, Cont, Pref o Bridge_call) : — 
bridge(Pred), 
getNameCont(NameCont), 
Cont = NameCont(ld, LBinds, Pred, ContPrev), 
Bridge_call =. . [Pred o '.bridge' , Cont] . 

Fig. 7. The Prolog code of the translation rules. 

transBody/6 generates, in its last argument, the translation of the body of 
a clause by taking care, in each iteration, of the code until the next tabled or 
bridge call, or until the end the clause, and appending the translation of the rest 
of the clause to this partial translation. In other words, it calls updateBody/8 to 
translate tabled or bridge calls and continues translating the rest of the body. 

The following/4 splits a clause body in three parts: a prefix, until the first 
time a tabled or bridge call appears, the tabled or bridge call itself, and a suffix 
from this call until the end of the clause. getLBinds/3 obtains the list of variables 
which have to be saved to recover the environment of the consumer, based on 
the ideas of Section 2.2. 

The updateBody/8 predicate completes the body prefix until the next tabled 
or bridge call. Its first six arguments are inputs, the seventh one is the head of 
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t (A ) : - s lg( t (A)) . p(B) : - t (B) , B < 1. 
s lg_t( t (A), Id) : -

p_bridge(ld, slg_tO ( Id , [A], p(B), 0))- p_bridge(ld, Cont) : -
slgcall (p.bridgeO(ld, \\, t (B ) , Cont)). 

slg_t ( t (0 ) , Id) : - answer(ld, t ( 0 ) ) . 
p.bridgeO(ld, \\, t (B ) , Cont) : -

slg.tO(ld, [A], p(B), D) : - B < 1 , 
A is B + 1, arg(3, Cont, p(B)), 
answer(ld, t (A ) ) . call (Cont). 

Fig. 8. The program in Figure 3 after being transformed for tabled execution. 

the continuation for the suffix of the body and the last argument is the new 
translation for the prefix. The first clause takes care of the base case, when there 
are no calls to bridge or tabled predicates left, the second clause generates code 
for a call to a tabled predicate, and the last one does the same with a bridge 
predicate. That getNameCont/1 generates a unique name for the continuation. 

We will now use the example in Figure 3, adding a : - bridge p /1 declara­
tion, to exemplify how a translation would take place. 

4.2 The Previous Example with the Correct Transformation 

The translation of the first clause of t / 1 is done by the third clause of trans/2, 
which makes the head of the translated clause to be slg_t (t (A), Id) and states 
that the final call of that clause has to be answer (Id, t (A)) —i.e., when the 
clause successfully finishes, it adds the answer to the table. 

transBody/6 takes care then of the rest of the body, which identifies which 
environment variables (A, in this case) have to be saved and matches Pref, 
Pred, and Suf f with the goals before the call to the tabled predicate (none — 
and empty conjunction), the call to the tabled predicate (p(B)), and the goals 
after this call (A i s B + 1). The third clause of updateBody/8 generates the 
body of Head_tr, to give the first clause of s lg_t /2 . A continuation is generated 
for the rest of the body; the code of the continuation is a predicate whose head 
is s lg_t0/3 and its body is generated by the first clause of updateBody/8. 

The translation of the second clause of t / 1 is simpler, as it only has to add 
answer ( Id , t ( 0 ) ) at the end of the body of the new predicate. 

The clause for p /1 is kept to maintain its interface when it is not called from 
inside a another tabled execution. The translation for the clause of p /1 is made 
by the fourth clause of trans/2 where Head.tr is unified with p_bridge(p(B), 
Id, Cont). In the expression for End, the predicate a rg /3 is used to unify the an­
swers found for the bridge predicate with the corresponding argument of the con­
tinuation. transBody/6 finds an empty list of environment variables and unifies 
Pref, Pred and Suf f with [] , t (B) and B < 1, respectively. The second clause of 
updateBody/8 generates the body for the new predicate p_bridge/3. A contin­
uation is generated to execute the rest of the body, whose head is p_bridge0/3 
and whose body is generated by the first clause of updateBody/8. As we can see, 
bridge predicates are appending continuations and End variable is calling them 
sequentially. 
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l .slg(t(A)). 

