
Power aware data and memory management
for dynamic applications

P. Marchal, J.I. Gomez, D. Atienza, S. Mamagkakis and F. Catthoor

Abstract: In recent years, the semiconductor industry has turned its focus towards heterogeneous
multiprocessor platforms. They are an economically viable solution for coping with the growing
setup and manufacturing cost of silicon systems. Furthermore, their inherent flexibility perfectly
supports the emerging market of interactive, mobile data and content services. The platform’s
performance and energy depend largely on how well the data-dominated services are mapped on
the memory subsystem. A crucial aspect thereby is how efficient data is transferred between the
different memory layers. Several compilation techniques have been developed to optimally use the
available bandwidth. Unfortunately, they do not take the interaction between multiple threads into
account and do not deal with the dynamic behaviour of these novel applications. The main
limitations of current techniques are outlined and an approach for dealing with them is introduced.

1 Design challenges of media-rich services

Business analysts forecast a 250 billion dollar market for
media-rich, mobile wireless terminals [1]. These systems
require an enormous computational performance: 40 giga-
operations per second (GOPS). Even though current PCs
could provide sufficient performance, they are too power-
hungry (10–100 W). Mobile devices should consume at
least two or three orders of magnitude less [2]. Furthermore,
they should be cheap to successfully penetrate the consumer
market. Consequently, and in spite of the design issues, the
engineering and manufacturing costs need to be reduced.
Industry strongly believes that platforms are a potential way
to meet the above challenges.

1.1 Era of platform-based design

A platform is a fixed microarchitecture together with a
programming environment that minimises mask-making
costs and is flexible enough to work for a set of applications
[3]. The production volumes can then remain high over an
extended chip lifetime.

To cope with the energy constraints, platforms usually
consist of multiple processors. Since power is cubic to the
processing frequency, parallelism is an effective way to
reduce it. Therefore, on most platforms two or more
processors are integrated. Besides parallelism, heterogen-
eity is an alternative way to decrease the energy cost. For
instance, the TI OMAP platform combines a RISC
processor with a digital signal processor (DSP). The RISC

is more energy-efficient for the input=output processing and
control-dominated applications. The DSP, however, pro-
vides the computational performance for audio and video
processing, while keeping the energy cost bounded. Indeed,
taking a look to the current market offers (e.g. ST Nomadik
[4], Philips Nexperia [5], TI OMAP [6]), it is clear that
heterogeneous multiprocessor platforms are conquering the
world of low-power embedded systems.

1.2 Desire for media-rich services

Platforms also perfectly support the next wave of media
rich, wireless applications, bound to flood the multibillion
dollar consumer market. Typical applications are media-
players such the MPEG4 IM1 player. We summarise their
most important characteristics in Fig. 1:

. multi-threaded: The systems contain multiple tasks which
can execute in parallel. The tasks can either be independent
or dependent. The system of Fig. 1 contains two parallel
tasks (T1 and T2).
. closed system: Even though we can only determine at
runtime which tasks execute and when they start, their type
is known at design time and their source code is
available. We assume that no other tasks can be downloaded
on the system (such as e.g. Java applets or other
software agents). For our example of Fig. 1, this entails
that no other types of tasks but T1 and T2 can occur at
runtime.
. time constraints: Tasks within multimedia applications
are usually bound to time constraints. The most common
deadline is the frame rate (see above). For a fluid video
display, the tasks of a thread-frame have to finish within a
deadline imposed by the frame rate. In the first frame of
Fig. 1, we use a high frame rate, i.e. a tight deadline for T1.
Thereafter, a user event relaxes the frame rate. In the
remainder of this text, we mainly focus on the frame rate,
despite the fact that other deadlines will in practice also
occur.
. tasks are control=data flow graphs: Each task is a
control=data flow graph. Hence, parts of a task may be
conditionally executed. As a result, which data and how
frequently it is accessed may significantly vary at run time.

q IEE, 2005

IEE Proceedings online no. 20045077

doi: 10.1049/ip-cdt:20045077

P. Marchal and F. Catthoor are with IMEC, Kapeldreef 75, Leuven,
Belgium and with Katholieke Universiteit Leuven J.I. Gomez and
D. Atienza are with DACYA, Universidad Complutense de Madrid,
28040 Madrid, Spain

S. Mamagkakis is with the Democritus University of Thrace, Xanthi,
Greece

E-mail: marchal@imec.be

Paper first received 9th July and in revised form 6th October 2004

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005224

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147946933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We take as a premise that at the start of each task we know
how much memory it needs. The memory space can be used
for the static data or as a heap for runtime allocated data.
. data-dominated: The tasks are data-dominated. As a
result, the energy of the data memory architecture dominates
the system cost. On multimedia systems, this assumption is
particularly true after the cost of the instruction memory
hierarchy is optimised (e.g. with [7, 8]). The data memory
cost is then the remaining energy bottleneck. Consequently,
optimising the data memory is the top priority, even if it
afterward slightly increases the processing energy
consumption.

In the next subsection, we discuss the main challenges to
integrate these applications on an embedded platform.

1.3 Memories rule power and performance

The memory system is an important contributor to the
performance and power consumption of embedded soft-
ware, particularly in multimedia applications [9–11].
The most well known technique for improving the
performance of the memory subsystem is to introduce a
layered memory architecture [12]. Large memories used to
store multimedia data have long access times. Therefore,
they are too slow for feeding the processing elements at a
sufficient rate. As a result, the processing elements stall,
thereby wasting time and energy. To improve the perform-
ance and reduce the energy cost, designers create a layered
memory hierarchy. Each layer contains smaller memories to
buffer the data that is frequently accessed by the processor.

We focus on how to exploit a layered memory
architecture. Particularly, we optimise the available band-
width to the multiple memories=banks of each layer. This
problem consists of detecting a data assignment and
instruction schedule. It has to satisfy all time constraints
while minimising the energy consumption. Although many
bandwidth optimisation techniques already exist, they only
improve the bandwidth within a basic block and assume that
the memories are accessed by a single thread. Moreover,
they require that the access pattern of the application can be
analysed at the design time. Unfortunately, in our
application domain multiple threads often share memory
resources. Furthermore, the user determines which threads
are running. As a consequence, we can only characterise the
access pattern at runtime. We will show that existing
techniques break down under these circumstances, resulting
in energy and performance loss.

In this paper, we overview the techniques which we have
developed to overcome the above limitations. We have
investigated on the one hand, design-time techniques for

globally optimising the memory bandwidth, even across the
tasks’ boundaries. On the other hand, we have developed a
combined design-time approach for dealing with the
dynamic behaviour. It makes runtime decisions based on
an extensive design-time analysis phase. Finally, we present
how these runtime decisions can be energy-efficiently
implemented at runtime. Before introducing our approach,
we explain the memory architecture targeted throughout this
paper and discuss the related work in more detail.

2 Target architecture

During our research we focus on a generic target
architecture (Fig. 2). Different processing tiles contain
multiple processing elements and are connected to a local
memory layer. The processing elements are closely
synchronised. A processing tile could be for instance a
VLIW or a simple RISC processor (e.g. on a TI OMAP).
The local memory layer on a processing tile comprises
multiple scratchpad memories=banks. Again this closely
resembles ST LX [13] or TI C6X [6] DSPs, where up to
eight memories are included in the local layer. We do not
directly exploit caches, but focus on scratchpad memories.
These software-controlled memories do not require
complex tag-decoding logic [10, 14]. Therefore, they have
a lower energy cost per access compared to caches and also
reduce the indeterminacy of the system. To further reduce
their energy cost, we assume that they are heterogeneous.
They can have different sizes, number of ports and access
time.

Furthermore, the processing tiles share an offchip
SDRAM (like on the TI OMAP or Philips Nexperia).
We include the SDRAM in our overall target architecture,
because it consumes up to 30% of the system energy cost of
a PDA [15]. (This percentage is for a complete system
including speakers, LCD, etc.)

We integrate a crossbar as communication architecture
between the processing elements and the local layer as well
as between the local layers and the shared SDRAM.
Although a crossbar is not the most energy-efficient
architecture, its energy cost is currently limited to only
10% of the global data transfer cost. (In principle, a more
scalable communication architecture could be programmed
or synthesised (such as e.g. [16]). However, research on

time

active
tasks

frame 2:
long

deadline

frame 1:
short

deadline

frame 3:
long

deadline

T1

T2

T2T1

their
data

events

stop
T1

create
T2

decrease
frame
rate

T1

T2

T1 T2

Fig. 1 Characteristics of our application domain

proc.

F
U

s
F

U
s

SDRAMDMA
SDRAM
intf.

co
m

.a
rc

h.
 (

e.
g.

 X
ba

r)

co
m

.a
rc

h.
 (

e.
g.

, X
ba

r)

proc.

F
U

s
F

U
s

DMA
SDRAM
intf.

co
m

.a
rc

h.
 (

e.
g.

