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Abstract

In recent years, the semiconductor industry has turned its focus towards heterogeneous multi-processor plat-

forms. They are an economically viable solution for coping with the growing setup and manufacturing cost of

silicon systems. Furthermore, their inherent flexibility also perfectly supports the emerging market of interac-

tive, mobile data and content services. The platform’s performance and energy depend largely on how well the

data-dominated services are mapped on the memory subsystem. A crucial aspect thereby is how efficient data

is transferred between the different memory layers. Several compilation techniques have been developed to op-

timally use the available bandwidth. Unfortunately, they do not take the interaction between multiple threads

running on the different processors into account, only locally optimize the bandwidth nor deal with the dynamic

behavior of these applications. The contributions of this chapter are to outline the main limitations of current

techniques and to introduce an approach for dealing with the dynamic multi-threaded of our application domain.

1 The design challenges of media-rich services

Business analysts forecast a 250 billion dollar market for media-rich, mobile wireless terminals [53]. These systems
require an enormous computational performance (40GOPS1). Even though current PCs offer this performance re-
quirement, they consume too much power (10-100W). Mobile devices should consume at least two or three orders
of magnitude less power [30]. Furthermore, they should be cheap to successfully penetrate the consumer market.
Consequently and in spite of the design issues, the engineering and manufacturing costs need to be reduced. Industry
strongly believes that platforms are a potential way to meet the above challenges.

1.1 The era of platform-based design

A platform is a fixed micro-architecture together with a programming environment that minimizes mask-making
costs and is flexible enough to work for a set of applications [4]. The production volumes can then remain high over
an extended chip lifetime.

Given the strong energy constraints, we must choose the flavor of these platforms. Since power is cubic to the
processing frequency, parallelism is an effective to reduce power and energy consumption. Then, multiple simple
processors are preferred to one complex speculative and out-of-order processor. In the right application domain,
we can get better performance and spend less energy. Besides parallelism, heterogeneity is an alternative way to
decrease the energy cost. For instance, the TI OMAP platform combines a RISC processor with a Digital Signal
Processor (DSP). The RISC is more energy-efficient for the input/output processing and simple control-dominated
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Figure 1: Characteristics of our application domain

applications. The DSP, on the other hand, provides the computational performance for audio and video processing,
while keeping the energy cost bounded.

Taking a look to the market, it is clear that heterogeneous multi-processor platforms are conquering the world
of low power embedded systems: ST Nomadik [40], Philips Nexperia [42], TI OMAP [22].

1.2 The desire for media-rich services

Platforms perfectly support the next wave of media rich, wireless applications, bound to flood the multi-billion dollar
consumer market. Typical applications are media-players such the MPEG4 IM1 player.

We summarize the most important characteristics of the application domain in Fig. 1:

• multi-threaded : The systems contain multiple tasks which can execute in parallel. The tasks can either be
independent or dependent. In figure 1, the system contains two parallel tasks (T1 and T2).

• a closed system: The entire set of possible tasks it is known at design time (i.e. we know the source code
of every task to be executed in the system). However, the start time of each task an the exact instances of
task being executed at a precise instant, it is only known at run time. User interaction and data dependent
conditions introduce non-deterministic behavior in the system, making it impossible to accurately predict
which tasks will be executed in parallel. We assume that no tasks can be downloaded on the system (such as
e.g., Java applets or other software agents). For our example, this entails that no other types of tasks but T1
and T2 can occur at runtime. Conceptually, it is feasible to extend our framework and methodology for open
systems, but we leave this for future work.

• time-constraints: Tasks within multi-media applications are usually bound to time-constraints. The most
common deadline is the frame-rate (see above). To have a fluid video display the tasks of a thread-frame have
to finish within its deadline. We indicate the deadline imposed by the frame-rate on our application in figure
1. In the first frame, we use a high frame-rate, i.e. a tight deadline for T1. Thereafter, an user event relaxes
the frame-rate. In the remainder of this text, we mainly focus on the frame-rate, despite other deadlines will
in practice also occur.
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• tasks are control/data flow graphs: Each task is a control/data flow graph. Hence, parts of a task may be
conditionally executed. As a result, which data and how frequently it is accessed may significantly vary at
runtime. We take as a premise that at the start of each task we know how much memory it needs. The memory
space can be used for the static data or as a heap for runtime allocated data. For instance, we assume that
T1 requires two data structures whereas T2 only needs one.

• data-dominated :. The tasks are data-dominated. As a result, the energy of the data memory architecture
dominates the system cost. On multi-media systems, this assumption is particularly true after the cost of
the instruction memory hierarchy is optimized (e.g., with [1][32]). The data memory cost is then usually the
remaining energy bottleneck. Consequently, optimizing the data memory is the top priority, even if it afterward
slightly increases the processing energy consumption.

In the next subsection, we discuss the main challenges to integrate these applications on an embedded platform.

1.3 Memories rule power and performance

The memory system is an important contributor to the performance and power consumption of embedded software,
particularly for multimedia applications [13][65]. The most well known technique for improving the performance of
the memory subsystem is introducing a layered memory architecture. Large memories used to store multi-media data
have long access times. Therefore, they are too slow to supply data at a sufficient rate to the processing elements.
As a result, the processing elements stall, thereby wasting time and energy. To improve the performance and reduce
the energy cost, designers create a layered memory hierarchy. Each layer contains smaller memories to buffer the
data that is frequently accessed by the processor.

In this work, we focus on how to exploit a layered memory architecture. Particularly, we optimize the available
bandwidth to the multiple memories/banks of each layer. This problem consists of detecting a data assignment
and instruction schedule that satisfy all time constraints while minimizing the energy consumption. Despite many
techniques already exist for this problem (section 3), they improve the bandwidth within a basic block and assume
that the memories are accessed by a single thread. Moreover, these approaches require that access pattern of the
application can be analyzed at design-time. Unfortunately, in our application domain multiple threads often share
memory resources. Furthermore, the user determines which threads are running. As a consequence, we can only
characterize the access pattern at runtime. We will show in sections 4.1.1, 4.2.1 and 5.1 that existing techniques
breakdown under these circumstances, resulting in energy and performance loss.

We will overview the techniques which we have developed to overcome the above limitations. We have investigated
on the one hand design-time techniques for globally optimizing the memory bandwidth, even across the tasks’
boundaries (sections 4.1.2 and 4.1.3 for the shared layer and section 4.2.2 for the local layer). On the other hand, we
have developed a combined design-time approach for dealing with the dynamic behavior (section 5). It makes run-
time decisions based on an extensive design time analysis phase. Finally, we present how these run-time decisions
can be energy-efficiently implemented at run-time (section 6). Before introducing our approach, we explain the
memory architecture targeted throughout this text (section 2) and the related work more in detail (section 3).

2 Target architecture

During our research, we concentrate on a generic target architecture (figure 2). Different processing tiles contain
multiple processing elements that share a local memory layer. The processing elements within the same tile are
closely synchronized. A processing tile could be for instance a VLIW or a simple RISC processor (like on a TI
OMAP). The local memory layer on a processing tile may comprise of multiple scratch pad memories/banks. Again
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Figure 2: Target architecture for bandwidth optimization

this closely resembles ST LX [16] or TI C6X [22] DSPs where up to eight memories are included in the local layer.
We do not directly exploit cache memories, but focus on scratch pad memories. These software controlled memories
do not require complex tag-decoding logic [5]. Therefore, they have a lower energy cost per access compared to
caches, and also reduce the indeterminacy of the system. To further reduce the global energy cost, we assume that
they are heterogeneous: they can have different sizes, different number of ports and access time.

Furthermore, the processing tiles share an off chip SDRAM (like on the TI OMAP or Philips Nexperia). We
include the SDRAM in our overall target architecture, because it may consume up to 30% of the system energy cost
of a commercial hand-held device [37].2

We integrate a cross-bar as communication architecture both between the processing elements and the local layer
as between the local layers and the shared SDRAM. Although a cross-bar is not the most energy-efficient architecture,
its energy cost is currently limited to only 10% of the global data transfer cost.3 With this configuration, the
communication architecture does not have any impact on the achievable performance, but the ports of the different
memory layers (local memories and SDRAM) become potential bandwidth bottlenecks.

