
Bridge Transformation for Continuation
Call-Based Tabled Execution

Pablo Chico de Guzman 1 Manuel Carro 1 Manuel V. Hermenegildo1 '2

p c h i c o @ c l i p . d i a . f i . u p m . e s {mcarro,herme}@fi.upm.es

1 School of Computer Science, Univ. Politecnica de Madrid, Spain
2 1MDEA Software, Spain

Abstract. The advantages of tabled evaluation regarding program ter­
mination and reduction of complexity are well known —as are the sig­
nificant implementation, portability, and maintenance efforts that some
proposals (especially those based on suspension) require. This implemen­
tation effort is reduced by program transformation-based continuation
call techniques, at some efficiency cost. However, the traditional formu­
lation of this proposal by Ramesh and Cheng limits the interleaving of
tabled and non-tabled predicates and thus cannot be used as-is for ar­
bitrary programs. In this paper we present a complete translation for
the continuation call technique which, using the runtime support needed
for the traditional proposal, solves these problems and makes it possible
to execute arbitrary tabled programs. We present performance results
which show that CCall offers a useful tradeoff that can be competitive
with state-of-the-art implementations.
Keywords: Tabled logic programming, Continuation-call tabling, Im­
plementation, Performance, Program transformation.

1 Introduction

Tabling [19,4,18] is a strategy for executing logic programs which uses memoiza-
tion of already processed calls and their answers to improve several of the limi­
tations of SLD resolution. It brings termination for bounded term-size programs
and improves efficiency in programs which perform repeated computations and
has been successfully applied to deductive databases [14], program analysis [20.
5], reasoning in the semantic Web [23], model checking [13], etc.

However, tabling also has certain drawbacks, including tha t predicates to be
tabled have to be selected carefully3 in order not to incur in undesired slow­
downs and, specially relevant to our discussion, tha t its efficient implementation
is generally complex. In suspension-based tabling the computation s tate of sus­
pended tabled subgoals has to be preserved to avoid backtracking over them.
This is done either by freezing the stacks, as in XSB [17], by copying to another
area, as in CAT [8], or by using an intermediate solution as in CHAT [9]. Linear
tabling maintains instead a single execution tree without requiring suspension
and resumption of sub-computations. The computation of the (local) fixpoint is
performed by making subgoals "loop" in their alternatives until no more solu­
tions are found. This may make some computations to be repeated. Examples of

3 XSB includes an auto_table declaration which triggers a conservative analysis to
detect which predicates are to be tabled in order to ensure termination. However,
more predicates than needed can be selected.

mailto:pchico@clip.dia.fi.upm.es

this method are the linear tabling of B-Prolog [22, 21] and the DRA scheme [10].
Suspension-based mechanisms achieve very good performance but, in general,
require deeper changes to the underlying implementation. Linear mechanisms,
on the other hand, can usually be implemented on top of existing sequential
engines without major modifications.

The Continuation Call (CCall) approach to tabling [15,16] tries to combine
the best of both worlds: it is a reasonably efficient suspension-based mechanism
which requires relatively simple additions to the Prolog implementation / com­
piler,4 thus making maintenance and porting much easier. In [6] we proposed a
number of optimizations to the CCall approach and showed that with such op­
timizations performance could be competitive with traditional implementations.
However, this was only partially satisfactory since the CCall tabling approach
is restricted to programs with a certain interleaving of tabled and non-tabled
predicate calls (see Figure 3 and Section 3.1), and thus cannot execute general
tabled programs.

In this paper we present an extension of the CCall translation which, using
the same runtime support of the traditional proposal, overcomes the problems
pointed out above. In Section 5 we present a complexity comparison of the
proposed approach with CHAT. Finally, we present performance results from our
implementation. These results show that our approach offers a useful tradeoff
which can be competitive with state of the art implementations, while keeping
implementation efforts relatively low.

2 The Continuation Call Technique

We sketch now how tabled evaluation [4,17] works from a user point of view and
we briefly describe the Continuation Call technique, on which we base our work.

2.1 Tabling Basics

We will use as example the program in Figure 1, whose purpose is to determine
the reachability of nodes in a graph. If the graph contains cycles, there will
be queries which will make the program loop forever under the standard SLD
resolution strategy, regardless of the order of the clauses. Tabling changes the
operational semantics for predicates marked with the : - table declaration,
which forces the compiler and runtime system to distinguish the first occurrence
of a tabled goal (the generator) and subsequent calls which are identical up to
variable renaming (the consumers). The generator applies resolution using the
program clauses to derive answers for the goal. Consumers suspend the current
execution path (using implementation-dependent means) and start execution
on a different branch corresponding to another clause of the predicate within
which the execution was suspended. When such an alternative branch finally
succeeds, the answer generated for the initial query (the generator) is inserted
in a table associated with that generator. This makes it possible to reactivate
consumers and to continue execution at the point where they were stopped.
Thus, consumers do not use SLD resolution, but obtain instead the answers

4 As an example, no modification to the underlying engine is needed.

from the table where they were previously inserted by the generator. Predicates
not marked as tabled are executed according to SLD resolution, hopefully with
minimal overhead due to the availability of tabling. This can be graphically seen
as the ability to suspend execution in a part of the tree which cannot progress
(because it enters a loop) and continue it somewhere else, where a solution for
the looping goal can be produced.

