3,361 research outputs found

    Dynamic Memory Management Design Methodology for Reduced Memory Footprint in Multimedia and Wireless Network Applications

    Get PDF
    New portable consumer embedded devices must execute multimedia and wireless network applications that demand extensive memory footprint. Moreover, they must heavily rely on Dynamic Memory (DM) due to the unpredictability of the input data (e.g. 3D streams features) and system behaviour (e.g. number of applications running concurrently defined by the user). Within this context, consistent design methodologies that can tackle efficiently the complex DM behaviour of these multimedia and network applications are in great need. In this paper, we present a new methodology that allows to design custom DM management mechanisms with a reduced memory footprint for such kind of dynamic applications. The experimental results in real case studies show that our methodology improves memory footprint 60% on average over current state-of-the-art DM managers

    Systematic Methodology for Exploration of Performance – Energy Trade-offs in Network Applications Using Dynamic Data Type Refinement

    Get PDF
    Modern network applications require high performance and consume a lot of energy. Their inherent dynamic nature makes the dynamic memory subsystem a critical contributing factor to the overall energy consumption and to the execution time performance. This paper presents a novel, systematic methodology for generating performance-energy trade-offs by implementing optimal Dynamic Data Types, finely tuned and refined for network applications. Our systematic methodology is supported by a new, fully automated tool. We assess the effectiveness of the proposed approach in four representative, real-life case studies and provide significant energy savings and performance improvements compared to the original implementations

    Design of Energy Efficient Wireless Networks Using Dynamic Data Type Refinement Methodology

    Get PDF
    This paper presents a new perspective to the design of wireless networks using the proposed dynamic data type refinement methodology. In the forthcoming years, new portable devices will execute wireless network applications with extensive computational demands (2 – 30 GOPS) with low energy consumption demands (0.3 – 2 Watts). Nowadays, in such dynamic applications the dynamic memory subsystem is one of the main sources of energy consumption and it can heavily affect the performance of the whole system, if it is not properly managed. The main objective is to arrive at energy efficient realizations of the dominant dynamic data types of this dynamic memory subsystem. The simulation results in real case studies show that our methodology reduces energy consumption 50% on average

    Dynamic Data Type Refinement Methodology for Systematic Performance-Energy Design Exploration of Network Applications

    Get PDF
    Network applications are becoming increasingly popular in the embedded systems domain requiring high performance, which leads to high energy consumption. In networks is observed that due to their inherent dynamic nature the dynamic memory subsystem is a main contributor to the overall energy consumption and performance. This paper presents a new systematic methodology, generating performance-energy trade-offs by implementing Dynamic Data Types (DDTs), targeting network applications. The proposed methodology consists of: (i) the application-level DDT exploration, (ii) the network-level DDT exploration and (iii) the Pareto-level DDT exploration. The methodology, supported by an automated tool, offers the designer a set of optimal dynamic data type design solutions. The effectiveness of the proposed methodology is tested on four representative real-life case studies. By applying the second step, it is proved that energy savings up to 80% and performance improvement up to 22% (compared to the original implementations of the benchmarks) can be achieved. Additional energy and performance gains can be achieved and a wide range of possible trade-offs among our Pareto-optimal design choices are obtained, by applying the third step. We achieved up to 93% reduction in energy consumption and up to 48% increase in performance

    Systematic Design Flow for Dynamic Data Management in Visual Texture Decoder of MPEG-4

    Get PDF
    There is a clear trend of future embedded systems in moving toward wireless, multimedia, multi-functional and ubiquitous applications. This emerges new challenges in the existing solutions on performance, power, flexibility and costs, calling for innovations in both architecture and design methodology. In this paper we propose a design flow consisting of three stages to handle dynamic data, allowing the designer to create highly customized dynamic memory managers, make them bank-aware and create a design-time schedule of the different tasks of the application. We evaluated the proposed flow using the Visual Texture Coding (VTC) application, mapping it on a dual processor embedded platform achieving 5.5% reduction in memory footprint and 10% gains in execution time

    W-NINE: a two-stage emulation platform for mobile and wireless systems

    Get PDF
    More and more applications and protocols are now running on wireless networks. Testing the implementation of such applications and protocols is a real challenge as the position of the mobile terminals and environmental effects strongly affect the overall performance. Network emulation is often perceived as a good trade-off between experiments on operational wireless networks and discrete-event simulations on Opnet or ns-2. However, ensuring repeatability and realism in network emulation while taking into account mobility in a wireless environment is very difficult. This paper proposes a network emulation platform, called W-NINE, based on off-line computations preceding online pattern-based traffic shaping. The underlying concepts of repeatability, dynamicity, accuracy and realism are defined in the emulation context. Two different simple case studies illustrate the validity of our approach with respect to these concepts
    • …
    corecore