3 Surveying memory bandwidth optimization

Memory bandwidth optimization is a widely researched topic. Most of the related work is focused on improving the
bandwidth of a single memory layer. This layer can either consist of multiple SRAMs or a large SDRAM memory
(figure 2). We discern two methods which are commonly applied/combined to optimize the memory bandwidth:
data layout transformations and instruction scheduling techniques. Data layout transformations may comprise

2This percentage is for a complete system including speakers, LCD, etc.
3In principle, a more scalable communication architecture could be programmed or synthesized (such as e.g., [51]) However, research

on advanced communication architectures fall outside the scope of this text.
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Figure 3: Multi-banked SDRAM architecture

several optimizations: from deciding the optimal address in memory (and thus, the optimal memory module) for
each application variable to the array elements relative order in memory. Variables lifetime can also be exploited
to fully exploit the available memory space. Instruction scheduling tries to find a memory access ordering that
optimizes an specific cost. The goal is usually to increase the system’s performance. Only a few methods exchange
the performance gains for energy savings. In the next subsections, we outline them for SDRAMs and for the local
memory layer.

3.1 SDRAM bandwidth

SDRAMs are mostly used for storing large multimedia data. The access time and energy cost of an SDRAM heavily
depend on how it is used. In general, an SDRAM consists of several banks (figure 3). Fetching or storing data in an
SDRAM involves three memory operations. An activation operation decodes the row address, selects the appropriate
bank an moves a page/row to the page buffer of the corresponding buffer. After a page is opened, a read/write
operation moves data to/from the output pins of the SDRAM. Only one bank can use the pins at a time. When the
next read/write accesses hit in the same page, the memory controller does not need to activate the page again (a
page hit). The application can read these data elements at a lower access latency and lower energy cost. However,
when another page is needed (a page miss), precharging the bank is needed first. Only thereafter the new page can
be activated and the data can be read. Note that pages from different banks can be opened simultaneously. We
can then interleave the access among banks in order to minimize the number of page-misses. The less page-misses
occur, the better the performance and energy consumption of the SDRAM become. Most methods below focus on
transforming the application such that page-misses are avoided.

3.1.1 Data layout transformations and data assignment techniques

For a fixed access schedule, the layout of the data in a memory bank defines how many page-misses occur (figure 4).
To illustrate this, we map the scalars a,b,c,d,e,f in two different ways onto the pages of an SDRAM bank. If a memory
operation accesses an open page, a page-hit occurs (H). If, on the other hand, the next operation reads/writes to
another page, a page-miss happens (M). E.g., in the first layout, an access to c after one to a results in a page-hit,
while an access to e after one to a causes a page-miss. Given the presented access sequence, four page-misses occur
in the left layout. If we change the data layout, we can reduce the number of page-misses. E.g., when we move
e to the first page and b to the second one, only two page-misses remain (figure 4-right). Furthermore, it reduces
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Figure 4: Different data layouts impact the number of page-misses

the execution time from 22 to 14 cycles. Since the data layout has such a large impact on the performance, several
authors have proposed techniques to optimize it. [55] partitions arrays into tiles, each fitting into a single page.
The tiles are derived such that the number of transitions between the tiles, and thus the number of page-misses, is
minimized. [66] proposes to layout the scalar variables inside the program text, reducing the overall page-misses.

In contrast with the older DRAM architectures, most SDRAMs nowadays have more than one bank. E.g., the
Rambus’ SDRAMs have up to 32 banks. Multiple banks provide an alternative way to eliminate page-misses. For
instance, [20] distribute data with a high temporal affinity over different banks such that page-misses are avoided.
Their optimizations rely on the fact that the temporal affinity in a single-threaded application is analyzable at design
time.

Thus, despite data assignment techniques exist for limiting the page-miss penalty, they are restricted to single-
threaded, design-time analyzable tasks. As we will motivate in section 5.1, these techniques breakdown for dynamic
multi-threaded applications.

3.1.2 Memory access reordering techniques

The access order also influences the number of page-misses. Consider the code of the basic block shown in Fig. 5-a.
Its data flow graph is also shown. After data dependence analysis, several memory access schedules are feasible (just
two of them are shown). However, as depicted in the figure, the choice impacts the number of page-misses (and thus,
the performance and energy consumption). We assume the left data layout in Fig. 4. The data dependence analysis
reveal that read accesses to a,b, d and e may performed in any order. To hide the multiplication latencies,we may opt
to generate the top schedule of Fig. 5-b. It causes 5 page-misses out of 7 accesses; reordering the accesses as shown
in the second option helps to reduce the number of page-misses to just 2. The potential performance improvement
derived from the first schedule will very likely become a time penalty because of the extra page-misses. Moreover,
the total energy consumption will be significantly larger.

As we will see in Section 4.1.1 for multi-threaded contexts, memory accesses from different concurrent tasks
interfere with each other. As a consequence, task scheduling is a higher level way of changing the final access
ordering.
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Figure 5: Access order impacts the number of page-misses

We may classify the existing work in this area in two main threads: hardware approaches (trying to reorder ac-
cesses through smart memory controllers) or by software approaches (that rely on the compiler to perform code trans-
formations and instruction scheduling optimizations). Several authors ([56], [17]) propose hardware controllers to
reorder the accesses. Typically, they buffer and classify memory access operations according to their type (precharge,
row memory accesses and column memory accesses) and according to the accessed bank and the row. The hardware
logic of the memory manager selects from this classified set which operation to execute first. Since we focus in
low-power design, we strive to simplify the hardware to the bare minimum and put the complexity of our designs as
much as possible in the design-time preparation phase (subsection 5.2). In this way, we avoid the extra hardware
which increases the energy consumption of all memory accesses.

Several software approaches have been presented too. [47] exposes the special access modes of SDRAM memories
to the compiler. As a result, their scheduler can hide the access latency to the SDRAMs. The work was started in
the context of system synthesis, but later on extended to VLIW compilers [41]. Finally, [9] combines the scheduling
technique of [47] with the memory energy model of [61] for reducing the static SDRAM energy.

The above existing techniques rely on the fact that the access pattern can be analyzed at design time for single-
threaded applications. This is not the case in our application domain. Dynamism and data-dependent control
flow in modern applications makes quasi unpredictable the final access pattern of a single thread. Things become
more complex in the multi-thread context: memory accesses from different threads are interleaved. Currently, no
techniques analyze the access pattern across threads. Moreover, the dynamic behavior of some multi-threaded
applications further complicates the problem: the active task-set (set of tasks executing simultaneously) is only
known at run-time. Therefore, it is impossible to predict the inter-tasks memory access interactions at design-time,
since we cannot even know which tasks will be executed in parallel!
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3.2 Bandwidth to the local memory layer

Complementary to the SDRAM layer, memory bandwidth optimization has also been researched for the local memory
layer. Their optimization objective is mostly reducing memory area/energy while guaranteeing performance. In this
subsection, we discern again techniques which only change the data assignment and the ones which combine it with
instruction scheduling.

3.2.1 Data layout based techniques

In the synthesis community, many techniques were developed for synthesizing a memory architecture with provides
sufficient memory bandwidth, but is energy or area efficient too (e.g., [21] and [8]). They generate a memory
architecture and decide on the data to memory assignment in a single step. As a consequence, this makes them not
directly applicable for predefined memory architectures (such as on ASIPs or DSPs).

Modern DSPs usually have a local memory layer which consists of multiple SRAM memories. Let’s consider
the architecture in figure 6 as an example. It has two single ported memory banks (X,Y) which can be read in
parallel. Most compilers would model this memory layer as a monolithical memory with multiple ports. Under this
assumption, data layout has almost no influence in the potential performance. The compiler will schedule in parallel
as many memory operations can as load/store units exist on the architecture. Since the compiler is not bank-aware, it
will even schedule accesses to the same memory bank in parallel. Although this simplifies the instruction scheduling,
special hardware at runtime needs to serialize the parallel accesses to the same memory resource. The DSP is then
stalled and performance is lost. Several authors therefore expose the local memory architecture to the linker.