2.2 CCall by Example

CCall implements tabling by a combination of program transformation and side
effects in the form of insertions into and retrievals from a table which relates
calls, answers, and the continuation code to be executed after consumers read
answers from the table. We will now sketch how the mechanism works using the
path/2 example (Figure 1). The original code is transformed into the program
in Figure 2 which is the one actually executed.

Roughly speaking, the transformation for tabling is as follows: an auxiliary
predicate (slg_path/2) for path/2 is introduced so that calls to path/2 made
from regular (SLD) Prolog execution do not need to be aware of the fact that
path/2 is being tabled. The primitive s lg /1 will make sure that its argument is
executed to completion and will return, on backtracking, all the solutions found
for the tabled predicate. To this end, s lg /1 checks if the call has already been
executed. If so, all its answers are returned by backtracking. Otherwise, control
is passed to a new predicate (slg_path/2 in this case).5 slg_path/2 receives in
its first argument the original call to path/2 and in the second argument the
identifier of its generator, which is used to relate operations on the table with
this initial call. Each clause of slg_path/2 is derived from a clause of the original
path/2 predicate by:

— Adding an answer/2 primitive at the end of each clause of the original tabled
predicate, answer/2 is responsible for checking for redundant answers and
inserting them in the table.

— Instrumenting calls to tabled predicates using the s l g c a l l / 1 primitive. If
this tabled call is a consumer, path_cont/3, along with its arguments, is
recorded as (one of) the continuation(s) of its generator. If the tabled call
is a generator, it is associated with a new call identifier and execution fol­
lows using the slg_path/2 program clauses to derive new answers (as done
by s lg/1) . Besides, path_cont/3 will be recorded as a continuation of the
generator identified by Id if the tabled call cannot be completed (there were
dependencies on previous generators). The path_cont/3 continuation will be
called consuming found answers or erased upon completion of its generator.

— Encoding the remaining of the clause body of path/2 after the recursive call
by using path_cont/3. It is constructed similarly to slg_path/2, i.e., apply­
ing the same transformation as for the initial clauses and calling s l g c a l l / 1 .

The second argument of path_cont/3 is a list of bindings needed to recover
the environment of the continuation call. Note that, in the program in Figure 1.

5 The unique name has been created for simplicity by prepending slg_ to the predicate
name -any safe means of constructing a unique predicate symbol can be used.

path(X, Y):- slg(path(X, Y)) .
slg_path(path(X, Y), ld):-

:- table path/2. e d g e (x Y)_

u , v 7 . slgcal l(path.cont(ld, [X], path(Y, Z))) .
? A 7 Y VA slg_path(path(X, Y), ld):-

e d g e X ' Y ' edge(X, Y),
Pa t h(Y, Z) - answer(ld, path(X, Y)) .

path(X, Z):-

edge(X, Z). path_cont(ld, [X], path(Y, Z)):-
answer(ld, path(X, Z)).

Fig. 2. The program in Figure 1 after being trans-
Fig. 1. A sample program. formed for tabled execution.

an answer to a query such as ?- path(X, Y) may need to bind variable X. This
variable does not appear in the recursive call to path/2, and hence it does not
appear in the path/2 term passed on to s l g c a l l / 1 either. In order for the body
of path_cont/3 to insert in the table the answer corresponding to the initial
query, variable X (and, in general, any other necessary variable) has to be passed
down to answer/2. This is done with the list [X], which is inserted in the table
as well and completes the environment needed for the continuation path_cont/3
to resume the previously suspended call.

A safe approximation of the variables which should appear in this list is the
set of variables which appear in the clause before the tabled goal and which are
used in the continuation, including the answer/2 primitive. Variables appearing
in the tabled call itself do not need to be included, as they will be passed along
anyway. This list of bindings corresponds to the frame of the parent call if the
answer/2 primitive is added to the end of the body being translated.

Key Contribution of CCall: a new predicate name is created for all points
where suspension can happen. Suspension is performed by saving this predicate
name, a list of bindings, and a generator identifier. Resumption is performed by
constructing a Prolog goal with the information saved on suspension plus the
answer which raised the resumption. It is clear that this is significantly simpler
to implement than other approaches as XSB or CHAT, where changes in the ab­
stract machine have to be introduced. Consequently, porting and maintainability
are simpler too, since CCall is independent of the compiler and how to create a
Prolog term on the heap is the only one low level operation to implement.