2. s lgj( t (A), id). 

3. p_bridge(id slgJO(id, [A], p(B), [])). 

4. slg_call(p_bridgeO(id [], t(B), slgJO(id [A], p(B), [])). 

6. slgj(t(0), id). 

7. answer(id t(0)). 

10. 0 < 1. arg(3, s lgJ0( id [A], p(B)). p(0)). call(slgJ0(id [A], p(B). [])). 

11. arg(3, s lgJ0( id [A], p(B). []). p(0)). call(slgJ0(id, [A], p(B). [])). 

12.call(slgJ0(id[A].p(0). []). 

13. A is 0 + 1, answe<id t(A)). 

14. answei(id t(l)). 
17. 1 < 1. arg(3. s lgJ0( id [A], p(B). []). p(l)). call(slgJ0(id [A], p(B). [])). 

Fig. 9. New CCall tabling execution. 

4.3 Execution of the Transformed Program 

The execution tree of the transformed program is shown in Figure 9. It is similar 
to that in Figure 5, but a continuation slg_tO(id, [A] , p(B) , [ ] ) is passed 
to the transformed clause of p / 1 . This continuation contains the code to be 
executed after the execution of p(B) and the list [A] needed to recover its 
environment. Consequently, there are two continuations associated with the sus­
pension: one continuation to execute the rest of the code of p(B) and another 
one to execute the rest of the code of t(A). 

After the first answer is found, this double continuation is resumed. It is 
executed as a normal Prolog and the second answer, t ( l ) , is found. The arg/3 
predicate is used to unify the answer of p(B) we have just found with the literal 
stored in the continuation. 

5 ©(CHAT) is not comparable with ©(CCall) 

In this section we present a comparative analysis of the complexity of CCall 
and CHAT, which is an efficient implementation of tabling with a compara­
tively simple machinery. Since it is known that ©(CHAT) is 6>(SLG-WAM) [7], the 
comparative analysis applies to the SLG-WAM as well. 

The complexity analysis focuses on the operations of suspension and resump­
tion. The state of the consumer has to be protected when suspending to reinstall 
it when resuming. CCall achieves that by copying the continuation associated 
with the consumer in a special memory area to be protected on backtracking. In 
the original implementation [15] this continuation is copied from the heap to a 



separate table (when suspending) and back (when resuming). As proposed in [6], 
continuations can be saved in a special memory area with the same data format 
as the heap. This makes it possible to use WAM instructions and additional ma­
chinery on them and, when resuming, they can be used as normal Prolog data 
and code, without being recopied. 

On the other hand, CHAT freezes the heap and the frame stack when re­
suming. The heap and frame stack are frozen by traversing the choice point 
stack. For all the choice points between the consumer choice point and its gen­
erator, the pointer to the end of the heap and frame stack are changed to the 
values of the consumer choice point values. By doing that, heap and frame stack 
are protected on backtracking. However, the consumer choice point has to be 
copied to a special memory area as well as the segment trail (with its associated 
values) between the consumer and the generator, to reinstall the values of the 
bound variables at the time of suspension which backtracking will unbind. In 
consequence, when resuming the trail values have to be reinstalled as well as the 
consumer choice point. 

Each consumer is suspended only once, and it can be resumed several times. 
The rest of the operations, i.e., checking if a tabled call is a generator or a con­
sumer, are not analyzed, because they are common to both systems. In addition, 
we will ignore the cost of working at the Prolog level, since this is an orthogonal 
issue: CCall primitives could be compiled to WAM instructions and working at 
Prolog level does not increase the system complexity. 

©(CCall): when suspending, CCall has to copy all the environments until the 
last generator and the structures in the heap which hang from them. If we name 
E the size of all the environments and H the size of the structures in the heap, 
the time consumption when suspending is: 6>(E + H). 