A conscious data layout may help to alleviate this problem. [35] maximizes the performance by carefully dis-
tributing the data across the different memories. In this way, it ensures that as many accesses as possible can be
executed in parallel. Some very recent approaches ([36]) dynamically reallocate data in the local layer. At compile
time they perform a life analysis of the task and insert instructionc to dynamically copy code segements and variables
onto the scratchpad at runtime. They report energy reductions up to 34% compared to static allocation. However
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their technique cannot efficiently handle dynamic applications. A static analysis of a dynamic application cannot
reaveal which data will be accesses at any point of the task. Furthermore, multi-tasked environments, where the
local layer is shared between several tasks, are not considered at all.

3.2.2 Access order
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Figure 7: Reducing the memory cost with access ordering

The memory accesses order has also an important impact on the performance. and energy consumption. Indeed,
changing the access ordering may allow to achieve the same performance with a more energy efficient memory
system. Let’s see how with an example (see figure 7). The application one small array (B) and a bigger one (A).
The memory system may consist of several instances of any of the modules in the Memory library. Considering
the access schedule 1, the architecture 1 is the most energy-efficient that enables the schedule. However, the dual
port memory has an important impact on the energy consumption of this architecture. By rescheduling the memory
accesses of the inner loop, we can eliminate the need for this memory (see architecture 2 in figure 7). It retains
the same performance, but both data structures can now be mapped in a single port memory, thereby reducing the
energy cost from 0.23mJ to 0.13mJ. From this example, it is clear that data layout and access scheduling are very
effective in lowering the architecture cost. Because both techniques are so closely coupled, several authors propose
to optimize memory layout and access ordering together.

An example is [57]. It optimizes the memory bandwidth in a separate step before compilation, thereby outputting
a (partial) data assignment which constrains the final instruction scheduling. It guarantees that enough memory
bandwidth exists to meet the deadline, while remaining as energy-efficient as possible. This technique optimizes the
storage bandwidth within a basic block for memories with a uniform access time. of the application. An extension to
this work ([14]) indicates how this technique, initially developed for a system synthesis, can also be used on existing
processor architectures. But in both cases, they only reorder the memory accesses within the scope of a basic block.
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More global optimization techniques can further improve the performance. In the past, several authors have
proposed techniques to globally schedule instructions to parallelize code [28], but they do not consider how to
optimize the memory bandwidth. [63] defines an operation schedule which reduces the number of memory ports.
However, it does not take into account which data structures are accessed or how they are mapped onto the memory.

In summary, the main limitations of the above bandwidth optimization techniques for both the local and the
shared memory layer are:

1. single-threaded applications: they optimize the memory bandwidth for a single task at a time. As a result, we
cannot directly use them in our context, since we want to optimize the bandwidth across multiple tasks (e.g.,
on the shared SDRAM layer).

2. static applications: the above data layout/assignment techniques obtain information on the locality for the
data at design time. The locality depends on which tasks are executing in parallel. Since in our application
domain the actual schedule is only known at run time, we can no longer extract it at design time.

3. no global optimization: the existing techniques only reorder the memory accesses within the scope of a basic
block. No optimizations across the boundaries of the basic blocks are systematically applied. As we will show
for the local memory layer (section 4.2), this significantly reduces the potential performance gains and energy
savings.

For our application domain and target architecture, several extensions are clearly needed for dealing with multiple
threads and coping with the dynamic behavior. We discuss now techniques which optimize the memory hierarchy
across the boundaries of a single task (subsection 3.3) and overview the techniques for managing dynamic behavior
(section 3.4).

3.3 Memory optimization in multi-threaded applications

Different design communities have researched the influence of the communication architecture and memory subsystem
on the performance of a multi-threaded application.

A large body of research exists in the high-performance computing domain on parallelizing applications while
reducing the communication cost (e.g., the SUIF-project [19] and the Paradigm compiler [6]). However, they target
an architecture which is very different from ours. E.g., they rely on complex hardware to guarantee data coherency
and consistency, which may come at an important energy penalty. Furthermore, their techniques only work for
statically analyzable code and cannot cope with runtime variations which are typically present in modern multi-
media applications. These limitations render this prior-art not directly applicable to our context.

Also in the embedded system’s context many authors have studied multi-threaded applications. [27] proposes a
top-down hierarchical approach, compiling code on a heterogeneous multi-processor. The main disadvantage of this
approach is that they use a synchronous data-flow model. It covers only a limited application domain and is not
sufficient for our target domain.

Finally, since the middle of the last decennium, multi-processors systems have been widely researched in the
system-level design community. Most techniques explore how to combine IP-blocks such that the system cost (albeit
performance, energy or area) is reduced. In this context, the ordering and assignment of the tasks to the processing
elements plays an important role in the system’s performance (see [12] for an overview). However, in recent years, the
energy consumption has become an important bottleneck too. When energy is considered at all in task scheduling,
the focus has been on the processing cores. [52] presents a complete methodology to map multi-tasked and multimode
applications onto heterogeneous multi-processor platforms. They focus on task and communication mapping, tasks
scheduling and dynamic voltage scheduling. However their model does not specifically include the memory system.
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They incorporate communication costs between tasks, but this information is not enough to efficiently optimize the
memory hierarchy.

Unfortunately, only limited research exists in reducing the energy cost of the memory system. [10] and [31]
describe both a heuristic which does allocation, assignment, scheduling of multiple task-graphs. [24] and [58] compile
a task-graph on a given heterogeneous architecture. They explicitly model the memory system, interconnect and
processing elements. The algorithm answers the following question: is it better to distribute the data (at a higher
communication cost) or to keep data local (at a higher local memory cost). The above approaches use a naive
memory architecture model and hardly incorporate the real behavior of the interconnections and memories.

Recently, [33] discuss how many processors are required to execute code as energy-efficiently as possible. The task
interaction is empirically accounted for (based on simulation), but this is not a scalable approach. [25] partitions
the data space of a linked binary. Each part is then mapped onto a memory bank. It selects the partition which
optimizes the energy cost compared to a dual port memory. The performance of each partition is not accurately
estimated since the technique does not account for memory stalls.

We identify the following limitations to the above techniques:

1. they target an architecture which is either too different from ours or is not detailed enough. As a result, we
cannot reuse them to optimize the interaction between parallel executing tasks.

2. their program model is too limited for our application domain in which dynamic behavior plays an important
role too.

In the next section, we review the current techniques for coping with the dynamic behavior.

3.4 Runtime memory management

Dynamic applications are slowly becoming desirable in the context of embedded systems. The unpredictability
generated by the dynamism entails the usage of run-time policies for effective optimizations. These policies must be
implemented efficiently to minimize the resulting overhead (figure 8).

As indicated in the previous sections, for memory bandwidth optimization, the policy making consists of schedul-
ing the tasks (or their instructions) and (re)distributing their data across the available memories (step 1). To ef-
ficiently implement these decisions, we need to manage the memory space at runtime (step 2). In this section, we
overview both the runtime decision taking and implementation techniques.

run-time policy:
- task/instruction order
- data assignment
- data layout

efficient policy implementation:
- task-scheduling
- data copying (e.g. DMA)
- dynamic memory management

Figure 8: Runtime memory optimization decomposed in two problems: decision taking and implementation
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3.4.1 Runtime policies

In the context of embedded systems, only few techniques decide where to store the data at runtime taking the
memory architecture into account. For instance, [59][5] decide at design time for each call-site to malloc/new to
which memory the data should be assigned. They base their decision on simple criteria: object co-location to avoid
conflict misses, object size and access frequency. Nearly no work has been done on memory-aware task scheduling
for dynamic multimedia applications. One of the only contributions in this area is [60]. There, an OS scheduler
directs the power mode transitions of the SDRAM modules, but performs no access scheduling or bank assignment.

3.4.2 Enforcing runtime policies

Dynamic memory management is a well known problem. It has been widely researched in the context of general
purpose computing. The main reason is that high-level programming languages intensively allocate data on the
heap at runtime. E.g., every time in C++ a new object is created, the new function dynamically allocates memory
space on the heap. Since applications allocate many differently sized data structures, the heap space easily becomes
fragmented. This significantly reduces the available memory space and increases the allocation overhead. Several
dynamic memory managers have been proposed for reducing fragmentation (see [11][15] for an overview). An
important technique to eliminate fragmentation is adapting the dynamic memory manager to the allocation requests
of the applications. [64] splits the available memory in pools. Every pool is then managed by a separate dynamic
memory manager, which deals with a subset of the allocation requests. Usually, the subsets consists of the allocation
requests with a similar size.