3 Mixing Tabled and Non-Tabled Predicates

A continuation is the way CCall tabling preserves both the environment and the
code of a consumer to be resumed. The list of bindings contains the same vari­
ables as the frame of the predicate where the s l g c a l l / 1 primitive is executed,
taking into account the answer/2 primitive added at the end of the clause. How­
ever, the CCall approach to tabling, as originally proposed, has a problem when
Prolog predicates appear between generators and consumers: the environments
created by the non-tabled predicates are not taken into account, and they may

:- table t / 1 .

t(A):-
P(B),
A is B + 1.

t(0).

p(B):-t(B), B < 1.

Fig. 3. A program for which the origi­
nal CCall transformation fails.

t(A):- slg(t(A)).
slg_t(t(A), ld):-

p(B), A is B + 1,
answer(ld, t(A)).

slg.t(t(0), Id):-
answer(ld, t(0)).

p(B):-t(B), B < 1.

Fig. 4. The program in Figure 3 after being
transformed for tabled execution.

?-t(A).

l.slg(t(A)).
10. Complete.

2. slg_t(t(A),id). 7.slgJ(t(0),id).

3. p(B), A is B + 1, answerljd, t (A)). 8. answerlld, t(0)).

4. t(B), B < 1, A is B + 1, answerljd, t (A)).

5. slg(t(B)), B < 1, A is B + 1, answer(id,t(A).

Fig. 5. Tabling execution of example of Figure 1.

be needed to correctly suspend and resume tabled predicates, as the example in
the following section shows.

3.1 A n I l l -Behaved Transformat ion

Figure 3 shows an example of a tabled program, where tabled and non-tabled
execution (t / 1 and p /1) are mixed. The translation of the program is shown in
Figure 4, taking into account the rules in Section 2.2.

The execution of the program with the query t (A) is shown in Figure 5. The
execution is correct until s l g / 1 is called again by p / 1 . At tha t point execution
should suspend (and later resume), but s l g / 1 does not have any associated
continuation, and it does not have any pointer to the code to be executed on
resumption (partially in p / 1 and partially in s l g _ t / 2) : B < 1, A i s B + 1 ,
answer (I d , t (A)) is lost on backtracking and it is not reachable when resuming.
Consequently, the second answer to the query, t (l) , is lost.

The call to t (B) made by p(B) could have been translated as if it were in
the body of a tabled clause, but in tha t case the piece of code A i s B + 1 in
the first clause of t / 1 would be lost anyway. This is an example of why all the

frames between a consumer and its nearest generator have to be saved when
suspending, and it is not enough to save just the last one, as in the original
CCall proposal [15], which does work, however, when all the calls to the tabled
predicates appear in the body of the clause of a tabled predicate. In that case, it
is enough to save the last frame with the associated continuation code. Note that
all the suspension-based tabling approaches preserve the frames / environments
from the consumer until the corresponding generator.

To solve this problem, we have extended the translation to take into account
a new kind of predicates, named bridges. A bridge predicate is a non-tabled
Prolog predicate whose clauses generate frames which have to be saved in the
continuation of a consumer. In the example of Figure 3, p/1 is a bridge predicate.

3.2 Marking Predicates as Bridges

Bridge predicates are all the non-tabled predicates which can appear in the
execution tree of a query between a generator and each of its consumers, i.e., the
predicates whose environments are in the local stack between the environment
of the generator and the environment of each of its consumers. Note that tabled
predicates do not need to be included as bridge predicates as their environment
will be already saved by the translation. Additionally, only recursive calls which
can lead to infinite loops under SLD resolution have to actually be taken into
account, because these are the only ones which can suspend and later be resumed.
Programs for which tabling merely speeds up already terminating computations
are not subject to the problem outlined above, and therefore do not benefit from
the improved translation shown herein.

Thus, in order to determine a minimal set of bridge predicates, Bmin, we need
to determine before the minimum set of tabled predicates, Tmj„, which ensures
termination. When Tmin is found, Bmin is the set of non-tabled predicates which
are "in the middle" of two calls to predicates belonging to Tmin. Since looking
for Tmin is undecidable (because it implies detecting infinite failures), looking for
Bmin is also undecidable and a safe approximation, which may mark as bridge
some predicates which do not need to be, is needed.

As we will see in Section 4.2, the only disadvantage of such an over-approximation
is that some code will be duplicated (to accept a new argument for the case where
a bridge predicate is called from a tabled execution), and that bridge predicates,
having an extra argument, can be called when this is not needed. The algorithm
we have implemented (Figure 6) only looks for tabled predicates which can re­
cursively call themselves. For the examples used for performance evaluation in
Section 6, using the safe approximation algorithm produces an average slowdown
of only 3% with respect to a perfect characterization of bridge predicates.

4 A General Translation for Tabled Programs

In this section we present program transformation rules which take into account
bridge predicates. This transformation assumes that the safe approximation al­
gorithm for bridge predicates has already been run, and all the bridge predicates
have been marked by adding a : - bridge P/N declaration in the program.