 X
ba

r)

Fig. 2 Target architecture for bandwidth optimisation

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 225

advanced communication architectures fall outside the
scope of this text.) Hence, not the communication
architecture itself, but mainly the memory ports are
potential bandwidth bottlenecks.

3 Surveying memory bandwidth optimisation
techniques

Memory bandwidth optimisation is a widely researched
topic It improves the bandwidth of a single memory layer.
This layer can either consist of multiple SRAMs or of a
large SDRAM memory (Fig. 2). We discern two methods
which are commonly applied=combined to optimise the
memory bandwidth; data layout transformations and
instruction scheduling techniques. Their goal is usually to
increase the system’s performance. Only a few methods
exchange the performance gains for energy savings. In the
next subsections, we outline them first for SDRAMs and
then for the local memory layer.

3.1 SDRAM bandwidth

SDRAMs are mostly used for storing large multimedia data.
The access time and energy cost of an SDRAM heavily
depend on how it is used. In general, an SDRAM consists of
several banks (Fig. 3). Each bank has a small buffer, called a
‘page-buffer’, that stores the last accessed datum together
with its neighbouring data. The application can read these
data elements at a low access latency. An access to another,
non-neighbouring element, however, requires a much
longer access time, because the data needs to be read from
the memory plane. The latter is called a ‘page-miss’. The
less page-misses occur, the better the performance and
energy of the SDRAM consumption become. Most methods
below focus on transforming the application such that page-
misses are avoided.

3.1.1 Data layout transformations and data
assignment techniques: The layout of the data in a
memory bank defines how many page-misses occur (Fig. 4).
To illustrate this, we map the scalars a, b, c, d, e, f in two
different ways onto the pp. of an SDRAM bank. If a memory
operation accesses an open page, a page-hit occurs (H). If,
on the other hand, the next operation reads=writes to another
page, a page-miss happens (M). For example, in the first
layout, an access to c after one to a results in a page-hit,
while an access to e after one to a causes a page-miss. Given
the presented access sequence, four page-misses occur in the
left layout. If we change the data layout, we can reduce the
number of page-misses. For example, when we move e to
the first page and b to the second one, only two page-misses
remain (Fig. 4-right). Furthermore, it reduces the execution
time from 22 to 14 cycles. Since the data layout has such a
large impact on the performance, several authors have

proposed techniques to optimise it. In [17] arrays were
partitioned into tiles, each fitting into a single page. The tiles
are derived such that the number of transitions between the
tiles, and thus the number of page-misses, is minimised.
In [18] the number of page-misses were estimated based on
a polyhedral description of the computation and a given
layout. In [19], the scalar variables are laid out inside the
program.

In contrast with the older DRAM architectures, most
SDRAMs nowadays have more than one bank. For example,
the Rambus’ SDRAMs have up to 32 banks. Multiple banks
provide an alternative way to eliminate page-misses.
For instance, [20, 21] distribute data with a high temporal
affinity over different banks such that page-misses are
avoided. Their optimisations rely on the fact that the
temporal affinity in a single-threaded application is
analysable at the design time.

Thus, despite data assignment techniques existing for
limiting the page-miss penalty, they are restricted to single-
threaded, design-time analysable tasks. As we will motivate
in Section 5.1, these techniques break down for dynamic
multi-threaded applications.

3.1.2 Memory access reordering techniques:
The access order also influences the number of page-misses
(Fig. 5). In the left access order, every access causes a
page-miss. However, when we slightly reorder the
accesses, we reduce the number of page-misses (right).
In research, but also in industry, both hardware and software
techniques have been proposed to avoid page-misses in
this way.

Hardware controllers to reorder the accesses are proposed
in [22–26]. Typically, they buffer and classify memory

...

page

column
decoder

row
decoder

page
buffer

bank

output/input
register

Fig. 3 Multi-banked SDRAM architecture

a b c

d e f

a c a e b d a c a e b d
M H H M M M M H H H M H

page 1

page 2

a e c

d b f

page 1

page 2
data

layout

access
sequence

2 page-hits (H)
4 page-misses (M)
time = 4*5 + 2 = 22

4 page-hits (H)
2 page-misses (M)
time = 5*2 + 4 = 14

page-hit (H): 1 cycle access latency
page-miss (M): 5 cycles access latency

Fig. 4 Different data layouts impact the number of page-misses

a b c

d e f

M H H H M H
a c e c d b a c a b e d
M H M M M M

page 1

page 2
data

layout

access
sequence

1 page-hits (H)
5 page-misses (M)
time = 5*5 + 2 = 27

4 page-hits (H)
2 page-misses (M)
time = 5*2 + 4 = 14

page-hit (H) : 1 cycle access latency
page-miss (M): 5 cycles access latency

Fig. 5 Access order impacts the number of page-misses

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005226

access operations according to their type (precharge, row
memory accesses and column memory accesses) and
according to the accessed bank and the row. The hardware
logic of the memory manager selects from this classified set
which operation to execute first. Our focus, low-power
design, is different. We strive to simplify the hardware to the
bare minimum and put the complexity of our designs as
much as possible in the design-time preparation phase
(Section 5.2). In this way, we avoid the extra hardware
which increases the energy consumption of all memory
accesses.

Besides hardware approaches, several software ones have
been presented too. Reference [27] exposes the special
access modes of SDRAM memories to the compiler.
As a result, their scheduler hides the access latency to
the SDRAMs. The work was started in the context of
system synthesis, but extended to VLIW compilers [28, 29].
Finally, [30] combines the scheduling technique of [27]
with the memory energy model of [31] for reducing the
static SDRAM energy.

The existing bandwidth optimisation techniques for
SDRAMs rely on the fact that the access pattern to the
data can be analysed for single-threaded applications. This
is not the case in our application domain, where memory
accesses from different threads are interleaved. Currently,
no techniques analyse the access pattern across threads.
The dynamic behaviour of our applications further
complicates the problem, because the tasks’ schedule is
only known at runtime.

3.2 Bandwidth to the local memory layer

Complementary to the SDRAM layer, memory bandwidth
optimisation has also been researched for the local memory
layer. Their optimisation objective is mostly to reduce
memory area=energy while guaranteeing performance.
In this subsection, we discern again techniques which only
change the data assignment and the ones which combine it
with instruction scheduling.

3.2.1 Data layout based techniques: In the
synthesis community, many techniques were developed for
synthesising a memory architecture which provides enough
memory bandwidth, but is energy-or area-efficient too
(e.g. [32–34]). They generate a memory architecture and
decide on the data to memory assignment in a single step.
As a consequence, this makes them not directly applicable
for predefined memory architectures (such as on ASIPs or
DSPs).

DSPs have a local memory layer which consists of
multiple memories (Fig. 6). This architecture has two
single-ported memory banks (X, Y) which can be read in
parallel. Most compilers model this memory layer as a
monolithic memory with multiple ports. Under this
assumption, as many memory operations can be scheduled
in parallel as load=store units exist on the architecture.
The compiler will even schedule accesses to the same
memory bank in parallel. Although this simplifies the
instruction scheduling, special hardware at runtime needs to
serialise the parallel accesses to the same memory resource.
The DSP is then stalled and performance is lost. Several
authors therefore expose the local memory architecture to
the linker. After compilation, [35] maximises the perform-
ance by carefully distributing the data across the different
memories. In this way, it ensures that as many accesses as
possible can be executed in parallel. Reference [36]
optimises the register assignment and assignment of the
arrays to the memory banks of a DSP together. The above

techniques only focus on performance and do not try to
optimise the access order.

3.2.2 Access order: The order of the memory
accesses has also an important impact on the performance
(Fig. 7). Without changing the access schedule, the
architecture 1 is the most energy-efficient. However, the
dual-port memory remains an important energy bottleneck
of this architecture. By rescheduling the memory accesses
of the inner loop, we can eliminate the need for this memory
(see architecture 7–2). It retains the same performance, but
both data structures can now be mapped in a single-port
memory, thereby reducing the energy cost from 0.23 mJ to
0.13 mJ. From this example, it is clear that data layout and
access scheduling are very effective in lowering the
architecture cost. Because both techniques are so closely
coupled, several authors propose to optimise memory layout
and access ordering together.