The authors of [54] present a deterministic hardware-based dynamic memory manager. The memory is hierar-
chically managed. Each processor has its own memory pool which is controlled by the RTOS. Whenever the space
in this pool is too limited, the processor allocates more memory from the shared memory pool. The shared pool is
split in fixed sized blocks to simplify its management. The result is a memory manager which has very fast memory
(de)allocations times.

In the context of multi-processors, the most scalable and fastest memory managers use a combination of private
heaps combined with a shared pool [11][62]. These memory managers avoid typical multi-processor allocation
problems such as blow-up of the required memory space, false sharing of cache-lines and contention of threads
accessing the shared memory. However, they are unaware of the memory architecture and are complementary to our
work. As we will show in section 6, we reuse the above techniques to manage the memory space at runtime, but we
have to carefully control their allocation overhead.

We conclude from the above that:

1. no decision techniques cope with the underlying memory architecture, albeit a multi-banked SDRAM or the
local memory layer.

2. no current runtime decision techniques optimize the memory bandwidth.

3. despite dynamic memory management is a well researched problem, limited support is available to integrate
these decisions inside the code.

4 Memory bandwidth optimization for platform-based design

Many techniques optimize the memory bandwidth for a single thread (see section 3), but they break down when
applied to multi-threaded applications. In this section, we illustrate how parallel accesses from different processing
elements either to the shared memory (subsection 4.1) or the local memory layer (subsection 4.2) degrade the system’s
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performance and increase its energy consumption. For each of them, we will introduce techniques to mitigate the
problems. Our techniques exploit data assignment and scheduling to optimize the behavior of the memories.

4.1 The shared layer

As motivated, the shared layer usually is based on a multi-banked memory, such as an SDRAM. In this subsection,
we first explain with an example why existing techniques breakdown (subsection 4.1.1). Then, we present how to
overcome these limitations with data assignment and task scheduling (sections 4.1.2-4.1.3).

4.1.1 Multi-threading causes extra page-misses

Over the past years, several techniques have been proposed to eliminate page-misses inside a single thread (subsection
3.1), but they cannot cope the ones caused by parallel threads. A small example explains why (figure 9). It consists
of task1 and task2, running on a different processor tile and accessing data stored in the shared SDRAM memory. As
explained above, the more page-misses occur on the SDRAM, the more energy is consumed.4 One way to minimize
the number of page-misses is to carefully assign the tasks’ data to the banks of the SDRAM. Current techniques
optimize the assignment of a single task at a time. In case of our example, they generate layout A. If both tasks
are sequentially executed, it results in only one page-miss for task1 (see sequential schedule). Also for task2, only
three page-misses occur, because its data (b and c) are distributed across the two banks (see again the sequential
schedule).

As soon as both tasks execute in parallel while using layout A, extra delays and many more misses occur, because
the SDRAM interleaves accesses from both tasks. E.g., task1 fetches a while task2 reads simultaneously from b.
With its single memory port, the SDRAM cannot access both data structures in parallel. Its interface has to serialize
them, delaying the access to b with one cycle. Furthermore, every other access to a or b results in a page-miss,
because they are stored on different pages in the same bank. The extra page-misses augment the energy cost and
further delay the execution.

Interacting tasks on shared resources thus cause more delays and generate extra page-misses. Currently, no
techniques can avoid this, because they optimize the data layout within a single task.

4.1.2 Optimizing the data assignment across the tasks’ boundaries

We have proposed a technique for reducing page-misses across the tasks’ boundaries [43]. It stores frequently
accessed data structures with high access locality in separate banks as much as possible. To identify these data
structures, we have developed a heuristic parameter called selfishness5. At design-time, each task is analyzed and
profiled independently. Every relevant data structure of each task is characterized with a selfishness factor. A
data structure’s selfishness is the average time between accesses (tba) divided by the average time between page-
misses (tbm). It is a measure of spatial locality of the data structure; we finally weight it with the data structure’s
importance by multiplying it by the number of accesses to the data structure.

At run-time, when we know which tasks will co-occur in time, we decide the assignment of the alive data. We
have implemented a greedy algorithm that assigns data to the banks by decreasing order of selfishness. The higher
the selfishness becomes, the more important it is to store the data in a separate bank. Our algorithm distributes
the data across banks such that the selfishness of the banks is balanced. The selfishness of a bank is the sum of the
selfishness of all data structures in the bank.

4For the clarity of our example, we only focus on their energy penalty, i.e. no performance penalty due to page-misses.
5for details how to measure selfishness we refer to [43]
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Figure 9: Interleaved accesses from different tasks cause page-misses and extra stalls

Consider the example in Fig. 9. The sequential schedule gives us the required information for each data structure.
a and b both have the same spatial locality, because the time between misses equals the entire duration of the task
and the time between accesses is similar. However, because b is less frequently accessed than a, its selfishness is
slightly lower. The selfishness of c is much lower than both a and b, since for every access a page-miss occurs and
it is less accessed. Therefore, when we schedule both tasks in parallel, our algorithm first separates the most selfish
data structures a and b and then stores c with b (since the bank containing b is less selfish than the one with a).This
corresponds with layout B in the figure. As a result, only five page-misses remain and the energy cost is significantly
reduced compared with a naive layout: layout A just places one data structure after the other. This results in one
page-miss per access.

4.1.3 Task ordering to trade-off energy/performance

Besides data assignment, also the task order heavily impacts the system’s energy and performance. For instance,
if we execute task1 and task2 sequentially, four page-misses occur. This is the most energy-efficient solution, but
takes the longest time to execute. In contrast, when we execute both tasks in parallel, the execution time becomes
shorter, but five page-misses occur, thus the energy cost increases.

Generally, by changing the task-order we can trade-off the energy/performance of the system. We have developed
an algorithm to schedule a set of tasks in such a way that the energy consumption is minimized while meeting a
pre-fixed time deadline. For a given application, we first define the most likely combination of tasks that will happen
at run time (we call these combinations scenarios. See Sect. 5). For each scenario and an specific time constraint,
we explore different schedule possibilities, trying to find the most energy efficient. Once the relative schedule is
defined, we must allocate the data of the tasks. For that purpose, we reuse the ideas presented in the previous
section. The obtained task schedule and data allocation represent a Pareto-optimal solution for performance and
energy. We iteratively modify the time constraint in order to generate a set of solutions, automatically generating a
set of Pareto-optimal solutions (called a Pareto curve. In Fig. 10 we depict the Pareto curve for our example). The
designer can pick the operating point which best fits his needs from the generated trade-off points. All the details
of this joined task schedule/data assignment technique are shown in [18].

14



0

2

4

6

8

10

4 9 14 19 24

cycles
p

a
g

e
-m

is
s

e
s

Non Pareto

Parallel

Layout B
Sequential

Layout A

Figure 10: Energy/performance trade-off for task1 & task2

Memory aware task scheduling may be be also beneficial for performance. Assuming that it is always better to
distribute the data across banks to reduce the number of page-misses, a conservative task schedule increases the
assignment freedom. When the ratio number of data structures number of banks becomes high, insufficient banks
are available to separate all energy critical data structures from each other. Data allocation alone does not suffice
to decrease the number of page misses. In such a situation, task scheduling is a good way to enlarge the freedom of
the allocation process. Generally, sequential schedules result in the lowest energy consumption, but they have the
worst execution time. In general the trend is clear: the lower the execution time (scheduling more tasks in parallel),
the higher the energy consumption. Of course, some schedules will not follow this tendency. Sometimes, too much
parallelism is bad even for performance!! (if the number of page-misses increases too much and the applications are
memory bounded, an aggressive parallel task schedule could increase the total execution time).

In Fig. 11 time and SDRAM energy consumption values are shown for four different schedules of the same
task-set. Schedule D corresponds to a sequential scheduling: as expected, the longest execution time with the lowest
energy consumption. Full parallel schedule is shown in part A of the figure. B and C are intermediate schedules,
that trade-off performance and energy consumption. As well as illustrating our point, Fig. 11 also points out that
the execution time of a task cannot be estimated independent of the other tasks running in parallel with it. The
time penalty raised from sharing the SDRAM between several concurrent tasks reaches up to 300% for CMP (in
schedule A), compared to its execution time without other tasks executing on the platform.