Make a graph G with an edge (pl/nl, p2/n2) <̂> p2/n2 is called from pl/nl
Bridges = 0
FOR each predicate T in TABLED PREDICATES

Forward = All predicates reached from T in G
Backward = All predicates from which T is reached in G
Bridges = Bridges U (Forward n Backward)

Bridges = Bridges - TABLED PREDICATES

Fig. 6. Safe approximation to look for bridge predicates.

As seen in Section 2.2, a continuation is the way to save an environment,
because the predicate name is the same as the P C counter of the environment
and the list of bindings is the same as the variables tha t a environment saves.
Consequently, the goal of the new translation is to associate a continuation with
each of the bridge predicates to save their associated environment. Continuations
have a new argument (the next continuation to be executed) and they are be
pushed onto the local stack in the same way as the environments.

4.1 Trans la t ion R u l e s

The rules for the original translation have three different goals: to maintain the
interface with the rest of the code, to manage tabled calls which appear in the
body of the clauses of a tabled predicate, and to insert answers at the end of
the evaluation of each clause. The same points have to be addressed for bridge
clauses, taking into account that a tabled or bridge call has to be translated if
it appears in the body of a tabled predicate or a bridge predicate.

The rules for the new translation are shown in Figure 7, where we have used
a sugared Prolog-like language. For example, a functional syntax is implicitly
assumed where needed, and infix V is a general append function which joins
either (linear) structures or, when applied to atoms, concatenates them. It may
appear in an output head position with the expected semantics.

The t r a n s / 2 predicate receives a clause to be translated and returns the list
of clauses resulting from the translation. Its first clause ensures tha t predicates
which are non-tabled and non-bridge are not transformed.6 The second one is to
generate the interface of table predicates with the rest of the code: if there is a
tabled declaration, the interface is generated. The third clause translates clauses
of tabled predicates, and the fourth one translates clauses of bridge predicates,
where the original one is maintained in case it is called outside a tabled call
(this is in order to preserve the interface with non-tabled code). They generate
the new head of the clause, Head.tr, and the code which has to be appended
at the end of the body, End, before calling t r a n s B o d y / 6 with these arguments.
End can be the a n s w e r s / 2 primitive for tabled clauses or a r g (3 , Cont, Head) ,
c a l l (C o n t) , which updates the answer found for a bridge predicate in the next
continuation to be resumed before calling it.

6 The predicates t a b l e / 1 and b r idge /1 are dynamically generated by the compiler
from the corresponding declaration. They check if their argument is a clause of a
tabled or bridge predicate, or if their argument is a functor corresponding to a tabled
or bridge predicate, respectively.

http://Head.tr

trans(C, C) : - \ + table(C), \ + bridge(C).
trans ((: - table P/N), (P(Xl..Xn) : - slg(P(Xl..Xn)))).
trans ((Head : - Body), LC) : -

table(Head),
Head.tr =. . [' slg_ ' o Head, Head, Id],
End = answer(ld, Head),
transBody(Head_tr, Body, Id, \\, End, LC).

trans((Head : - Body), (Head : - Body) o LC) : -
bridge(Head),
Head.tr =. . [Head o '.bridge', Head, Id, Cont],
End = (arg(3, Cont, Head), call (Cont)),
transBody(Head_tr, Body, Id, Cont, End, LC).

transBody(D, Q, . , . , Q, Q).
transBody(Head, Body, Id, ContPrev, End, (Head : - Body_tr) o RestBody.tr) : -

following (Body, Pref, Pred, Suff),
getLBinds(Pref, Suff, LBinds),
updateBody(Pred, End, Id, Pref, LBinds, ContPrev, Cont, Body_tr),
transBody(Cont, Suff, Id, ContPrev, End, RestBody_tr).

following (Body, Pref, Pred, Suff) : -
member(Body, Pred),
(table(Pred); bridge(Pred)), !,
Body = Pref o Pred o Suff.

updateBody(0, End, _ld , Pref, _LBinds, .ContPrev, 0, Pref o End).
updateBody(Pred, _End, Id, Pref, LBinds, ContPrev, Cont, Pref o slgcall (Cont)) : —

table(Pred),
getNameCont(NameCont),
Cont = NameCont(ld, LBinds, Pred, ContPrev).

updateBody(Pred, _End, Id, Pref, LBinds, ContPrev, Cont, Pref o Bridge_call) : —
bridge(Pred),
getNameCont(NameCont),
Cont = NameCont(ld, LBinds, Pred, ContPrev),
Bridge_call =. . [Pred o '.bridge' , Cont] .

Fig. 7. The Prolog code of the translation rules.

transBody/6 generates, in its last argument, the translation of the body of
a clause by taking care, in each iteration, of the code until the next tabled or
bridge call, or until the end the clause, and appending the translation of the rest
of the clause to this partial translation. In other words, it calls updateBody/8 to
translate tabled or bridge calls and continues translating the rest of the body.