When resuming, CCall just has to perform pattern matching of the continu­
ation against its clause. The time taken by the pattern matching depends on the 
size of the list of bindings, which is known to be & (E). Since each consumer can 
be resumed N times, the time consumption of resuming consumers is 6>(NxE). 

©(CHAT): when suspending, CHAT has to traverse the frame and choicepoint 
stacks, but with the improvements presented in [7], the time this takes can be 
neglected because a choice point is only traversed once for all the consumers. 
The trail and the last choice point have to be copied. If we call T the size of the 
trail and C the size of the choice point, which is bound by a constant for a given 
program, the time consumption when suspending is: & (T). 

When resuming, CHAT has to reinstall the values of the frame and the choice 
point. Since each consumer can be resumed N times, the time consumption of 
resuming is 6>(NxT). 

Analyzing the worst cases of both systems: we can conclude E + H > T. 
because each variable can only be once in the trail, and then CCall is worse than 
CHAT when suspending. On the other hand, in case that E < T, CCall is better 
than CHAT when resuming. Consequently, for a plausible general case, the more 
resumptions there are, the better CCall behaves in comparison with CHAT, and 
conversely. In any case, the worst and best cases for each implementation are 



different, which makes them difficult to compare. For example, if there is a very 
large structure pointed to from the environments, and none of its elements are 
pointed to from the trail, CCall is slower than CHAT, since it has to copy all the 
structure in a different memory area when suspending and CHAT does nothing 
both when suspending and when resuming. 

On the other hand, if all the elements of the structure are pointed to from the 
trail, CCall has to copy all the structure on suspension in a different memory area 
to protect it on backtracking, but it is ready to be resumed without any other 
operation (just a unification with the pointer to the structure). CHAT has to 
copy all the structure on suspension too, because all the structure is in the trail. 
In addition, each time the consumer is resumed, all the elements of the structure 
have to be reinstalled using the trail, and CHAT has to perform more operations 
than CCall, and then, the more resumptions there are, the worse CHAT would 
be in comparison with CCall. Anyway, as the trail is usually much smaller than 
the heap, in general cases, CHAT will have an advantage over CCall. 

6 Performance Evaluation 

We have implemented the proposed technique as an extension of the Ciao sys­
tem [1]. Tabled evaluation is provided to the user as a loadable package that 
implements the new directives and user-level predicates, performs the program 
transformations, and links in the low-level support for tabling. We have imple­
mented CCall tabling with the efficiency improvements presented in [6] and the 
new translation for general programs explained in this paper. 

Table 1 aims at determining how the proposed implementation of tabling 
compares with state-of-the-art systems —namely, the latest available versions 
of XSB, Yap Tab, and B-Prolog, at the time of writing, using the typical bench­
marks which appear in other performance evaluations of tabling approaches.7 

In this table we provide, for several benchmarks, the raw time (in milliseconds) 
taken to execute them using tabling. Measurements have been made with Ciao-
1.13, using the standard, unoptimized bytecode-based compilation, and with the 
CCall extensions loaded, as well as in XSB 3.0.1, YapTab 5.1.1, and B-Prolog 
7.0. Note that we did not compare with CHAT, which was available as a configu­
ration option in the XSB system and which was removed in recent XSB versions. 
CHAT can be expected to be at least as fast (if not slightly faster) than XSB. 

All the executions were performed using local scheduling and disabling garbage 
collection; in the end this did not impact execution times very much. We used 
gcc 4 .1 .1 to compile all the systems, and we executed them on a machine with 
Fedora Core Linux, kernel 2.6.9, and an Intel Xeon DESCHUTES processor. 

The first benchmark is path, the same as Figure 1, which has been executed 
with a chain-shaped graph. Since this is a tabling-intensive program with no con­
sumers in its execution, the difference with other systems is mainly due to having 
large parts of the execution done at Prolog level. The following five benchmarks, 
until atr2, are also tabling intensive. As their associated environments are very 

7 This is in contrast to [6] where, due to the limitations of the CCall approach the 
benchmarks presented did not need the use of bridge predicates. 