An example is [37]. It optimises the memory bandwidth
in a separate step before compilation, thereby outputting a
(partial) data assignment, which constrains the final
instruction scheduling. It guarantees that enough memory
bandwidth exists to meet the deadline, while remaining as
energy-efficient as possible. However, it only reorders the
memory accesses within the scope of a basic block.

instruction
memory

bank

X Data
memory

bank

Y Data
memory

bank

PLU MU0 MU1

32bit 32bit 32bit

interconnection bus

address
register

file

int
register

file

float
register

file

AU0 AU1 DU0 DU1 FPU0 FPU1

Fig. 6 VLIW architecture [35]

memory library

SP SRAM
4096B
0.2mm^2
0.110nJ/a

B

applications
arrays

A

A

B

access schedule 1

A

A

B

one
iteration

cycles

area: 0.4 + 0.1 = 0.5
energy: 0.23 mJ

B

A=
204BB

A=
2048B

architecture 1

DP SRAM
4096B
0.4mm^2
0.140nJ/a

SP SRAM
2048B
0.1mm^2
0.07nJ/a

A

B

A

access schedule 2

A

B

A

cycles

area: 0.1 + 0.1 = 0.2
energy: 0.13 mJ

B
A=

2048B

architecture 2

Fig. 7 Reducing the memory cost with access ordering

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 227

Several authors explored more global optimisation
techniques to further improve the performance. In the
high-performance community, several works tried to
globally schedule instructions to parallelise code [38], but
they do not focus on how to optimise the memory
bandwidth. In the embedded processors context, [39]
defines an operation schedule which reduces the number
of memory ports. However, it does not take into account
which data structures are accessed or how they are mapped
onto the memory.

In summary, the main limitations of the bandwidth
optimisation techniques for both the local and the shared
memory layer are:

(i) single-threaded applications: they optimise the memory
bandwidth for a single task at a time. As a result, we cannot
directly use them in our context where we want to optimise
the bandwidth across multiple tasks.
(ii) static applications: they obtain information on the
locality for the data at the design time. The locality depends
on which tasks are executing in parallel. Since in our
application domain the actual schedule is only known at
runtime, we can no longer extract it at the design time.
(iii) no global optimisation: the existing techniques only
reorder the memory accesses within the scope of a basic
block. No optimisations across the boundaries of the basic
blocks are systematically applied, but this significantly
reduces the potential performance gains and energy savings.

Several extensions are clearly needed for dealing with
multiple threads and coping with the dynamic behaviour of
our application domain. We discuss now techniques which
optimise the memory hierarchy across the boundaries of a
single task (Section 3.3) and overview the techniques for
managing dynamic behaviour (Section 3.4).

3.3 Memory optimisation in multi-threaded
applications

Different design communities have researched the influence
of the communication architecture and memory subsystem
on the performance of a multi-threaded application.

A large body of research exists in the high-performance
computing domain on parallelising applications while
reducing the communication cost (e.g. the SUIF project
[40–42] and the Paradign compiler [43, 44]). However, they
target an architecture which is very different from ours.
For example, they rely on complex hardware to guarantee
data coherency and consistency, which may come at an
important energy penalty.

Also in the embedded systems’ context, many authors
have studied multi-threaded applications. For example, in
[45] a top-down hierarchical scheduling heuristic maps
regular DSP algorithms onto multiprocessors taking mem-
ory and time constraints into account. The authors take
advantage of both temporal and spatial parallelism to
optimise the throughput [46] follows a similar hierarchical
approach, compiling code on a heterogeneous multiproces-
sor. The main disadvantage of these approaches is that they
use a synchronous data-flow model. It covers only a limited
application domain and is not sufficient for our target
domain.

Finally, since the middle of the last decennium, multi-
processor systems have been widely researched in the
system-level design community. Most techniques explore
how to combine IP-blocks such that the system cost
(albeit performance, energy or area) is reduced. In this
context, the ordering and assignment of the tasks to the
processing elements plays an important role in the system’s

performance (see [47, 48] for an overview). However, in
recent years, the energy consumption has become
an important bottleneck too. If energy is considered at all
in task scheduling, the focus has been on the processing
cores. Particularly, many techniques have been introduced
on dynamic voltage scaling [49–51].

Unfortunately, only limited research exists in reducing
the energy cost of the memory system. References [52, 53]
both a describe a heuristic which does allocation, assign-
ment, scheduling of multiple task-graphs and [54, 55]
compile a task-graph on a given heterogeneous architecture.
They explicitly model the memory system, interconnect and
processing elements. The algorithm answers the following
question: is it better to distribute the data (at a higher
communication cost) or to keep data local (at a higher local
memory cost). These task-level approaches use a naive
memory architecture model and hardly incorporate the real
behaviour of the interconnections and memories.

Recently, [56, 57] discussed how many processors are
required to execute code as energy-efficiently as possible.
The task interaction is empirically accounted for (based on
simulation), but that is not a scalable approach. Partitions
the data space of a linked binary is partitioned in [58]. Each
part is then mapped onto a memory bank. It selects the
partition which optimises the energy cost compared to a
dual port memory. The performance of each partition is not
accurately estimated since the technique does not account
for memory stalls.

We identify the following limitations to these techniques
for multi-threaded applications:

(i) They target an architecture which is either too different
from ours or is not detailed enough. As a result, we cannot
reuse them to optimise the interaction between parallel
executing tasks.
(ii) Their program model is too limited for our application
domain in which dynamic behaviour plays an important role
too.

In the following Section, we review the current techniques
for coping with the dynamic behaviour.

3.4 Runtime memory management

Dynamic applications are slowly becoming desirable in the
context of embedded systems. Optimisations for dynamic
applications require, on the one hand, runtime policies and,
on the other hand, an efficient implementation of these
policies (Fig. 8)

As indicated in the previous Sections, for memory
bandwidth optimisation, the policy making consists of
scheduling the tasks (or their instructions) and (re)distribut-
ing their data across the available memories (step 1).
To efficiently implement these decisions, we need to
manage the memory space at run time (step 2). In this

runtime policy:
- task/instruction order
- data assignment
- data layout

efficient policy implementation:
- task scheduling
- data copying (e.g. DMA)
- dynamic memory management

Fig. 8 Runtime memory optimisation decomposed in two
problems: decision taking and implementation

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005228

Section, we overview both the runtime decision taking and
implementation techniques.

3.4.1 Runtime policies: In the context of
embedded systems, only a few techniques decide where to
store the data at runtime taking the memory architecture into
account For instance, [14, 59] decide at the design time for
each call-site to malloc=new to which memory the data
should be assigned. They base their decision on simple
criteria; object colocation to avoid conflict misses, object
size and access frequency. Nearly no work has been done on
memory-aware task scheduling for dynamic multimedia
applications. One of the only contributions in this area is
[60]. There, an OS scheduler directs the power-mode
transitions of the SDRAM modules, but performs no access
scheduling or bank assignment.

3.4.2 Enforcing runtime policies: Dynamic
memory management is a well known problem. It has
been widely researched in the context of general purpose
computing. The main reason is that high-level programming
languages intensively allocate data on the heap at runtime.
For example, every time in Cþþ a new object is created,
the new function dynamically allocates memory space on
the heap. Since applications allocate many differently sized
data structures, the heap space easily becomes fragmented.
This not only significantly reduces the available memory
space, but also increases the allocation overhead. Several
dynamic memory managers have been proposed for
reducing fragmentation (see [61–63] for an overview).
An important technique to eliminate fragmentation is
adapting the dynamic memory manager to the allocation
requests of the applications. The available memory in pools
is split in [64]. Every pool is then managed by a separate
dynamic memory manager, which deals with a subset of the
allocation requests. Usually, the subsets consists of the
allocation requests with a similar size.

The authors of [65] present a deterministic hardware-
based dynamic memory manager. The memory is hier-
archically managed. Each processor has its own memory
pool which is controlled by the RTOS. Whenever the space
in this pool is too limited, the processor can reserve more
memory in the shared memory pool. The shared pool is split
in fixed-sized blocks to simplify its management. The result
is a memory manager which has very fast memory
(de)allocations times.

In the context of multiprocessors, the most scalable and
fastest memory managers use a combination of private
heaps combined with a shared pool [62, 66]. These memory
managers avoid typical multiprocessor allocation problems
such as blow-up of the required memory space, false sharing
of cache-lines and contention of threads accessing the
shared memory. However, they are unaware of the memory
architecture and are complementary to our work. As we will
show in Section 6, we reuse the existing dynamic memory
management techniques to manage, but we carefully control
their allocation overhead.

We conclude from the above that:

(i) no decision techniques cope with the underlying
memory architecture, albeit a multibanked SDRAM or the
local memory layer
(ii) no runtime decision techniques optimise the memory
bandwidth
(iii) despite dynamic memory management is a well
researched problem, limited support is available to integrate
these decisions inside the code.

4 Memory bandwidth optimisation for platform-
based design

In this Section, we illustrate how parallel accesses from
different processing elements either to the shared memory
(Section 4.1) or the local memory layer (Section 4.2)
degrade the system’s performance and increase its energy
consumption.

4.1 Shared layer

As motivated, the shared layer usually is based on a
multibanked memory, such as an SDRAM. In this Section,
we first explain, with an example, why existing techniques
break down (Section 4.1.1). Then, we explain how to
overcome these limitations with data assignment and task
scheduling (Sections 4.1.2–4.1.3).