The following/4 splits a clause body in three parts: a prefix, until the first
time a tabled or bridge call appears, the tabled or bridge call itself, and a suffix
from this call until the end of the clause. getLBinds/3 obtains the list of variables
which have to be saved to recover the environment of the consumer, based on
the ideas of Section 2.2.

The updateBody/8 predicate completes the body prefix until the next tabled
or bridge call. Its first six arguments are inputs, the seventh one is the head of

http://Head.tr
http://Head.tr
http://RestBody.tr

t (A) : - s lg(t (A)) . p(B) : - t (B) , B < 1.
s lg_t(t (A), Id) : -

p_bridge(ld, slg_tO (Id , [A], p(B), 0))- p_bridge(ld, Cont) : -
slgcall (p.bridgeO(ld, \\, t (B) , Cont)).

slg_t (t (0) , Id) : - answer(ld, t (0)) .
p.bridgeO(ld, \\, t (B) , Cont) : -

slg.tO(ld, [A], p(B), D) : - B < 1 ,
A is B + 1, arg(3, Cont, p(B)),
answer(ld, t (A)) . call (Cont).

Fig. 8. The program in Figure 3 after being transformed for tabled execution.

the continuation for the suffix of the body and the last argument is the new
translation for the prefix. The first clause takes care of the base case, when there
are no calls to bridge or tabled predicates left, the second clause generates code
for a call to a tabled predicate, and the last one does the same with a bridge
predicate. That getNameCont/1 generates a unique name for the continuation.

We will now use the example in Figure 3, adding a : - bridge p /1 declara­
tion, to exemplify how a translation would take place.

4.2 The Previous Example with the Correct Transformation

The translation of the first clause of t / 1 is done by the third clause of trans/2,
which makes the head of the translated clause to be slg_t (t (A), Id) and states
that the final call of that clause has to be answer (Id, t (A)) —i.e., when the
clause successfully finishes, it adds the answer to the table.

transBody/6 takes care then of the rest of the body, which identifies which
environment variables (A, in this case) have to be saved and matches Pref,
Pred, and Suf f with the goals before the call to the tabled predicate (none —
and empty conjunction), the call to the tabled predicate (p(B)), and the goals
after this call (A i s B + 1). The third clause of updateBody/8 generates the
body of Head_tr, to give the first clause of s lg_t /2 . A continuation is generated
for the rest of the body; the code of the continuation is a predicate whose head
is s lg_t0/3 and its body is generated by the first clause of updateBody/8.

The translation of the second clause of t / 1 is simpler, as it only has to add
answer (Id , t (0)) at the end of the body of the new predicate.

The clause for p /1 is kept to maintain its interface when it is not called from
inside a another tabled execution. The translation for the clause of p /1 is made
by the fourth clause of trans/2 where Head.tr is unified with p_bridge(p(B),
Id, Cont). In the expression for End, the predicate a rg /3 is used to unify the an­
swers found for the bridge predicate with the corresponding argument of the con­
tinuation. transBody/6 finds an empty list of environment variables and unifies
Pref, Pred and Suf f with [] , t (B) and B < 1, respectively. The second clause of
updateBody/8 generates the body for the new predicate p_bridge/3. A contin­
uation is generated to execute the rest of the body, whose head is p_bridge0/3
and whose body is generated by the first clause of updateBody/8. As we can see,
bridge predicates are appending continuations and End variable is calling them
sequentially.

http://Head.tr

l .slg(t(A)).

2. s lgj(t (A), id).

3. p_bridge(id slgJO(id, [A], p(B), [])).

4. slg_call(p_bridgeO(id [], t(B), slgJO(id [A], p(B), [])).

6. slgj(t(0), id).

7. answer(id t(0)).

10. 0 < 1. arg(3, s lgJ0(id [A], p(B)). p(0)). call(slgJ0(id [A], p(B). [])).

11. arg(3, s lgJ0(id [A], p(B). []). p(0)). call(slgJ0(id, [A], p(B). [])).

12.call(slgJ0(id[A].p(0). []).

13. A is 0 + 1, answe<id t(A)).

14. answei(id t(l)).
17. 1 < 1. arg(3. s lgJ0(id [A], p(B). []). p(l)). call(slgJ0(id [A], p(B). [])).

Fig. 9. New CCall tabling execution.

4.3 Execution of the Transformed Program

The execution tree of the transformed program is shown in Figure 9. It is similar
to that in Figure 5, but a continuation slg_tO(id, [A] , p(B) , []) is passed
to the transformed clause of p / 1 . This continuation contains the code to be
executed after the execution of p(B) and the list [A] needed to recover its
environment. Consequently, there are two continuations associated with the sus­
pension: one continuation to execute the rest of the code of p(B) and another
one to execute the rest of the code of t(A).

After the first answer is found, this double continuation is resumed. It is
executed as a normal Prolog and the second answer, t (l) , is found. The arg/3
predicate is used to unify the answer of p(B) we have just found with the literal
stored in the continuation.