4.2 The local memory layer

4.2.1 Access conflicts reduce the system’s performance

As indicated in section 3.2, existing techniques only optimize the memory bandwidth in the scope of a basic-block.
As a result, a large room for improvement remains. We illustrate this with a small example that consists of three
data-dominated loops (see code in Fig. 12-left) which are executed on a platform that consists of three single-port
memories: two 4kB ones (0.11nJ/access) and a 2kB one (0.06nJ/access).

Because the applications are data dominated, the duration of the memory access schedule determines the per-
formance of the loops. We assume that the remaining operations can be performed in parallel with the memory
accesses or take only limited time. We will use the example presented in figure 12-left to study the the influence of
memory access schedule together with data assignment in the resulting performance and energy consumption.

Current compilers are not aware of the final data to memory assignment. During instruction scheduling, most
compilers simply assume that any memory operation finishes after n-cycles. When the executed operation takes
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Figure 11: Scheduling outputs for four tasks

int A[301],int B[100];int D[100]

int C[100]; int U[2];

int i,j;

for (i=0; i<100; i++) // loop 1

A[i+1] = A[i] + 1;

for (i=0; i<100; i++) // loop 2

D[i] = C[i] + B[i];

for (i=0; i<2; i++){ // loop3

for (j=0; j<40; j++) // loop31

D[j] = D[j-1]+ D[j];

U[i] = D[39];

}

int A[300],int B[100];int D[100]

int C[100]; int U[2];

for (int i=0; i<100; i++) // loop 2

D[i] = C[i] + B[i];

for (int i=0; i<2; i++){ // loop 1&3

for (int j=0; j<40; j++){

D[j] = D[j-1]+ D[j];

A[40*i+j] = A[40*i+j-1] + 1;

}

U[i] = D[39];

}

// remainder of loop 1

for (int i=0; i<20; i++)

A[i+80] = A[i-1+80] + 1;

Figure 12: Motivational example: original code (left), code after fusion (right)

longer than presumed, the entire processor is stalled. As a result, often a large difference exists between the expected
and the effective performance of the processor. We use a typical modulo scheduler ([7]) to generate our memory
access scheduling. Note that a modulo scheduler may schedule read/write operations from the same instruction in the
same cycle. This is the case in our examples: the write operation belongs to the iteration i while the read operation
comes from iteration i+1. Modulo scheduling may be applied when there are no data dependent conditions in the
loop body. The scheduler generates a memory access schedule for the inner-loops of 460 cycles (Fig. 13-a). However,
the actual performance varies between 540 and 740 cycles. The schedule takes longer than expected because the
processor has to serialize the accesses to D in loop 31. Extra stalls occur depending on whether the linker has
assigned the C, B and/or D to the same memory.

Because how the linker assigns the data to the memories has such a large impact on the performance of the
system, it is better to optimize the data assignment and the memory schedule together ([57]). Our technique
imposes restrictions on the assignment such that the energy is optimized, but still guarantee that the time-budget
is met. The assignment constraints are modeled with a conflict graph (e.g., Fig. 14-left). The nodes correspond to
the data structures of the application. An edge between two data structures indicates that we need to store them
in different memories. Hence, the corresponding accesses to these data structures can be executed in parallel.
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Figure 13: Empty issue slots in the memory access schedule of the inner-loops: (a) existing compiler; (b) with fastest
partial data assignment; (c) with most energy efficient partial assignment

The assignment constraints imposed by the conflict graph prevents certain access to happen in parallel. This
restricts the feasible schedules to those respecting the access restrictions. Thus, the conflict graph links data assign-
ment and instruction scheduling: for a specific conflict graph we can determine the fastest schedule possible when
using the least energy consuming data assignment solution. For instance the edge between A and C (Fig. 14-left)
forces us to store both data structures in different memories. The fastest schedule for this conflict graph takes 540
cycles (Fig. 13-b). It consumes 64.4 nJ6, because the conflict edges force us to store both A and B in large memory
(see complete assignment in Fig. 14-left). Note that the energy consumed in the memories only depends on the
conflict graph, not in the access schedule. For a fixed conflict graph, the energy dissipated in the memories will
remain the same even with different instruction schedules.

We can decrease the energy cost of the above assignment by reducing the number of conflicts. After eliminating
the edges between B-D, C-D and B-C, the small data structures B, D and C can be assigned in the smallest and
most energy efficient memory (figure 14-right). The energy consumption is then 54.4nJ instead of the original 64.4nJ.
Less conflicts also imply that less memory accesses can execute in parallel. The fastest feasible schedule now takes
740 cycles (Fig. 13-c). The energy savings thus come at a performance loss.

However, many memory access slots remain empty (check again figure 13) . This is mainly due to: (1) inter-

6We compute the energy consumption as follows:
∑
∀m∈M

∑
∀ds∈m

NrAccess(ds)Em
access
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Figure 14: Partial assignment expressed with a conflict graphs: (left) fast; (right) more energy-efficient

iteration dependencies. For instance the initiation interval of loop 1 is 2, because A depends on itself. Hence, only
30% of the available memory slots are used; (2) we do not use power hungry multi-port memories. Consequently,
we cannot schedule operations that access the same data in parallel. E.g., in loop 31 we cannot execute the accesses
to D in parallel.

4.2.2 Global schedule: Loop morphing

A

A

loop1-loop2:100 it 200 cycles

C

D

B

D

loop31: 80 it 240 cycles

D

D

Ld/st1 Ld/st2 Ld/st3

perf.
440 cycles

energy: 64.4nJ
(a)

loop31b: 40 it 120 cycles

loop1: 60 it 120 cycles

D

D

D

A

A

ld1/st1 ld1/st2

loop31a and loop1: 40 it 120 cycles

D

D

D

A

A

ld1/st3

C D

loop2: 100 it 100 cycles

B

perf.
460 cycles

energy: 64.4nJ
(b)

D

loop31: 80 it 240 cycles

D

D

C D

loop2: 100 it 100 cycles

B

A

A

A

A

loop1: 20 it 40 cycles

Ld/st1 Ld/st2 Ld/st3

perf.
380 cycles

energy: 64.4nJ (c)

A

A

D

loop31: 80 it 240 cycles

D

D

C

D

loop2: 100 it 300 cycles

B

Ld/st1 Ld/st2 Ld/st3

perf.
540 cycles

energy: 54.4nJ
(d)

Figure 15: Loop fusion fills the issue-slots: (a)-(b) existing fusion techniques for the fastest partial data assignment;
(c) fusion combined with loop splitting and strip mining; (d) best fusion for the energy-efficient partial assignment

With more global optimizations, such as loop fusion [38], we can further compact the application’s schedule.
However, existing fusion techniques can only overlap few iterations. Consider the loop nests in Fig. 16. We also
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show their iteration domains (each dot corresponds to a single iteration). Traditional techniques would only fuse
four out of nine iterations, due to the different dimensions of the loop nests. This restriction limits the achievable
performance gains.

l1:for (i=0;i<4;i++)
  l11:for (j=0;j<4;j++)
    S1

l2:for (i=0;i<9;i++)
   S2
  

existing 
fusion

techniques

l1

l11

l2

-

l1

l11

i

-

only 4 
iterations

fused

5 remaining
iterations

iter. domain
l11-l1

Figure 16: Existing fusion techniques can only overlap a limited number of iterations

Let’s apply loop fusion to our previous example (code in Fig.12). We first select one conflict graph, which prevents
certain accesses to happen in parallel. Let’s consider the fastest conflict graph (Fig. 14-left). If we choose to fuse
loop 1 and loop 2, the resulting schedule would take 440 cycles (Fig. 15-a). Another option would be to fuse loop1
and loop3. In this case, the loop nests are not conformable (they do not have the same number of dimensions and
their loop limits are different). However, current loop fusion techniques will just fuse 40 iterations, resulting in a
schedule length of 460 cycles.