4.1.1 Multi-threading causes extra page-
misses: Over the past years, several techniques have
been proposed to eliminate page-misses inside a single
thread (Section 4.1), but they cannot cope with ones caused
by parallel threads. A small example explains why (Fig. 9).
It consists of two tasks, task1 and task2, running on a
different processor tile and accessing data stored in the
shared SDRAM memory. As explained above, the more
page-misses occur on the SDRAM, the more energy is
consumed. (For the clarity of our example, we only focus on
their energy penalty, i.e. no performance penalty due to
page-misses.) One way to minimise the number of page-
misses is to carefully assign the tasks’ data to the banks of
the SDRAM. Current techniques optimise the assignment of
a single task at a time (Section 3.1.1). In the case of our
example, they generate layout A. If both tasks are
sequentially executed, it results in only one page-miss for
task1 (see sequential schedule). Also for task2 only three
page-misses occur, because its data (b and c) are distributed
across the two banks (see again the sequential schedule).

As soon as both tasks execute in parallel while using
layout A, extra delays and many more misses occur,
because the SDRAM interleaves accesses from both tasks.
For example, task1 fetches a while task2 reads simul-
taneously from b. With its single-memory port, the SDRAM
cannot access both data structures in parallel. Its interface
has to serialise them, delaying the access to b with one
cycle. Furthermore, every other access to a or b results in a
page-miss, because they are stored on different pp. in the
same bank. The extra page-misses augment the energy cost
and further delay the execution.

Interacting tasks on shared resources thus cause more
delays and generate extra page-misses. Currently, no
techniques can avoid this, because they optimise the data
layout within a single task.

4.1.2 Optimising the data assignment across
the tasks’ boundaries: We have built a technique for
reducing page-misses across the tasks’ boundaries [67].
It stores frequently accessed data structures with high access
locality in separate banks. To identify these data structures,
we have developed a heuristic parameter called selfishness
(for details how to measure selfishness we refer to [67]).
A data structure’s selfishness is the average time between
accesses (tba) divided by the average time between page-
misses (tbm). It is a measure of spatial locality of the data
structure; we weight it with the data structure’s importance,
i.e. we multiply it with the number of accesses to the data
structure.

The higher the selfishness becomes, the more important it
is to store the data in a separate bank. After analysing

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 229

the selfishness, our technique assigns the data to the banks,
starting in order of decreasing selfishness. In our example, a
and b both have the spatial locality, because the time
between misses equals the entire duration of the task and the
time between misses is the same. However, because b is less
frequently accessed than a, its selfishness is slightly lower.
The selfishness of c is much lower than both a and b, since
for every access a page-miss occurs and it is even less
accessed. Therefore, our algorithm first separates the most
selfish data structures a and b and then decides to store c
with b together in a single bank. As a result, only five page-
misses remain and thus the energy cost is significantly
reduced for the parallel execution.

4.1.3 Task ordering to trade-off energy=
performance: Besides data assignment, the task
order heavily impacts the system’s energy and performance.
For instance, if we execute task1 and task2 sequentially,
four page-misses occur. This is the most energy-efficient
solution, but takes the longest time to execute. In contrast,
when we execute both tasks in parallel, the execution time
becomes shorter, but five page-misses occur, thus the energy
cost increases.

Generally, by changing the task-order we can trade-off
the energy=performance of the system. We have proposed a
joined task ordering=data assignment technique [68]. It uses
a genetic algorithm for quantifying the influence of task
scheduling on the energy consumption and performance of
the SDRAM. Its main flow is shown in algorithm 1 in
Table 1.

Our algorithm schedules the tasks of a given application
such that the energy cost is optimised and a time constraint
is met. The time constraint is given as a parameter to the
algorithm and represents the deadline for the entire task-set.
We run the algorithm several times for the same task-set but
each time with a different deadline, thereby building a set of
Pareto-optimal solutions. In Fig. 10, we depict the Pareto
solutions for our example. The designer can pick the
operating point which best fits his needs from the generated
trade-off points. We will also use this Pareto set of solutions
for our scenario-based runtime approach (Section 5).

4.2 Local memory layer

4.2.1 Access conflicts reduce the system’s
performance: As indicated in Section 3.2, existing
techniques only locally optimise the memory bandwidth. As
a result, a large room for improvement remains. We
illustrate this with a small example that consists of three
data-dominated loops (see code in Fig. 11-left), which are
executed on a platform that consists of three memory ports
fully connected to three single-port memories: two 4-kB
ones (0.11 nJ=access) and a 2-kB one (0.06 nJ=access).
Because the applications are data-dominated, the duration
of the memory access schedule determines the performance
of the loops. We assume that the remaining operations can
be performed in parallel with the memory accesses or take
only limited time. We now study the influence of loop
fusion on the length of the memory access schedule and the
energy cost.

During instruction scheduling, most compilers simply
assume that any memory operation finishes after n cycles.
When the executed operation takes longer than presumed,

Table 1: Algorithm 1 (main flow)

1: Main flow:

2: Input : Task set

3: Output : Pareto set of task scheduling=data assignment

solutions

4: for all possible deadlines do

5: Genetic algorithm(deadline, task-set)

6: end for

a

a a a a

bank 1

data
layout A

5 page-hits (H)
4 page-misses (M)

0 page-hits (H)
9 page-misses (M)

task 1

task 2

 M H H H M M H H M

 M M M M M M M M M

task 1

task 2

task schedule access sequence

page1

page2 b

bank 2

page3

c a

bank 1

page1

page2

b

bank 2

page3

c

4 page-hits (H)
5 page-misses (M)

task 1

task 2

 b c b b c

a a a a

 b c b b c

M M H M M H H H M

a a a a

 b c b b c

delay extra page-misses

data
layout A

data
layout A

data
layout B

data
layout B

c

c

tba=tbm

tba tbm>>tba

Fig. 9 Interleaved accesses from different tasks cause page-misses and extra stalls

0

2

4

6

8

10

4 9 14 19 24
cycles

pa
ge

-m
is

se
s

non–pareto

parallel

layout B sequential

layout A

Fig. 10 Energy/performance trade-off for task1 and task2 of
Section 5.1

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005230

Fig. 11 Motivational example: original code (left), code after fusion (right)

A

A

loop1: 100 it 200 cycles

D

loop31: 80 it 240 cycles

D

D

C D

loop2: 100 it 100 cycles

B

Ld/st1 Ld/st2 Ld/st3

expected perf.: 460 cycles

actual perf.: 540–740 cycles

a

A

A

loop1: 100 it 200 cycles

D

loop31: 80 it 240 cycles

D

D

C D

loop2: 100 it 100 cycles

B

Ld/st1 Ld/st2 Ld/st3

perf.:

540 cycles

energy: 64.4 nJ

b

A

A

loop1: 100 it 200 cycles

D

loop31: 80 it 240 cycles

D

D

C

D

loop2: 100 it 300 cycles

B

Ld/st1 Ld/st2 Ld/st3

perf.:

740 cycles

energy: 54.4 nJ

c

Fig. 12 Empty issue slots in the memory access schedule of the inner-loops

a Existing compiler
b With fastest partial data assignment
c With most energy-efficient partial assignment

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 231

the entire processor is stalled. As a result, often a large
difference exists between the expected and the effective
performance of the processor. For instance, an existing
modulo scheduler [69] generates a memory access schedule
for the inner loops of 460 cycles (Fig. 12a). (Note how the
modulo scheduler schedules read=write operations from
the same instruction in the same cycle.) However, the
actual performance varies between 540 and 740 cycles.
The schedule takes longer than expected because the
processor has to serialise the accesses to D in loop 31.
Extra stalls occur depending on whether the linker has
assigned the C, B and=or D to the same memory.

Because the way the linker assigns the data to the
memories has such a large impact on the performance of the
system, [37] optimises the data assignment and the memory
schedule together. They impose restrictions on the assign-
ment such that the energy is optimised, but still guarantee
that the time-budget is met. The assignment constraints are
modelled with a conflict graph (e.g. Figure 13-left).
The nodes correspond to the data structures of

the application. An edge between two data structures
indicates that we need to store the data in different
memories. Hence, the corresponding accesses to these
data structures can be executed in parallel. For instance, the
edge between A and C forces us to store both data structures
in different memories. The schedule for this conflict
graph takes 540 cycles (Fig. 12b). It consumes 64.4 nJ
(We compute the energy consumption as follows:

P

8m2M
P

8ds2m NrAccessðdsÞEm
access; because the conflict edges

force us to store both C and B in large memory
(see complete assignment in Fig. 13-left).

We can decrease the energy cost of the above assignment
by reducing the number of conflicts. After eliminating the
edges between B–D, C–D and D–C, the data structures B,
D and C can be assigned in the smallest, but most energy-
efficient memory (Fig. 13-right). The energy consumption is
then 54.4 nJ instead of the original 64.4 nJ. Less conflicts
also imply that less memory accesses can execute in
parallel. The code now takes 740 cycles (Fig. 12c).
The energy savings thus come at a performance loss.