5 ©(CHAT) is not comparable with ©(CCall)

In this section we present a comparative analysis of the complexity of CCall
and CHAT, which is an efficient implementation of tabling with a compara­
tively simple machinery. Since it is known that ©(CHAT) is 6>(SLG-WAM) [7], the
comparative analysis applies to the SLG-WAM as well.

The complexity analysis focuses on the operations of suspension and resump­
tion. The state of the consumer has to be protected when suspending to reinstall
it when resuming. CCall achieves that by copying the continuation associated
with the consumer in a special memory area to be protected on backtracking. In
the original implementation [15] this continuation is copied from the heap to a

separate table (when suspending) and back (when resuming). As proposed in [6],
continuations can be saved in a special memory area with the same data format
as the heap. This makes it possible to use WAM instructions and additional ma­
chinery on them and, when resuming, they can be used as normal Prolog data
and code, without being recopied.

On the other hand, CHAT freezes the heap and the frame stack when re­
suming. The heap and frame stack are frozen by traversing the choice point
stack. For all the choice points between the consumer choice point and its gen­
erator, the pointer to the end of the heap and frame stack are changed to the
values of the consumer choice point values. By doing that, heap and frame stack
are protected on backtracking. However, the consumer choice point has to be
copied to a special memory area as well as the segment trail (with its associated
values) between the consumer and the generator, to reinstall the values of the
bound variables at the time of suspension which backtracking will unbind. In
consequence, when resuming the trail values have to be reinstalled as well as the
consumer choice point.

Each consumer is suspended only once, and it can be resumed several times.
The rest of the operations, i.e., checking if a tabled call is a generator or a con­
sumer, are not analyzed, because they are common to both systems. In addition,
we will ignore the cost of working at the Prolog level, since this is an orthogonal
issue: CCall primitives could be compiled to WAM instructions and working at
Prolog level does not increase the system complexity.

©(CCall): when suspending, CCall has to copy all the environments until the
last generator and the structures in the heap which hang from them. If we name
E the size of all the environments and H the size of the structures in the heap,
the time consumption when suspending is: 6>(E + H).

When resuming, CCall just has to perform pattern matching of the continu­
ation against its clause. The time taken by the pattern matching depends on the
size of the list of bindings, which is known to be & (E). Since each consumer can
be resumed N times, the time consumption of resuming consumers is 6>(NxE).

©(CHAT): when suspending, CHAT has to traverse the frame and choicepoint
stacks, but with the improvements presented in [7], the time this takes can be
neglected because a choice point is only traversed once for all the consumers.
The trail and the last choice point have to be copied. If we call T the size of the
trail and C the size of the choice point, which is bound by a constant for a given
program, the time consumption when suspending is: & (T).

When resuming, CHAT has to reinstall the values of the frame and the choice
point. Since each consumer can be resumed N times, the time consumption of
resuming is 6>(NxT).

Analyzing the worst cases of both systems: we can conclude E + H > T.
because each variable can only be once in the trail, and then CCall is worse than
CHAT when suspending. On the other hand, in case that E < T, CCall is better
than CHAT when resuming. Consequently, for a plausible general case, the more
resumptions there are, the better CCall behaves in comparison with CHAT, and
conversely. In any case, the worst and best cases for each implementation are

different, which makes them difficult to compare. For example, if there is a very
large structure pointed to from the environments, and none of its elements are
pointed to from the trail, CCall is slower than CHAT, since it has to copy all the
structure in a different memory area when suspending and CHAT does nothing
both when suspending and when resuming.

On the other hand, if all the elements of the structure are pointed to from the
trail, CCall has to copy all the structure on suspension in a different memory area
to protect it on backtracking, but it is ready to be resumed without any other
operation (just a unification with the pointer to the structure). CHAT has to
copy all the structure on suspension too, because all the structure is in the trail.
In addition, each time the consumer is resumed, all the elements of the structure
have to be reinstalled using the trail, and CHAT has to perform more operations
than CCall, and then, the more resumptions there are, the worse CHAT would
be in comparison with CCall. Anyway, as the trail is usually much smaller than
the heap, in general cases, CHAT will have an advantage over CCall.

6 Performance Evaluation

We have implemented the proposed technique as an extension of the Ciao sys­
tem [1]. Tabled evaluation is provided to the user as a loadable package that
implements the new directives and user-level predicates, performs the program
transformations, and links in the low-level support for tabling. We have imple­
mented CCall tabling with the efficiency improvements presented in [6] and the
new translation for general programs explained in this paper.

Table 1 aims at determining how the proposed implementation of tabling
compares with state-of-the-art systems —namely, the latest available versions
of XSB, Yap Tab, and B-Prolog, at the time of writing, using the typical bench­
marks which appear in other performance evaluations of tabling approaches.7

In this table we provide, for several benchmarks, the raw time (in milliseconds)
taken to execute them using tabling. Measurements have been made with Ciao-
1.13, using the standard, unoptimized bytecode-based compilation, and with the
CCall extensions loaded, as well as in XSB 3.0.1, YapTab 5.1.1, and B-Prolog
7.0. Note that we did not compare with CHAT, which was available as a configu­
ration option in the XSB system and which was removed in recent XSB versions.
CHAT can be expected to be at least as fast (if not slightly faster) than XSB.