Loop morphing is a technique that enables loop fusion beyond conformability limits (details can be found in
[45]). Once we have decided which loops to fuse, our algorithm gradually tries to make them as similar as possible.
Loop splitting and strip mining are iteratively applied to obtain conformable loop nests. Fig. 17 shows the different
steps to fully fuse the loops shown in Fig.16. First, we apply strip-mining to l2 to fit the number of dimensions of
the other loop. The resulting loop nest is split to avoid the if-condition in the body of the loop. A new loop nest,
with just one iteration, is generated (l3 ). We now transform the longest loop l1 such that it has the same length
as l2. This transformation is accomplished through loop splitting. After that, we have two loop nests perfectly
conformable, that we can easily fuse (Phase 2 of Fig. 17). Note that eight iterations have been fused, instead of
only four in Fig. 16.

In our example on Fig. 12, we first split loop1. Two loops are generated: one with the first 80 iterations and a
second one with the last 20 iterations. Strip mining is applied to the first of these two new loops. This way we obtain
a two-level nested loop, similar to loop 3. Fusion is now straightforward. Finally the 20 remainder iterations from
loop 1 may be considered for subsequent fusion decisions. The final code after morphing is shown in Fig. 12-right.
Always using the fastest conflict graph, loop morphing enables a schedule length of only 380 cycles (Fig. 15-c).

From the above, we conclude that for a given conflict graph we may decide which are the best loops to fuse, and
use morphing to maximize the iterations fused. However, if we change the conflict graph, we need to take different
fusion decisions. E.g., under the more energy efficient conflict graph (Fig. 15-c), it is more beneficial to fuse loop
1 and loop 2. The execution time is then 540 cycles compared to 740 cycles for the non-fused code, for the same
energy consumption. The fusion decisions and consequently, the performance of the application, heavily depend
on the conflict graph. The more conflicts the higher the application’s performance, but the more energy hungry it
becomes.

In [46], we present a heuristic to decide which loops to combine. The input of the algorithm is an initial description
of the loops, their statements and iteration domains. As stated above, the decision also takes into account the current
conflict graph. We compute the fusion gain of all possible pairwise fusions. The fusion gain is an estimation of
the relative system’s performance gains after fusion. We estimate the schedule length of every basic block with an
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Figure 17: Morphing heuristic applied on an example

iterative modulo scheduler. The performance gain estimation is obtained by comparing the schedule length of the
original loop nests and the fused version. The schedule takes the assignment constraints into account. We only
schedule memory operations in parallel if a conflict exists between their corresponding data in the conflict graph.

After computing the fusion gains for all possible loop nest pairs, we fuse the loop pair with the highest gain.
After the fusion step, we re-evaluate which loop pairs can be combined (data dependences may prevent some loops
to be fused) and re-compute the fusion gains of the newly generated loops. This process is iteratively performed
until the performance gain does not exceed a prefixed threshold. We finally obtain a fused version of the code which
is corresponding conflict graph.

Thereafter, we generate information to decide which conflict edges (from the conflict graph) to remove first.
This generates a more energy efficient conflict graph that triggers a new loop fusion process from the original code.
This way, we may generate different versions of the code (i.e. the original code after different fusion decisions
applied). Each of this versions have a conflict graph (and thus, and energy consumption) associated. Again, we have
automatically trade-off performance and energy consumption, allowing the designer to choose the optimal point
that meets the constraints with the lowest energy consumption. Fig. 18 shows this trade-off for different set of
benchmarks. Details can be found in [46].

From this example, we conclude that fusion shortens the memory access schedule on condition that:

1. We overlap loops even with non-conformable loop headers. Otherwise, the number of overlapping iterations
after fusion is limited. Therefore, we have proposed loop morphing, a technique that combines loop fusion,
strip mining and loop splitting. Loop morphing fuses non-conformable loops while increasing the instruction
level parallelism in as many iterations as possible. Besides its benefits for optimizing the memory bandwidth,
it may be useful for different optimization objectives. Loop morphing has been presented in [45].

2. we combine the loops which result in the largest performance gains. Our technique pairwise fuses loops which
considers memory size, number of ports, access latency and assignment constraints.

We have presented approaches which more globally optimize the memory bandwidth for both the local and shared
memory layer. In the next section, we discuss to cope with the dynamic behavior of media-rich applications. Our
approach for this problem relies on the above techniques.
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Figure 18: Energy vs. performance trade-off
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Figure 19: Dynamically created tasks with their deadline

5 Scenarios for coping with dynamic behavior

Dynamism introduces a certain degree of unpredictability in the system. Fully static optimizations cannot handle
this non-deterministic behavior, and the solutions obtained may be far from optimal. On the other hand, moving all
the optimizations to run time may introduce too much overhead. Scenarios lay in the middle of these two extremes.
An exhaustive analysis is performed at design time, to gather all the relevant information about every task and their
potential interactions. This information will be later used at run-time to quickly take a decision. In this section we
will first examine the impact of this dynamism, focusing in the resulting energy consumption. Later, we will briefly
explain the scenario approach.

5.1 Energy constraints demands for runtime decisions

Due to the dynamic behavior of our application domain, it is more energy-efficient to assign the data and schedule
the tasks at runtime. An example in the context of the SDRAM layer explains why (figure 19). At the start of
each frame, the user either executes task1 and/or task2. They are the same tasks as in subsection 4.1. We thus
only know at runtime which tasks execute and which data they require. Also, note that the deadline varies from
frame-to-frame. E.g., at the start of frame2, the user lowers the video quality, reducing the frame-rate by half. The
system has then twice more time for each frame.

The optimal task order/data assignment decisions vary from frame to frame (see figure 20). E.g., to satisfy the
short deadline in frame1, we have to schedule both tasks in parallel. We obtain the least number of page-misses
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Figure 21: State-of-art task schedule/SDRAM assignment: a (1) design-time and (2) operating system based solution

using layout B from figure 9. However, in frame2, only task2 is active. As indicated in figure 9, layout A is then
more energy efficient.

Finally, in frame3, both tasks are started again. However, since the frame-rate is lower now, we can execute
them sequentially and eliminate most page-misses with layout A. So, in each frame, different scheduling/assignment
decisions are optimal for energy and we can only take these decisions at runtime.

Current approaches always generate more page-misses occur. Design-time techniques only select one task schedule
and layout (figure 21-1). This single design has to meet the deadline for the worst-case load, i.e. task1 and task2
executed within the short deadline (frame1). The most energy-efficient design for this load is executing both tasks
in parallel and using layout B (figure 9). This operating point is not optimal for both frame2 and frame3. It results
in seven more page-misses than the above approach. A pure design-time technique is thus not energy-efficient.

Furthermore, also current runtime approaches are far from optimal. A typical OS does not account for the specific
behavior of SDRAMs. As long as enough processors are available, it schedules all tasks in parallel and assigns the
data to the first available free space (figure 21-2). By storing all the data in a single bank and scheduling the tasks
in parallel, twelve more page-misses occur than in the optimal case. Again this solution is not energy-efficient.

These results indicate the potential benefits for a runtime technique which considers the SDRAM behavior and
can generate the solutions of figure 20. Since it should make complex task scheduling/data assignment at runtime,
the main difficulty is restricting its overhead. The local memory layer requires a similar approach, but we restrict
ourselves to the shared SDRAM layer.

5.2 Our scenario-based approach

We have proposed a mixed design-time/runtime approach for coping with the dynamic behavior (section 6). The
philosophy behind it is to take most scheduling/assignment decisions at design-time for all frequently occurring task
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for (y=0; y<9; y++){

...

for (n=0;n<8;n++){

...

for (l=0;l<8;l++)

tmp += prev_frame[];

...

}

}

for (y=0; y<9; y++){

if(mode)

for (n=0;n<8;n++){

p1 = sub_frame2[];

if (ctrl)

p2=0;

else

p2=prev_sub2_frame[];

dist+=abs(p1-p2);

}

...

...

}

(1)

for (y=0; y<9; y++){

...

for (n=0;n<8;n++){

...

for (l=0;l<8;l++)

tmp += prev_frame[];

...

}

}

for (y=0; y<9; y++){

// mode == true

for (n=0;n<8;n++){

p1 = sub_frame2[];

// ctrl == true

p2=0;

// ctrl == false

p2=prev_sub2_frame[];

dist+=abs(p1-p2);

}

...

}

(2)

//scenario 1: mode=true

for (y=0; y<9; y++){

...

for (n=0;n<8;n++){

...

for (l=0;l<8;l++)

tmp += prev_frame[];

...