AA

B

C D

energy = 64.4 nJ energy = 54.4 nJ

A

B C

D

A

B C

D

partial
assignment

complete
assignment

partial
assignment

complete
assignment

B
C
D

Fig. 13 Partial assignment expressed with a conflict graphs

(left) fast; (right) more energy-efficient

A

A

loop1-loop2:100 it 200 cycles

C

D

B

D

loop31: 80 it 240 cycles

D

D

Ld/st1 Ld/st2 Ld/st3

perf.

440 cycles

energy:64.4 nJ

a

loop31b: 40 it 120 cycles

loop1: 60 it 120 cycles

D

D

D

A

A

ld1/st1ld1/st2

loop31a and loop1: 40 it 120 cycles

D

D

D

A

A

ld1/st3

C D

loop2: 100 it 100 cycles

B

perf.

460 cycles

energy:64.4 nJ

b c

D

loop31: 80 it 240 cycles

D

D

C D

loop2: 100 it 100 cycles

B

A

A

A

A

loop1: 20 it 40 cycles

Ld/st1 Ld/st2 Ld/st3

perf.

380 cycles

energy:64.4 nJ

A

A

D

loop31: 80 it 240 cycles

D

D

C

D

loop2: 100 it 300 cycles

B

Ld/st1 Ld/st2 Ld/st3

perf.

540 cycles

energy:54.4 nJ

d

Fig. 14 Loop fusion fills the issue-slots

a, b Existing fusion techniques for the fastest partial data assignment
c Fusion combined with loop splitting and strip mining
d Best fusion for the energy-efficient partial assignment

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005232

However, many memory access slots remain empty. This
is mainly because: (i) interiteration dependencies; for
instance the initiation interval of loop 1 is 2, because
A depends on itself and, hence, only 30% of the available
memory slots are used; (ii) we do not use power hungry
multiport memories. Consequently, we cannot schedule
operations that access the same data in parallel, e.g., in loop
31 we cannot execute the accesses to D in parallel.

4.2.2 Loop morphing: With more global optimis-
ations, such as loop fusion [70], we can further compact the
application’s schedule. For instance, we can try to fuse the
loops of our examples. We only consider loops between
which no dependences exist. We can then, on the one hand,
fuse loop 1 and loop 2. For the fastest conflict graph (Fig. 13-
left), the resulting schedule takes 440 cycles (Fig. 14a).
On the other hand, we can also fuse loop 1 and loop 31
(Fig. 14b). Because both loop nests are not conformable, we
can in this case only fuse 40 iterations. This results in a
schedule length of 460 cycles. However, if we combine loop
fusion with strip mining and loop splitting, we can combine
80 iterations. As a result, the schedule length takes only 380
cycles (Fig. 14c). We show the fused code for this decision
in Fig. 11-right.

In all three cases, the energy cost remains the same
because we keep the same conflict graph. If we change the
conflict graph, we need to take different fusion decisions.
For example under the more energy-efficient conflict graph
(Fig. 14c), it is more beneficial to fuse loop 1 and loop 2.
The execution time is then 540 cycles compared to 740
cycles for the non-fused code. The fusion decisions and,
consequently, the performance of the application, heavily
depend on the conflict graph. The more conflicts the higher
the application’s performance, but the more energy hungry
it becomes.

From this example, we conclude that fusion shortens the
memory access schedule on condition that:

(i) we can overlap loops even with nonconformable loop
headers. Otherwise, the number of overlapping iterations
after fusion is limited. Therefore, we have proposed loop
morphing [71]. It combines loop fusion, strip mining and
loop splitting to increase the instruction level parallelism in
as many iterations as possible.
(ii) we combine the loops which result in the largest
performance gains. Therefore, we have presented a decision
mechanism in [72]. It pairwise fuses loops, which considers
memory size, number of ports, access latency and assign-
ment constraints. Similar to our technique for the shared
memory layer (Section 4.1.3), it generates a set of
energy=performance optimal operating points.

We have presented approaches which more globally
optimise the memory bandwidth for both the local and
shared memory layer. In the following Section, we discuss
low to cope with the dynamic behaviour of media-rich
applications. Our approach to this problem relies on the
above techniques.

5 Scenarios for coping with dynamic behaviour

5.1 Energy constraints necessitate
for runtime decisions

Due to the dynamic behaviour of our application domain, it
is more energy-efficient to assign the data and schedule the
tasks at runtime. An example in the context of the SDRAM
layer explains why (Fig. 15). At the start of each frame, the
user either executes task1 and=or task2. They are the same

tasks as in Section 4.1. We thus only know at runtime which
tasks execute and which data they require. Also, note that
the deadline varies from frame to frame. For example, at the
start of frame2, the user lowers the video quality, reducing
the frame-rate by half. The system has then twice more time
for each frame.

The optimal task order=data assignment decisions vary
from frame to frame (see Fig. 16). For example, to satisfy
the short deadline in frame1, we have to schedule both tasks
in parallel. We obtain the least number of page-misses using
layout B from Fig. 9. However, in frame2, only task2 is
active. As indicated in Fig. 9, layout A is then more energy-
efficient. Finally, in frame3, both tasks are started again.
However, since the frame-rate is lower now, we can execute
them sequentially and use layout A to eliminate most page-
misses. So, in each frame, different scheduling=assignment
decisions are optimal for energy. However, we can only take
them at runtime.

With current approaches more page-misses always occur.
Design-time techniques only select one task schedule and
layout (Fig. 17a). This single design has to meet the

time

tasks
to be

scheduled

frame 2:
long

deadline

frame 1:
short

deadline

frame 3:
long

deadline

T1

T2

T2T1

T2

Fig. 15 Dynamically created tasks with their deadline

task
schedule

 A AB

T1 T2 T2T1

T2

data
layout

time

frame 2 frame 3frame 1

page
misses

33 36 =12

Fig. 16 Our runtime task schedule/SDRAM assignment solution

task
schedule

 B B

T1

T2

T1

T2

data
layout

time

a

b

frame 2 frame 3

page
misses 6 7 =19

B

T1

T2

frame 1

6

task
schedule

 C C

T1

T2

T2

data
layout

time

frame 2 frame 3

page
misses 9 6

C

T1

T2

frame 1

9 =24

Fig. 17 State-of-the-art task schedule/SDRAM assignment

a Design-time
b Operating system based solution

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 233

deadline for the worst-case load, i.e. task1 and task2
executed within the short deadline (frame1). The most
energy-efficient design for this load is executing both tasks
in parallel and using layout B (Fig. 9). This operating point
is not optimal for both frame2 and frame3. It results in seven
more page-misses than the above approach. A pure design-
time technique is thus not energy-efficient.

Furthermore, current runtime approaches are far from
optimal. A typical OS does not account for the specific
behaviour of SDRAMs. As long as enough processors are
available, it schedules all tasks in parallel and assigns the
data to the first available free space (Fig. 17b). By storing all
the data in a single bank and scheduling the tasks in parallel,
twelve more page-misses occur than in the optimal case.

These results indicate the potential benefits for a runtime
technique, which considers the SDRAM behaviour and can
generate the solutions of Fig. 16. Since it should make
complex task scheduling=data assignment at runtime, the
main difficulty is restricting its overhead. The local memory
layer requires a similar approach, but we restrict ourselves
to the shared SDRAM layer.

5.2 Our scenario-based approach

We propose a mixed design-time=runtime approach for
coping with the dynamic behaviour. The philosophy behind
it is to take most scheduling=assignment decisions at the
design time for all frequently occurring task-sets. In this
way, we can reuse our bandwidth optimisation techniques
multi-threaded applications and at the same time limit the
runtime complexity. Only for the more seldomly occurring
task-sets is a pure runtime decision taken as a backup
solution. In the following paragraphs, we explain the main
steps of our methodology (Fig. 18).
Scenario identification: Fixing as many decisions as
possible at the design time comes at the risk of ignoring
the actual behaviour and generating worst-case designs.
For example, consider the code in Fig. 19. Even though
parts of the code are conditionally executed (e.g. mode and
ctrl-conditions in the second loop nest), design-time
techniques assume that both branches are executed,

scenario
identification

design-time
storage bandwidth

optimisation

pareto-optimal
task-schedule/

data assignments

application’s code

integration
 in OS

inter/intratask
scenarios

scenario
recognition

 and
data assignment/

task schedule
enforcement

design time

runtime

Fig. 18 Scenario-based design-time/runtime approach

Fig. 19 Scenario-based approach

a Data-dependent conditions as a limiting factor for bandwidth optimisation techniques
b Worst-case approach
c Scenario-based approach

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005234

optimising thus the design for the worst-case load. As a
consequence, we heavily overestimate the required band-
width and usually generate an over-dimensioned and
energy-inefficient system.