All the executions were performed using local scheduling and disabling garbage
collection; in the end this did not impact execution times very much. We used
gcc 4 .1 .1 to compile all the systems, and we executed them on a machine with
Fedora Core Linux, kernel 2.6.9, and an Intel Xeon DESCHUTES processor.

The first benchmark is path, the same as Figure 1, which has been executed
with a chain-shaped graph. Since this is a tabling-intensive program with no con­
sumers in its execution, the difference with other systems is mainly due to having
large parts of the execution done at Prolog level. The following five benchmarks,
until atr2, are also tabling intensive. As their associated environments are very

7 This is in contrast to [6] where, due to the limitations of the CCall approach the
benchmarks presented did not need the use of bridge predicates.

Program

path
tcl
tcr
ten
sgm
atr2
Pg
kalah
gabriel
disj
cs_o
cs_r
peep

CCall

517.92
96.93

315.44
485.77
3151.8
689.86
15.240
23.152
23.500
18.095
34.176
66.699
68.757

XSB

231.4
59.91

106.91
123.21
1733.1
602.03
13.435
19.187
19.633
15.762
27.644
55.087
58.161

YapTab

151.12
39.16
90.13
85.87

1110.1
262.44
8.5482
13.156
12.384
9.2131
18.169
34.873
37.124

BProlog

206.26
51.60
96.21

117.70
1474.0
320.07
36.448
28.333
40.753
29.095
85.719
170.25
150.14

Table 1. Comparing Ciao+CCall with XSB, YapTab, and B-Prolog.

small, CCall is far from its worst case (see Section 5), and the difference with
other systems is similar to that in path and for a similar reason. The worst case
in this set is ten because there are two calls to s l g c a l l / 1 per generator, and
the overhead of working at the Prolog level is duplicated.

B-Prolog, which uses a linear tabling approach, suffers if costly predicates
have to be recomputed: this is what happens in benchmarks from pg until peep,
where tabled and non-tabled execution is mixed. This is a well-known disad­
vantage of linear tabling techniques which does not affect suspension-based ap­
proaches. It has to be noted, however, that latest versions of B-Prolog implement
an optimized variant of its original linear tabling mechanism [21] which tries to
avoid reevaluation of looping subgoals.

In order to compare our implementation with XSB and YapTab, we must
take into account that the speeds of XSB, and YapTab8 are different, at least in
those cases where the program execution is large enough to be really significant
(between 1.8 and 2 times slower in the case of XSB and 1.5 times faster in the
case of YapTab).

In non-trivial benchmarks, from pg until peep, which at least in principle
should reflect more accurately what one might expect in larger applications
using tabling, execution times are in the end very competitive when comparing
with XSB or YapTab. This is probably due to the fact that the raw speed of the
basic engine in Ciao is higher than in XSB and closer to YapTab, rather than to
factors related to tabling execution, but it also implies that the overhead of the
approach to tabling used is reasonable after the proposed optimizations in [6],
In this context it should be noted that in these experiments we have used the
baseline, bytecode-based compilation and abstract machine. Turning on global
analysis and using optimizing compilers and abstract machines [11,3,12] can
further improve the speed of the SLD part of the computation.

8 Note that we are comparing the tabled-enabled version of Yap, which is somewhat
slower than the regular Yap.

7 Conclusions
We have presented an extension of the continuation call technique which does not
have the limitations of the original continuation call approach regarding the in­
terleaving of tabled and non-tabled predicates. This approach has the advantage
of being easier to implement and maintain than other techniques which require
non-trivial modifications to low-level machinery. Although there is an overhead
imposed by executing at Prolog level, we expect the speed of the source (Prolog)
language to gradually improve by using global analysis, optimizing compilers,
and better abstract machines. Accordingly, we expect the performance of CCall
to improve in the future and thus gradually gain ground in the comparisons.

Although a non optimal tabled execution is obviously a disadvantage, it is
worth noting that , since our implementation introduces only minimal changes in
the WAM and none in the associated Prolog compiler, the speed at which regular
Prolog is executed remains unchanged. In addition to this, the modular design of
our approach gives bet ter chances of making it easier to port to other systems. In
our case, executables which do not need tabling have very little tabling-related
code, as the da ta structures (for tries, etc.) are handled by dynamic libraries
loaded on demand, and only stubs are needed in the regular engine. The program
transformation is taken care of by a plugin for the Ciao compiler [2] (a "package,''
in Ciao's terms) which is loaded and active only at compile time, and which does
not remain in the final executable.

References

1. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lopez-Garcia, and G. Puebla
(Eds.). The Ciao System. Ref. Manual (vl.13). Technical report, C. S. School
(UPM), 2006. Available at http://www.ciaohome.org.