Program 

path 
tcl 
tcr 
ten 
sgm 
atr2 
Pg 
kalah 
gabriel 
disj 
cs_o 
cs_r 
peep 

CCall 

517.92 
96.93 

315.44 
485.77 
3151.8 
689.86 
15.240 
23.152 
23.500 
18.095 
34.176 
66.699 
68.757 

XSB 

231.4 
59.91 

106.91 
123.21 
1733.1 
602.03 
13.435 
19.187 
19.633 
15.762 
27.644 
55.087 
58.161 

YapTab 

151.12 
39.16 
90.13 
85.87 

1110.1 
262.44 
8.5482 
13.156 
12.384 
9.2131 
18.169 
34.873 
37.124 

BProlog 

206.26 
51.60 
96.21 

117.70 
1474.0 
320.07 
36.448 
28.333 
40.753 
29.095 
85.719 
170.25 
150.14 

Table 1. Comparing Ciao+CCall with XSB, YapTab, and B-Prolog. 

small, CCall is far from its worst case (see Section 5), and the difference with 
other systems is similar to that in path and for a similar reason. The worst case 
in this set is ten because there are two calls to s l g c a l l / 1 per generator, and 
the overhead of working at the Prolog level is duplicated. 

B-Prolog, which uses a linear tabling approach, suffers if costly predicates 
have to be recomputed: this is what happens in benchmarks from pg until peep, 
where tabled and non-tabled execution is mixed. This is a well-known disad­
vantage of linear tabling techniques which does not affect suspension-based ap­
proaches. It has to be noted, however, that latest versions of B-Prolog implement 
an optimized variant of its original linear tabling mechanism [21] which tries to 
avoid reevaluation of looping subgoals. 

In order to compare our implementation with XSB and YapTab, we must 
take into account that the speeds of XSB, and YapTab8 are different, at least in 
those cases where the program execution is large enough to be really significant 
(between 1.8 and 2 times slower in the case of XSB and 1.5 times faster in the 
case of YapTab). 

In non-trivial benchmarks, from pg until peep, which at least in principle 
should reflect more accurately what one might expect in larger applications 
using tabling, execution times are in the end very competitive when comparing 
with XSB or YapTab. This is probably due to the fact that the raw speed of the 
basic engine in Ciao is higher than in XSB and closer to YapTab, rather than to 
factors related to tabling execution, but it also implies that the overhead of the 
approach to tabling used is reasonable after the proposed optimizations in [6], 
In this context it should be noted that in these experiments we have used the 
baseline, bytecode-based compilation and abstract machine. Turning on global 
analysis and using optimizing compilers and abstract machines [11,3,12] can 
further improve the speed of the SLD part of the computation. 

8 Note that we are comparing the tabled-enabled version of Yap, which is somewhat 
slower than the regular Yap. 



7 Conclusions 
We have presented an extension of the continuation call technique which does not 
have the limitations of the original continuation call approach regarding the in­
terleaving of tabled and non-tabled predicates. This approach has the advantage 
of being easier to implement and maintain than other techniques which require 
non-trivial modifications to low-level machinery. Although there is an overhead 
imposed by executing at Prolog level, we expect the speed of the source (Prolog) 
language to gradually improve by using global analysis, optimizing compilers, 
and better abstract machines. Accordingly, we expect the performance of CCall 
to improve in the future and thus gradually gain ground in the comparisons. 

Although a non optimal tabled execution is obviously a disadvantage, it is 
worth noting that , since our implementation introduces only minimal changes in 
the WAM and none in the associated Prolog compiler, the speed at which regular 
Prolog is executed remains unchanged. In addition to this, the modular design of 
our approach gives bet ter chances of making it easier to port to other systems. In 
our case, executables which do not need tabling have very little tabling-related 
code, as the da ta structures (for tries, etc.) are handled by dynamic libraries 
loaded on demand, and only stubs are needed in the regular engine. The program 
transformation is taken care of by a plugin for the Ciao compiler [2] (a "package,'' 
in Ciao's terms) which is loaded and active only at compile time, and which does 
not remain in the final executable. 
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