To prevent this energy loss, we try to capture the dynamic
behaviour with scenarios. First, we analyse which tasks-sets
often co-occur at runtime. We call them ‘intertask
scenarios’. A similar but more restrictive concept is used
by [73]. Secondly, we narrow down the data-dependent
behaviour inside the tasks with introtask scenarios.
An intratask scenario is an execution path through the task
(or a combination of execution paths) for different data-
dependent parameters [51, 74]. Both the intertask and
intratask scenarios should be manually extracted by the
designer (using profiling). For example, in the code of
Fig. 19, we derive two intratask scenarios, one for mode
equals true and another one for mode equals false. Research
is ongoing in how to identify scenarios [75, 76].

After identifying the scenarios, we can represent each one
with a data-flow graph on which we can easily apply our
design-time techniques.
Storage bandwidth optimisation at design time: In the
second step, we optimise the storage bandwidth of each
scenario. Our design-time techniques generate for each
scenario a set of task ordering=data assignment solutions.
Each solution optimises the energy cost for a given time-
budget. From this set, we only retain the Pareto-optimal
solutions. For example, for our example’s scenario in which
task1 and task2 are active (Section 5.1), we would generate
the Pareto curve of Fig. 10. Finally, we integrate the Pareto
set of each scenario into the operating system. We provide
more details in [77].
Runtime phase: Then, at runtime, after identifying which
scenario is activated and which is its deadline, we simply
select the best prestored operating point on the Pareto curve
and enforce its task ordering and data assignment decisions.
For example, for frame 1 of our example (Section 5.1), our
runtime mechanism selects the leftmost operating point,
scheduling both tasks in parallel with layout B. In contrast,
for frame2 with the relaxed deadline, it implements the
rightmost operating point. If the scenario was not analysed
at the design time, we use a backup solution. For example,
we simply use an existing dynamic memory manager for
assigning the data. Note that our approach leverages current
design-time techniques, but requires that scenarios can be
identified inside the application. Obviously, this partly
restricts the applicability of our technique. Another
approach could be to start from existing operating systems
and make them account for the energy cost of the underlying
memory architecture. All decisions are then made at runtime
without design-time preparation. Even though we did not
investigate this, we expect that such an approach causes too
much energy overhead and violates more deadlines, but
more research is still needed.

6 Dynamic memory management

The memory space available at runtime to our applications
can be located in any physical memory of the system. It is
managed with the help of a dynamic memory manager
(DMM). The DMM keeps track of the unused memory
blocks and has internal routines to find the best fitting free
block for an allocation request. The DMM should use the
memory space as efficiently as possible while keeping
the allocation overhead low. The main difficulty is that the
memory space can easily become fragmented because the
requested data blocks have a different size and lifetime

(see Fig. 20) Besides, data locality [78], sparseness [79] and
ordering of blocks inside pools can be an issue.

To customise a DMM, we have classified the different
design options in orthogonal decision trees. Together they
compose the design space for dynamic memory manage-
ment [80]. We give a brief overview of the design space in
following subsection. It explains the design decisions taken
in existing DMMs (Section 6.2), but also helps in matching
the DMM with the application for reducing its energy
consumption (Section 6.3).

6.1 DMM design space

In each dynamic memory manager three important
decisions are made: (i) how to divide the memory space in
pools; (ii) how to defragment the memory system; and
(iii) how to select a free block.

The most well known way of preventing fragmentation is
dividing the memory space into pools. Each pool contains
several blocks of a similar size. When an application asks
for space, a free block is returned from a pool which best
matches the required size. If that block equals the requested
size, then no memory space is wasted and no (internal)
fragmentation occurs. By carefully selecting the number of
pools, the size and the block size of each pool fragmentation
can be avoided. This is possible in practice since usually less
than ten different block sizes cover more than 80–90% of
the allocation requests.

A second important decision for DMM is how to apply
defragmentation techniques, such as coalescing=splitting
(see Fig. 21). If an application needs a larger chunk than the
size of any free memory block, we can coalesce two smaller
blocks (left). In contrast, if the application requires less than
the size of a free memory block, we can split the block

enough free space
but fragmented to

allocate data type 1

time

m
em

or
y

memory
footprint

maximum memory. footprint available

data type 1

(1) (2)

data type 2

data type 3

Fig. 20 Fragmentation in dynamic memory management

coalescing blocks

10 KB

10 KB

5 KB

5 KB

5 KB

10 KB

10 KB

5 KB

5 KB

5 KB

10 KB
4 KBS

10 KB

5 KB

5 KB

5 KB

20 KB

5 KB

5 KB

5 KB

20 K
B

 block
request

num
ber of external

fragm
entation

4 K
B

 block
request

num
ber of internal

fragm
entation

splitting blocks

Fig. 21 Coalescing and splitting techniques for coping with
fragmentation

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 235

(right). A later request can then use the remaining part of the
free block.

Finally, the last decision is how we select a free block to
satisfy a memory request. Three policies are widely applied:
‘first fit’, ‘best fit’ and ‘exact fit’ (see Fig. 22). The ‘first fit’
policy [63] returns the first free block that satisfies the
memory request. Despite this policy being very fast, it easily
fragments the memory space. In contrast, the ‘exact fit’
policy [63] reduces fragmentation. It iterates over all free
blocks until it finds one with the same size as the memory
request. Obviously, the execution time overhead of this
policy is higher. Finally, the ‘approximate match’ policy
[63] is a compromise between the ‘first fit’ and ‘exact fit’
policies. It searches for a block which can satisfy, but is not
larger than n times the required size. If n is equal to one, this
policy is the same as the ‘best-fit’ one. It has then a high
execution time overhead. By increasing n, we can exchange
the execution time overhead for more fragmentation.

6.2 Situating existing DMMs in the design
space

A very popular allocator is the Lea Allocator [81], which is
optimised for a low memory footprint. It uses several pools
and frequently runs defragmentation routines. The latter,
however, slow down the dynamic memory manager. It uses
either a ‘best fit’ or a ‘first fit’ policy for selecting a free
block. Compared to a ‘first fit’-only policy, this further
reduces fragmentation, but comes at an extra performance
penalty. The Lea Allocator is not very energy-efficient due
to the memory accesses necessary for managing the memory
space.

A second well known memory manager is the Kingsley
Allocator [63] that is mainly optimised for performance.
It uses several pools with fixed-size blocks. To ensure fast
allocation=deallocation, it use a relatively large memory
space such that free blocks can always be found.
Furthermore, it avoids running defragmentation routines
that could slow down the memory manager. Finally, it
selects a memory block in a pool with a ‘first fit’ policy, but
uses ‘best fit’ to select a pool. This memory manager is
again not very energy-efficient, because it requires more
memory space and that increases the energy cost per access.

A third category of memory managers are custom DMMs.
They are built for satisfying the needs of specific
applications. An example is the Obstacks [63] custom
DMM, which optimises a stack-like (de)allocation
behaviour. Obstacks uses variable-sized pools, with no
defragmentation support and applies a ‘best fit’ policy.

This allocator works well for small-sized memory requests
with a stack-like behaviour. Any other (de)allocation
behaviour or bigger-sized requests can increase significantly
the management overhead (in number of memory accesses)
and the memory fragmentation.

The above general purpose allocators are thus not energy-
efficient. The custom allocators, however, are manually
optimised for a specific allocation pattern. However, no
systematic methodology exists for creating such a custom
DMM.

6.3 Methodology for creating low-power
DMMs

We have developed a methodology for creating low-power
DMMs. We customise a DMM by trading-off memory
fragmentation with the memory accesses necessary for
managing the free space. It consists of two phases. First, we
extensively profile the application to characterise its
allocation pattern and to identify the most important
dynamic data types [79]. Secondly, we use the gathered
information for deciding the pool structure. For example, to
prevent fragmentation and to speed up the DMM, we assign
at least one fixed-sized pool for each dominant data type.
We only defragment when the memory usages exceeds a
high watermark (when 70–90% of the memory is used).
Finally, we apply the ‘exact fit’ policy for the dominant data
types and ‘approximate fit’ for the remaining data types.

Experimental results indicate that our custom DMMs
may reduce the energy consumption up to 60% (e.g. [78]).
The same design space can be explored for optimising
different objectives, such as memory footprint (for more
details on the methodology and extensive results see [80]).

7 Conclusions

Memory bandwidth has always been an issue for the
energy=performance of multimedia systems. However, for
the dynamic multi-threaded applications, several extensions
are required to current bandwidth optimisation techniques.

Due to the concurrency, several tasks can access the same
memory in parallel, thereby causing access conflicts. This
delays the system and increases its energy cost. Existing
techniques optimise the memory bandwidth inside a single
task and cannot cope with these intertask conflicts. There-
fore, we have therefore introduced several task-order-
ing=data assignment techniques that optimise the memory
bandwidth across the tasks’ boundaries.