2. D. Cabeza and M. Hermenegildo. The Ciao Modular, Standalone Compiler and
Its Generic Program Processing Library. In Special Issue on Parallelism and Im­
plementation of (C)LP Systems, volume 30(3) of Electronic Notes in Theoretical
Computer Science. Elsevier - North Holland, March 2000.

3. M. Carro, J. Morales, H.L. Muller, G. Puebla, and M. Hermenegildo. High-Level
Languages for Small Devices: A Case Study. In Krisztian Flautner and Taewhan
Kim, editors, Compilers, Architecture, and Synthesis for Embedded Systems, pages
271-281. ACM Press / Sheridan, October 2006.

4. Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General
Logic Programs. Journal of the ACM, 43(l):20-74, January 1996.

5. S. Dawson, C.R. Ramakrishnan, and D.S. Warren. Practical Program Analysis Us­
ing General Purpose Logic Programming Systems - A Case Study. In Proceedings
of PLDI'96, pages 117-126, New York, USA, 1996. ACM Press.

6. P. Chico de Guzman, M. Carro, M. Hermenegildo, Claudio Silva, and Ricardo
Rocha. An Improved Continuation Call-Based Implementation of Tabling. In
D.S. Warren and P. Hudak, editors, 10th International Symposium on Practical
Aspects of Declarative Languages (PADL'08), volume 4902 of LNCS, pages 198-
213. Springer-Verlag, January 2008.

7. Bart Demoen and K. Sagonas. CHAT is <9(SLG-WAM). In D. Mc. Allester
H. Ganzinger and A. Voronkov, editors, International Conference on Logic for
Programming and Automated Reasoning, volume 1705 of Lectures Notes in Com­
puter Science, pages 337-357. Springer, September 1999.

http://www.ciaohome.org

8. Bart Demoen and Konstantinos Sagonas. CAT: The Copying Approach to Tabling.
In Programming Language Implementation and Logic Programming, volume 1490
of Lecture Notes in Computer Science, pages 21-35. Springer-Verlag, 1998.

9. Bart Demoen and Konstantinos F. Sagonas. Chat: The copy-hybrid approach to
tabling. In Practical Applications of Declarative Languages, pages 106-121, 1999.

10. Hai-Feng Guo and Gopal Gupta. A Simple Scheme for Implementing Tabled Logic
Programming Systems Based on Dynamic Reordering of Alternatives. In Interna­
tional Conference on Logic Programming, pages 181-196, 2001.

11. J. Morales, M. Carro, and M. Hernienegildo. Improving the Compilation of Prolog
to C Using Moded Types and Determinism Information. In Proceedings of the Sixth
International Symposium on Practical Aspects of Declarative Languages, number
3057 in LNCS, pages 86-103, Heidelberg, Germany, June 2004. Springer-Verlag.

12. J. Morales, M. Carro, and M. Hernienegildo. Comparing Tag Scheme Variations
Using an Abstract Machine Generator. In 10th Int'l. ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming (PPDP'08), pages 32-43.
ACM Press, July 2008.

13. Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, T. Swift,
and D.S. Warren. Efficient Model Checking Using Tabled Resolution. In Computer
Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 143-
154. Springer Verlag, 1997.

14. Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on deductive
database systems. Journal of Logic Programming, 23(2):125-149, 1993.

15. R. Ramesh and Weidong Chen. A Portable Method for Integrating SLG Resolution
into Prolog Systems. In Maurice Bruynooghe, editor, International Symposium on
Logic Programming, pages 618-632. MIT Press, 1994.

16. R. Rocha, C. Silva, and R. Lopes. On Applying Program Transformation to Im­
plement Suspension-Based Tabling in Prolog. In V. Dahl and I. Niemela, editors,
23rd International Conference on Logic Programming, number 4670 in LNCS, pages
444-445, Porto, Portugal, September 2007. Springer-Verlag.

17. K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-
Order Stratified Logic Programs. A CM Transactions on Programming Languages
and Systems, 20(3):586-634, May 1998.

18. H. Tamaki and M. Sato. OLD resolution with tabulation. In Third International
Conference on Logic Programming, pages 84-98, London, 1986. Lecture Notes in
Computer Science, Springer-Verlag.

19. D.S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93-
111, 1992.

20. R. Warren, M. Hernienegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684-699. MIT Press, August 1988.

21. Neng-Fa Zhou, T. Sato, and Yi-Dong Shen. Linear Tabling Strategies and Opti­
mizations. Theory and Practice of Logic Programming, 8(1):81-109, 2008.

22. Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation
of a linear tabling mechanism. Journal of Functional and Logic Programming,
2001(10), October 2001.

23. Youyong Zou, Tim Finin, and Harry Chen. F-OWL: An Inference Engine for
Semantic Web. In Formal Approaches to Agent-Based Systems, volume 3228 of
Lecture Notes in Computer Science, pages 238-248. Springer Verlag, January 2005.