}

}

for (y=0; y<9; y++){

for (n=0;n<8;n++){

p1 = sub_frame2[];

// ctrl == true

p2=0;

// ctrl == false

p2=prev_sub2_frame[];

dist+=abs(p1-p2);

}

...

}

(3-1)

//scenario 2: mode=false

for (y=0; y<9; y++){

...

for (n=0;n<8;n++){

...

for (l=0;l<8;l++)

tmp += prev_frame[];

...

}

}

for (y=0; y<9; y++){

...

}

(3-2)

Figure 23: (1) data dependent conditions as a limiting factor for bandwidth optimization techniques; (2) worst-case
approach; (3) scenario-based approach

sets. In this way, we can reuse our bandwidth optimization techniques for multi-threaded applications and at the
same time limit the runtime complexity. Only for the more seldomly occurring task-sets a pure runtime decision is
taken as a backup solution. In the next paragraphs, we explain the main steps of our methodology (figure 22).

Scenario identification Fixing as many decisions as possible at design time comes at the risk of ignoring the
actual behavior and generating worst-case designs. E.g., consider the code in figure 23. Even though parts of the
code are conditionally executed (e.g., mode and ctrl -conditions in the second loop nest), design-time techniques
assume that both branches are executed, optimizing thus the design for the worst-case load. As a consequence,
we heavily over-estimate the required bandwidth and usually generate an over-dimensioned and energy-inefficient
system.

To prevent this energy-loss, we try to capture the dynamic behavior with scenarios. First, we analyze which
tasks-sets often co-occur at runtime. We call them inter-task scenarios. A similar but more restrictive concept is
used by [23]. Secondly, we narrow down the data-dependent behavior inside the tasks with intra-task scenarios.
An intra-task scenario is an execution path through the task (or a combination of execution paths) for different
data dependent parameters [49][50]. Both the inter- and intra-task scenarios should be manually extracted by the
designer (using profiling). E.g., in the code of figure 23, we derive two intra-task scenarios, one for mode equals true
and another one for mode equals false. Even though research outside IMEC is ongoing in how to identify scenarios
[48][34], a more automated approach is still needed.

After identifying the scenarios, we can represent each one with a data-flow graph on which we can easily apply
our design-time techniques.

Storage bandwidth optimization at design time In the second step, we optimize the storage bandwidth of
each scenario. Our design-time techniques generate for each scenario a set of task ordering/data assignment solutions.
Each solution optimizes the energy cost for a given time-budget. From this set, we only retain the Pareto-optimal

24



Figure 24: Fragmentation in dynamic memory management

solutions. E.g., for our example’s scenario in which task1 and task2 are active (subsection 5.1), we would generate
the Pareto curve of figure 10. Finally, we integrate the Pareto set of each scenario into the operating system. We
provide more details in [44].

Runtime phase Then, at runtime, after identifying which scenario is activated and which is its deadline, we simply
select the best prestored operating point on the Pareto curve and enforce its task ordering and data assignment
decisions. E.g., for frame 1 of our example (subsection 5.1), our runtime mechanism then selects the leftmost
operating point, scheduling both tasks in parallel with layout B. In contrast, for frame2 with the relaxed deadline, it
implements the rightmost operating point. If the scenario was not analyzed at design time, we use a back up solution.
E.g., we simply use an existing dynamic memory manager for assigning the data. Note that our approach leverages
current design-time techniques, but requires that scenarios can be identified inside the application. Obviously, this
partly restricts the applicability of our technique.7

6 Dynamic Memory Management

The memory space available at run-time to our applications can be located in any physical memory of the system. It
is managed with the help of a Dynamic Memory (DM) manager. DM Management basically consists of two separate
tasks, i.e. allocation and deallocation. Allocation is searches for a memory block big enough to satisfy the request of
a given application and deallocation returns this block to the available memory of the system in order to be reused
later. In real applications, memory blocks with various sizes are requested and returned in a random order, creating
”holes” among used blocks (see Fig 24). These holes are known as memory fragmentation [15]. We talk about
internal fragmentation when the wasted space is inside allocated partitions. Otherwise, we will name it external
fragmentation. Internal fragmentation happens when allocated memory is larger than requested memory and not
being used. (e.g. a free block of 5 KB is used for a request of 4 KB, hence one KB is wasted). If we suffer from
external fragmentation, total memory space exists to satisfy the request, but it is not contiguous . (e.g. if a request
asks for 6 KB and there are several non-contigous free blocks of 3 KB, the memory request cannot be satisfied). The
DM manager has to take care of fragmentation issues.

We have classified all the important design options in different orthogonal decision trees, which can compose the
design space of DM management. Based on these orthogonal trees, we can construct custom DM manager from its
basic building elements. The most critical parts of the design search space are overviewed in the next paragraphs.

7Another approach could be to start from existing operating systems and make them account for the energy cost of the underlying
memory architecture. All decisions are then made at runtime without design-time preparation. Even though we did not investigate this,
we expect that such an approach causes too much energy overhead and violates more deadlines, but more research is still needed.
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Figure 25: Assigning the memory blocks to multiple pools

For a complete description about the design space and how it can be used to build custom DM managers see [2, 3].
Then, we analyze the most commonly used DM managers with the use of the design space. Finally, we explain our
approach and why it is more energy-efficient than other state-of-the-art approaches to construct DM managers.

6.1 A brief summary of the dynamic memory management design space

The most important part is trying to prevent fragmentation. In Figure 25, we illustrate the most commonly used
technique to prevent memory fragmentation. This technique assigns memory blocks to different memory segments
(also called pools), which are then accessed by one pointer array that keeps track of the initial position of the pool
with free blocks. The goal is to try to anticipate the size of the memory requests of the application. If every memory
request is met with a memory block with the same size, then no memory space inside the block gets wasted. This
means less internal fragmentation and a quick allocation of the requested block.For example, if an application usually
employs blocks of 8 KBytes and 1024 KBytes 50% of its total memory allocation requests, its DM management will
be simplified significantly if two memory pools of these sizes exist, then just 2 accesses are needed to return one
block (i.e. one access to the pointer array and another one to update the first memory block pointer available to the
next one).

The second most important part of the DM management design space is about trying to deal with fragmentation.
This means using de-fragmentation functions (i.e., coalescing and splitting memory blocks - see also 26). On the
left, we can see the coalescing of memory blocks, which is the way to deal with external fragmentation. If a requested
size (e.g. 20 KBytes) is bigger than the size of the available memory blocks (e.g. 10 KBytes), then it is possible to
coalesce the two smaller blocks. On the right, it is shown the splitting of a memory block, which is the way to deal
with internal fragmentation. If a requested size (e.g. 4 KBytes) is smaller than the size of the available memory
block (e.g. 10 KBytes), then it is possible to split it into two smaller blocks. In this way, the remaining 6 KBytes
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Figure 26: Dealing with external fragmentation by coalescing blocks and dealing with internal fragmentation by
splitting blocks

are not wasted on internal fragmentation and can be re-used for a later request.
Finally, the third most important part of the design space is about trying to select the correct block to fulfill

the memory request. This is done by the ”fit policies”, some of which can be seen in Figure 27. On the left, it is
shown how ’first fit’ policy works. This policy satisfies the memory request with the first block that it finds, that is
not reserved and has enough or more space than the request. Needless to say, this policy is fast, but produces big
amounts of internal fragmentation since blocks of large sizes can be used for allocation requests that are small. In
the middle, the ’exact fit’ policy is depicted. This policy will not stop looking for a block, unless it finds a block
with the same size as the request. This policy eliminates internal fragmentation, but it is very slow due to the large
amount of blocks that are needed to find the best candidate if the list of free blocks is extensive. Finally on the
right side, we can see the ’approximate match’ policy. This policy satisfies the request according to a parameter,
defined by the designer, which is a threshold that states how much it should look for a suitable block. In the case of
Figure 27, this parameter states that the assigned block cannot be bigger than twice the size of the request. This is
a more balanced approach than the two previous ones, neither wasting too much memory space nor slowing down
the DM manager too much. However, the two previous options are also found in the literature in extreme cases
where one of the two metrics (i.e. minimization of memory space or performance) is much more important than the
other one.