The dynamic behaviour is the result of user events that
start=stop tasks at runtime and data dependencies within the
tasks. We have shown that neither design-time nor runtime
techniques can effectively deal with it. Therefore, we have
introduced a novel scenario-based memory bandwidth
approach. It combines the best of the design-time and
runtime techniques.

Finally, energy-efficiently managing the memory space at
runtime, requires a custom organisation of the free space.
We provide a heuristic for matching the DMM to the
application. It generates a DMM based on a complete
description of the DMM’s design space.

8 Acknowledgments

This work is supported in part by the Spanish Government
under grant CICYT TIC 2002–750 and the Flemish IWT.

first fit

first fit

exact fit

too big

too big too big

2 m
em

ory
accesses

6 m
em

ory
accesses

4 m
em

ory
accesses

reserved

reserved

reserved

reserved reserved

approximate matchexact fit

reserved

approximate
match

15 KB

10 KB

5 KB

15 KB

10 KB

5 KB

15 KB

10 KB

5 KB

Fig. 22 Fit policies

a First fit
b Exact fit
c Approximate fit

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005236

9 References

1 Semicon.: www.semicon.org
2 De Man, H.: ‘On nanoscale integration and gigascale complexity in the

post.com world’. Proc. DATE, 2002
3 Vincentelli, A., and Martin, G.: ‘A vision for embedded systems:

platform-based design and software’, IEEE Des. Test Comput., 2001,
18, (6), pp. 23–33

4 ST Nomadik.: www.st.com/stonline/prodpres/dedicate/proc/proc.htm
5 Philips.: www.semiconductors.philips.com/platforms/nexperia
6 Texas Instruments.: www.ti.com
7 Vander Aa, T., Jayapala, M., Barat, F., Deconinck, G., Lauwereins, R.,

Catthoor, F., and Corporaal, H.: ‘Instruction buffering exploration for
low energy vliws with instruction clusters’. Proc. ASP-DAC,
Yokohama, Japan, Jan. 2004

8 Jayapala, M., Barat, F., OpDeBeeck, P., Catthoor, F., Deconinck, G.,
and Corporaal, H.: ‘A low energy clustered instruction memory
hierarchy for long instruction word processors’. Proc. PATMOS,
Sept. 2002, pp. 258–267

9 Catthoor, et al.: ‘Custom memory management methodology –
exploration of memory organisation for embedded multimedia system
design’ (Kluwer Academic Publishers, Boston, MA, 1998)

10 Panda, P., Catthoor, F., Dutt, N., Danckaert, K., Brockmeyer, E.,
Kulkarni, C., Vandecappelle, A., and Kjeldsberg, P.G.: ‘Data and
memory optimizations for embedded systems’, ACM Trans. Design
Autom. Electron. Syst., 2001, 6, (2), pp. 142–206

11 Wolf, W., and Kandemir, M.: ‘Memory system optimization of
embedded software’, Proc. IEEE, 2003, 91, (1), pp. 165–182

12 Hennessy, J., and Patterson, D.: ‘Computer architecture: a quantitative
approach’ (Morgan Kaufmann Publishers, San Fransisco, CA, 1996,
2nd edn.)

13 Faraboschi, P., Brown, G., and Fischer, J.: ‘Lx: a technology platform
for customizable VLIW embedded processing’. Int. Symp. Computer
Architectures, 2000, pp. 203–213

14 Avissar, O., Barua, R., and Stewart, D.: ‘Heterogeneous memory
management for embedded systems’. Proc. CASES, Sept. 2001,
pp. 34–43

15 Viredaz, M., and Wallacha, D.: ‘Power evaluation of a handheld
computer’, IEEE Micro, 2003, 23, (1), pp. 66–74

16 Rabaey, J.: ‘Silicon architectures for wireless systems wireless systems:
Part 2 configurable processors’. Tut. Hot Chips Conf., 2001

17 Hettiaratchi, S., and Cheung, P.: ‘Mesh partitioning approach to energy
efficient data layout’. Proc. DATE, Mar. 2003, pp. 11076–11081

18 Kim, H., Vijaykrishnan, N., Kandemir, M., Brockmeyer, E.,
Catthoor, F., and Irwin, M.J.: ‘Estimating influence of data layout
optimizations on SDRAM energy consumption’. Proc. ISLPED,
Aug. 2003, pp. 40–43

19 Choi, Y., and Kim, T.: ‘Memory layout techniques for variables
utilizing efficient DRAM access modes’. Proc. 40th DAC, 2003,
pp. 881–886

20 Panda, P.: ‘Memory bank customization and assignment in behavioral
synthesis’. Proc. ICCAD, Oct. 1999, pp. 477–481

21 Chang, H., and Lin, Y.: ‘Array allocation taking into account SDRAM
characteristics’. Proc. ASP-DAC, 2000, pp. 447–502

22 Ayukawa, K., Watanabe, T., and Narita, S.: ‘An access-sequence
control scheme to enhance random-access performance of embedded
DRAM’s’, IEEE J. Solid-State Circuits, 1998, 33, (5), pp. 800–806

23 Rixner, S., Dally, W., Kapasi, U., Mattson, P., and Owens, J.:
‘Memory access scheduling’. Int. Symp. Computer Architectures,
2000, pp. 128–138

24 Macian, C., Dharnapurikar, S., and Lockwood, J.: ‘Beyond perform-
ance: secure and fair memory management for multiple systems on a
chip’. Proc. FPL, 2003

25 Gharsalli, F., Meftali, S., Rousseau, F., and Jerraya, A.: ‘Automatic
generation of embedded memory wrapper for multiprocessor SoC’.
Proc. 39th DAC, Jun. 2002, pp. 596-601

26 Denali Software Databahn. www.denali.com
27 Panda, P., Dutt, N., and Nicolau, A.: ‘Exploiting off-chip memory

access modes in high-level synthesis’. Proc. ICCAD, Oct. 1997,
pp. 333–340

28 Grun, P., Dutt, N., and Nicolau, A.: ‘Memory aware compilation
through timing extraction’. Proc. 37th DAC, Jun. 2001, pp. 316–321

29 Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., and Nicolau, A.:
‘EXPRESSION: a language for architecture exploration through
compiler/simulator retargetability’. Proc. DATE, Paris, France, Mar.
1999, pp. 485–491

30 Lyuh, C., and Kim, T.: ‘Memory access scheduling and binding
considering energy minimization in multi-bank memory systems’. Proc.
41st DAC, 2004, pp. 81–86

31 Delaluz, V., Kandemir, M., Vijaykrishnan, N., Sivasubramaniam, A.,
and Irwin, M.: ‘Hardware and software techniques for controlling
DRAM power modes’, IEEE Trans. Comput., 2001, 50, (11),
pp. 1154–1173

32 Ramachandran, L., Gajski, D., and Chaiyakul, V.: ‘An algorithm for
array variable clustering’. Proc. EDAC, 1994, pp. 262–266

33 Schmit, H., and Thomas, D.: ‘Synthesis of application-specific memory
designs’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1997, 5,
(1), pp. 101–111

34 Huang, C., Ravi, S., Raghunathan, A., and Jha, N.: ‘High-level
synthesis of distributed logic-memory architectures’. Proc. ICCAD,
2002, pp. 564–571

35 Saghir, M., Chow, P., and Lee, C.: ‘Exploiting dual data banks in digital
signal processors’. Proc. ASPLOS, Jun. 1997, pp. 234–243

36 Sudarsanam, A., and Malik, S.: ‘Memory bank and register allocation
in software synthesis for ASIPs’. Proc. ICCAD, 1995, pp. 388–392

37 Wuytack, S., Catthoor, F., De Jong, G., and De Man, H.: ‘Minimizing
the required memory bandwidth in VLSI system realizations’, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., 1999, 7, (4), pp. 433–441

38 Lamport, L.: ‘The parallel execution of do-loops’, Commun. ACM,
1974, 17, (2), pp. 83–93

39 Verhaegh, W., Aarts, E., van Gorp, P., and Lippens, P.: ‘A two-stage
solution approach for multidimensional periodic scheduling’, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., 2001, 10, (10),
pp. 1185–1199

40 Hall, M., Anderson, M., Amarasinghe, S., Murphy, B., Liao, S.,
Buignon, E., and Lam, M.: ‘Maximizing multiprocessor performance
with SUIF’, Computer, 1996, 29, (12), pp. 84–89

41 Anderson, J., Amarasinghe, S., and Lam, M.: ‘Data and computation
transformations for multiprocessors’. Proc. Symp. on Principles and
Practice of Parallel Programming, July 1995, pp. 166–178

42 Fang, J.Z., and Lu, M.: ‘An iteration partition approach for cache or
local memory memory thrasing on parallel processing’, IEEE Trans.
Comput., 1993, 42, (5), pp. 529–546

43 Banerjee, P., Chandy, J., Gupta, M., Holm, J., Lain, A., Palermo, D.,
Ramaswamy, S., and Su, E.: ‘Overview of the PARADIGM compiler
for distributed memory message-passing multicomputers’, Computer,
1995, 28, (10), pp. 37–47