6.2 Existing memory managers focus on different parts of the design-space

All the DM managers include these previous decisions of the design space in one way or the other in their designs.
In the following we describe the main types of state-of-the-art DM managers.

First of all, one of the most popular DM manager, namely the Lea Allocator [26], is designed to optimize memory
footprint by eliminating fragmentation, while preserving a reasonable speed. It is very frequently used in Linux-
based systems. More specifically, it uses a very complex pool architecture, which prevents memory fragmentation and
speeds up DM management. Then, it tries to defragment as much as possible, thus reducing even more the memory
fragmentation, but slowing down DM management in a very significant percentage. Finally, it uses a combination of
the previous best fit and first fit policies, which in total does not improve the speed a lot, but manages to preserve
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Figure 27: Fit policies example for a 5 KB block allocation

a reasonable low fragmentation level in a general context. The problem with the Lea Allocator, in the context of
energy efficiency, is that it uses far too many memory accesses trying to defragment. All these memory accesses
cause the power consumption to increase extensively.

Second, another very popular type of DM managers is the one which uses many simple fixed-sized pools to
allocate memory. This style is used by Kingsley Allocator [15]. These allocators are very fast, but they deal poorly
with fragmentation, thus use a big memory footprint. More specifically, they use a more straightforward definition of
fixed-sized pools where only one size can fit in each pool perfectly and many lists of different sizes are pre-allocated
during the initialization of the DM manager, which try to prevent as much fragmentation as possible by placing
the memory requests in the correct pools but can result in a large portion of memory wastage if all the memory
pools of different sizes are not used. However, the truth is that the main goal of these kind of managers is quick
allocations and de-allocations and not limiting memory footprint consumption. As a result, since they use fixed-
sized memory pools, they rarely (or even never) coalesce and split memory blocks thus ignoring defragmentation.
This makes fragmentation usually even worse, but makes the DM manager even quicker. Finally, they also use a
combination of best fit and first fit policies, which in total do not affect much speed, but unfortunately maintain the
very high fragmentation level. The problem with this kind of allocators, in the context of energy efficiency, is that
high fragmentation affects the energy per access, because we have to assign data with more fragmentation to bigger,
more power-hungry memories.

Finally, several custom DM managers exist to satisfy the needs of specific types of applications and their memory
requests. An example is the Obstacks [15] custom DM manager, which is used to optimize a stack-like behavior.
Obstacks uses variable-sized pools, with no defragmentation support and an exact fit policy. This allocator is very
fast and works well when many consecutive small-sized block allocations occur and finally one deallocation can be
used to deallocate all the memory blocks at the same time (i.e. stack-like behavior). Any other behavior or big-sized
requests, make the fragmentation grow extensively, thus reducing its energy efficiency because bigger memories are
needed to store the data (as explained in the previous paragraph). The main limitation of these custom allocators is
that they rely on a specific dynamic behaviour to work well and are manually designed and optimized. Unfortunately,
no systematic methodology exists to create a custom DM manager from scratch to match a specific dynamic behavior
of an application.
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6.3 Our approach to create a low-power custom dynamic memory managers

Our approach consists of the study of the complete design search space. Also, we profile extensively the applications to
define its dynamic behaviour and its dominant dynamic data allocation sizes. The combination of these two elements
produces a systematic methodology to create custom DM managers. In contrast with the previous approaches
we address the whole design space and not focus on small subsets that may work well for a certain number of
applications and a concrete metric (e.g. performance as Kingsley-based managers). Thus, we create custom DM
managers with reduced power consumption, because we try at the same time to have few memory accesses and keep
a low fragmentation level. The key point of our energy-efficient approach is the study of the trade-offs between
low memory accesses to improve speed and low memory fragmentation to reduce the use of memory footprint (for
more details see [2, 3]). Moreover, all our custom DM managers are implemented in the middleware on top of the
Operating System, hence platform independent. This means that they do not require any hardware changes, as
opposed to [54].

As the basic template used in our energy-efficient DM managers, using the profiling information obtained in
each concrete application, at least one fixed-sized pool is assigned to each of the sizes of the dominant data types.
The sizes that are good candidates are those that imply at least 20% of the total amount of allocation requests.
This approach prevents most of the memory fragmentation and speeds up the DM manager by a significant factor
(i.e. between 10% - 50%) compared to those using only general-pools with many sizes. Then, we defragment only
when this is absolutely needed to carefully balance the overhead of memory accesses required in the coalescing and
splitting mechanisms. Mostly, we defragment when we are close to the high watermark of our memory space to try
to avoid the allocation of the next requested memory block in a larger memory. Finally, a first fit policy is used only
for dominant data types, for which we have already provided pools with their corresponding block size thus it is
equivalent to exact fit. The remaining data types must make concessions and sacrifice some memory footprint using
an ”approximate fit” policy for preserving a certain degree of performance, because the number of memory accesses
explodes if the DM manager searches the pools exhaustively to find the exact fit, as we indicated in the previous
section.

We illustrate our technique with a real-life illustrative example: the Deficit Round Robin (DRR) application
taken from the NetBench benchmarking suite [39]. It is a buffering and scheduling algorithm implemented in many
wireless network routers today. Using the DRR algorithm the router tries to accomplish a fair scheduling by allowing
the same amount of data to be passed and sent from each internal queue. It requires the use of DM because the
input can vary enormously depending on the network traffic. The DRR algorithm has 3 types of dynamic data: the
Internet packets, the packet headers and the list that accommodates the internal queues. It works in 3 phases when
it is receiving packets. First, it checks the packet header; secondly it traverses the list of internal queues and, finally,
it traverses the correct internal queue and stores the Internet packet in a FIFO order. Then, it forwards the packets
in 3 additional phases. First, it traverses the list of internal queues, secondly, it picks up the first Internet packet
and, finally, checks the packet header to forward it.

After analyzing the DM behavior and allocation sizes of this example with our approach, we decide to create
two fixed-sized memory pools for the maintenance fields of the list of internal queues and the headers of the packets.
Then, a general pool using approximate fit is used to store the internal variable-sized packets coming from the
network that need to be forwarded. This choice was based on the dynamic sub phases found with our approach
in the algorithm, which indicate that the list of internal queues has 85% of the total accesses on average and that
this list is small enough to fit inside a small memory pool of 4 KB (or 8 KB in the worst case), which can increase
significantly the locality when all the blocks are placed together and reduce enormously the complexity of DM
management compare to other DM managers (i.e. 40% less energy than Lea and 45% less memory footprint than
Kingsley-based DM managers).
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Other experimental results in real-life embedded applications from the multimedia and wireless network domain
show a significant reduction (up to 60%) in power consumption with the use of our approach [29]. Also, when
other factors are really limiting (e.g. memory footprint), trade-offs can be made to achieve the desired results
(i.e. reduction of 60% on average in memory footprint [2]) by and exhaustive exploration of the design space using
our plug-and-play approach (see [3] for more details). Finally, run-time behavior profiling is embedded within our
custom DM managers, so that real-time performance restrictions can be observed and deadlines met, using trade-offs
between power consumption and performance [3].

7 Conclusion

In dynamic multi-threaded applications dealing with dynamic data and tasks is crucial. The memory bandwidth is
both an issue at the shared SDRAM memory as well as on the local memory layer.

Modern multi-media applications contain multiple tasks and/or benefit from task parallelization. However,
tasks running on multiple processors can access the same memory in parallel. This causes access conflicts that
delay the system and increase its energy cost. Since existing techniques also optimize the memory bandwidth
inside a single task, they cannot cope with inter-task conflicts. A need thus exists for techniques that optimize
the memory bandwidth across the tasks’ boundaries. We have therefore introduced several task-ordering/data
assignment techniques for both the local memory layer as the SDRAM.

Multimedia applications consists of multiple tasks which are started/stopped at run-time due to user events.
Also the tasks themselves have become data dependent. We have shown that design-time nor run-time techniques
can effectively deal with this dynamic behavior. Therefore, we have introduced a novel scenario-based memory
bandwidth approach. It combines the best of the design-time and run-time techniques.

Finally, run-time memory management requires an efficient management of the free space. We have introduced
a methodology which customizes the dynamic memory managers for this purpose.

In future work, we want to automatically extract the inter-thread frame scenarios form the user’s behavior.
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