44 Gupta, M., Schonberg, E., and Srinivasan, H.: ‘A unified framework for
optimizing communication in data-parallel programs’, IEEE Trans.
Parallel Distrib. Syst., 1996, 7, (7), pp. 689–704

45 Hoang, P.D., and Rabaey, J.M.: ‘Scheduling of DSP programs onto
multiprocessors for maximum throughput’, IEEE Trans. Signal
Process., 1993, 41, (6), pp. 2225–2235

46 Li, Y., and Wolf, W.: ‘Hierarchical scheduling and allocation of
multirate systems on heterogeneous multiprocessors’. Proc. DATE,
1997, pp. 134–139

47 Ramamritham, K., and Stankovic, J.A.: ‘Scheduling algorithms and
operation systems support for real-time systems’, Proc. IEEE, 1994, 82,
(1), pp. 55–67

48 El-Rewini, H., Ali, H.H., and Lewis, T.: ‘Task scheduling in
multiprocessing systems’, Computer, 1995, 28, (12), pp. 27–37

49 Jha, N.: ‘Low-power system scheduling and synthesis’. Proc. ICCAD,
San Jose, CA, USA, Nov. 2001, pp. 259–263

50 Quan, G., and Hu, X.: ‘Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors’. Proc. 38th DAC, Jun.
2001, pp. 828–833

51 Yang, P.: ‘Pareto-optimization based run-time task scheduling for
embedded systems’. PhD thesis, Catholic University Leuven, 2004

52 Dave, B., Laksshminarayana, G., and Jha, N.: ‘COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded systems’,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1999, 7, (1),
pp. 92–104

53 Meftali, S., Gharsalli, F., Rousseau, F., and Jerraya, A.: ‘An optimal
memory allocation for application-specific multiprocessor system-
on-chip’. Proc. ISSS, Sept. 2001, pp. 19–24

54 Madsen, J., and Jorgensen, P.: ‘Embedded system synthesis under
memoryconstraints’.Proc.CODES,Rome,Italy,May1999,pp.188–192

55 Szymanek, R., and Kuchcinski, K.: ‘A constructive algorithm for
memory-aware task assignment and scheduling’. Proc. CODES,
Apr. 2001, pp. 147–152

56 Kandemir, M., Zhang, W., and Karakoy, M.: ‘Runtime code
parallelization for on-chip multiprocessors’. Proc. DATE, 2003,
pp. 10510–10515

57 Kadayif, I., Kandemir, M., Vijaykrishnan, N., Irwin, M., and
Sivasubramaniam, A.: ‘EAC: A compiler framework for high-level
energy estimation and optimization’. Proc. DATE, Paris, France, Mar.
2002, pp. 0436–0441

58 Patel, K., Macii, E., and Poncino, M.: ‘Synthesis of partitioned shared
memory architectures for energy-efficient multi-processor SoC’. Proc.
DATE, 2004, pp. 700–701

59 Tomar, S., Kim, S., Vijaykrishnan, N., Kandemir, M., and Irwin, M.:
‘Use of local memory for efficient Java execution’. Proc. ICCD, 2001

60 Delaluz, V., Sivasubramaniam, A., Kandemir, M., Vijaykrishnan, N.,
and Irwin, M.: ‘Scheduler-based DRAM energy management’. Proc.
39th DAC, 2002, pp. 697–702

61 daSilva, J.L., Ykman, C., Miranda, M., Croes, K., Wuytack, S.,
de Jong, G., Catthoor, F., Verkest, D., Six, P., and De Man, H.:
‘Efficient system exploration and synthesis of applications with dynamic
data storage and intensive data transfer’. Proc. 35th DAC, Jun. 1998,
pp. 76–81

62 Berger, E., McKinley, K., Blumofe, R., Wilson, P.: ‘Hoard: A scalable
memory allocator for multithreaded applications’. Proc. 8th ASPLOS,
Nov. 1998, pp. 117–128

63 Wilson, P.R., et al.: ‘Dynamic storage allocation: a survey and critical
review DDR’. Technical report, Department of Computer Science,
Univ. Texas, 1995

64 Vo, K.-P.: ‘Vmalloc: a general and efficient memory allocator’, Softw.-
Pract. Exp., 1996, (26), pp. 1–18

65 Shalan, M., and Mooney III, V.: ‘A dynamic memory management unit
for embedded real-time systems-on-a-chip’. Proc. CASES, San Jose,
CA, USA, Nov. 2000, pp. 180–186

66 Vee, V., and Hu, W.: ‘A scalable and efficient storage allocator on
shared-memory multiprocessors’. Int. Symp. Parallel Architectures,
Algorithms and Networks, Jun. 1999, pp. 230–235

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 237

www.semicon.org
www.st.com/stonline/prodpres/dedicate/proc/proc.htm
www.semiconductors.philips.com/platforms/nexperia
www.ti.com
www.denali.com

67 Marchal, P., Bruni, D., Gomez, J.I., Benini, L., Pinuel, L., Catthoor, F.,
and Corporaal, H.: ‘SDRAM-energy-aware memory allocation for
dynamic multi-media applications on multi-processor platforms’. Proc.
DATE, Munich, Germany, Mar. 2003, pp. 10516–10523

68 Gomez, J.I., Marchal, P., Bruni, D., Benini, L., Prieto, M., Catthoor, F.,
and Corporaal, H.: Scenario-based SDRAM-energy-aware scheduling
for dynamic multi-media applications on multi-processor platforms.
Workshop on Application Specific Processors (in conj. with MICRO),
2002

69 Rau, B.: ‘Iterative modulo scheduling’. Technical report, HP Labs,
1995

70 Wolf, M.: ‘Improving locality and parallelism in nested loops’.
Technical report, Technical report CSL-TR-92-538, Stanford Univ.,
CA, USA, Sep. 1992

71 Marchal, P., Gomez, J.I., Pinuel, L. Verdoolaege, S., and Catthoor, F.:
‘Loop morphing to optimize the memory bandwidth’. Proc. IEEE
ASAP, Galvestone, TX, USA, Sept. 2004

72 Marchal, P., Gomez, J.I., Pinuel, L. Verdoolaege, S., and Catthoor, F.:
‘Optimizing the memory bandwidth with loop fusion’. Proc. ISSS,
Stockholm, Sweden, Sept. 2004

73 Leijten, J.A.: ‘Real-time constrained reconfigurable communication
between embedded processors’. PhD thesis, Technishe Universiteit
Eindhoven, Nov. 1998

74 Yang, P., Marchal, P., Wong, C., Himpe, S., Catthoor, F., Patrick, D.,
Vounckx, J., and Lauwereins, R.: ‘Cost-efficient mapping of dynamic
concurrent tasks in embedded real-time multimedia systems’, in ‘Multi-
processor systems on chip’ (Elsevier Science & Technology, 2004),
pp. 46–58

75 Poplavko, P., Pastrnak, M., Basten, T., van Meerbergen, J.,
and de With, P.: ‘Mapping of an MPEG-4 shape-texture
decoder onto an on-chip multiprocessor’. PRORISC 2003, 14th
Workshop on Circuits, Systems and Signal Processing, Nov. 2003,
pp. 139–147

76 Pastrnak, M., Poplavko, P., de With, P., and van Meerbergen, J.:
‘Resource estimation for MPEG-4 video object shape-texture decoding
on multiprocessor network-on-chip’. PROGRESS 2003, 4th Seminar on
Embedded Systems, Oct. 2003, pp. 185–193

77 Marchal, P., Gomez, J., Bruni, D., Benini, L., Pinuel, L., and
Catthoor, F.: ‘Integrated task-scheduling and data-assignment to enable
SDRAM power/performance trade-offs in dynamic applications’, IEEE
Des. Test Comput., 2004, 11, (1), pp. 1–12

78 Mamagkakis, S., Atienza, D., Catthoor, F., Soudris, D., and
Mendias, J.M.: ‘Custom design of multi-level dynamic memory
management subsystem for embedded systems’. Proc. Signal Proces-
sing Symp. (SiPS), Austin, TX, USA, October 2004

79 Daylight, E., et al.: ‘Memory access aware data structure transform-
ations for embedded software with dynamic data Accesses’, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., 2004, 12, (3)

80 Atienza, D., Mamagkakis, S., Catthoor, F., Mend ias, J.M., and
Soudris, D.: ‘Dynamic memory management design methodology for
reduced memory footprint in multimedia and wireless network
applications’. Proc. Design, Automation and Test in Europe (DATE),
Paris, France, February 2004

81 Lea, D.: ‘The lea 2.7.2 dynamic memory allocator’, 2002. http://gee.cs.
oswego.edu/dl/

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005238

http://gee.cs.oswego.edu/dl/
http://gee.cs.oswego.edu/dl/

