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Abstract. The needs for run-time data storage in modern wired and
wireless network applications are increasing. Additionally, the nature of
these applications is very dynamic, resulting in heavy reliance to dynamic
memory allocation. The most significant problem in dynamic memory
allocation is fragmentation, which can cause the system to run out of
memory and crash, if it is left unchecked. The available dynamic mem-
ory allocation solutions are provided by the real time Operating Systems
used in embedded or general-purpose systems. These state-of-the-art dy-
namic memory allocators are designed to satisfy the run-time memory
requests of a wide range of applications. Contrary to most applications,
network applications need to allocate too many different memory sizes
(e.g. hundreds different sizes for packets) and have an extremely dynamic
allocation and de-allocation behavior (e.g. unpredictable web-browsing
activity). Therefore, the performance and the de-fragmentation efficiency
of these allocators is limited. In this paper, we analyze all the important
issues of fragmentation and the ways to reduce it in network applica-
tions, while keeping the performance of the dynamic memory allocator
unaffected or even improving it. We propose highly customized dynamic
memory allocators, which can be configured for specific network needs.
We assess the effectiveness of the proposed approach in two represen-
tative real-life case studies of wired and wireless network applications.
Finally, we show very significant reduction in memory fragmentation and
increase in performance compared to state-of-the-art dynamic memory
allocators utilized by real-time Operating Systems.

1 Introduction

In the last years networks have become ubiquitous. Modern portable devices
are expected to access the internet (e.g. 3G mobile phones) and communicate
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with each other wirelessly (e.g. PDAs with 802.11b/g) or with a wired connec-
tion (e.g. Ethernet). In order to provide the desired Quality of Experience to
the user, these systems have to respond to the dynamic changes of the envi-
ronment (i.e. network traffic) and the actions of the user as fast as possible.
Additionally, they need to provide the necessary memory space for the network
applications dynamically at run-time. Therefore, they have to rely on dynamic
memory allocation mechanisms to satisfy their run-time data storage needs. Inef-
ficient dynamic memory (DM from now on) allocation support leads to decreased
system performance and increased cost in memory footprint due to fragmenta-
tion [1].

The standard DM allocation solutions for the applications inside the Termi-
nals, Routers or Access Points are activated with the standardized malloc/free
functions in C and the new/delete operators in C++. Support for them is pro-
vided by Real Time Operating Systems (e.g. uClinux [8]). These O.S. based DM
allocators are designed for a variety of applications and thus can not address
the specific memory allocation needs of network applications. This results in
mediocre performance and increased fragmentation. Therefore, custom DM allo-
cators are needed [7, 12] to achieve better results. Note that they are still realized
in the middleware and usually not in the hardware. In our case we propose never
to use hardware but instead use only a library (system layer) just on top of the
(RT)OS in the middleware.

In this paper, we propose a systematic approach to reduce memory frag-
mentation (up to 97%) and increase performance (up to 97%), by customizing
a DM allocator to be used especially for the network application domain. The
major contribution of our work is that we explore exhaustively all the avail-
able combinations of de-fragmentation techniques and explain how our cus-
tom DM allocator can decrease fragmentation and improve performance at the
same time in network applications. The remainder of the paper is organized
as follows. In Sect. 2, we describe some related work. In Sect. 3, we analyze
fragmentation. In Sect. 4, we show the de-fragmentation techniques and their
trade-offs. In Sect. 5, we describe our exploration and explain the effect of each
de-fragmentation technique in the network application domain. In Sect. 6 we
present the simulation results of our case studies. Finally, in Sect. 7 we draw our
conclusions.

2 Related Work

Currently, there are many O.S. based, general-purpose DM allocators avail-
able. Successful examples include the Lea allocator in Linux based systems [5],
the Buddy allocator for Unix based systems [5] and variations of the Kings-
ley allocator in Windows XP [11] and FreeBSD based systems. Their embed-
ded O.S. counterparts include the DM allocators of Symbian, Enea OSE [9],
uClinux [8] and Windows CE [10]. Other standardized DM allocation solutions
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are evaluated in [6] for a wide range of applications (without evaluating perfor-
mance). In contrast to these ’off-the-shelf’ DM allocation solutions, our approach
provides highly customized DM allocators, fine tuned to the networking appli-
cations for both low memory fragmentation and high performance.

Also, in [12], the abstraction level of customizable memory allocators has
been extended to C++. Additionally, the authors of [7] propose an infrastruc-
ture of C++ layers that can be used to improve performance of general-purpose
allocators. Finally, work has been done to propose several garbage collection al-
gorithms with relatively limited performance overhead [13]. Contrary to these
frameworks, which are limited in flexibility, our approach is systematic and is
linked with our tools [2], which automate the process of custom DM alloca-
tor construction. This enables us to explore and validate the efficiency of our
customized DM allocators, combining both memory de-fragmentation and per-
formance metrics.

3 Memory Fragmentation

When the application requests a memory block from the DM allocator, which is
smaller than the memory blocks available to the allocator, then a bigger block
is selected from the memory pool and allocated. This results in wasted memory
space inside the allocated memory block. This is called internal fragmentation,
which is common in requests of small memory blocks [5]. When the application
requests a memory block from the DM allocator, which is bigger than the mem-
ory blocks available to the allocator, then these smaller memory blocks are not
selected for the allocation (because they are not contiguous) and become unused
’holes’ in memory. These ’holes’ among the used blocks in the memory pool are
called external fragmentation.

We measure the level of both internal and external fragmentation (we use the
same cost function with [6]). Thus, we express fragmentation in terms of per-
centages over and above the amount of live data, (i.e. increase in memory usage),
not the percentage of actual memory usage that is due to fragmentation. There-
fore, we measure the maximum amount of memory requested by the application
relative to the maximum amount of memory used by the DM allocator:

Fragmentation =
Memoryalloc.

Memoryreq.
− 1

Memoryalloc. = Memoryreq. + MemoryInt.Fragm. + MemoryExt.Fragm.

4 Memory De-Fragmentation Techniques and Trade-Offs

We are going to analyze the de-fragmentation techniques and their trade-offs.
All of the techniques are well known [5] but their trade-offs (when used in con-
junction) have never been evaluated up to now:
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1.-The most common technique to prevent internal memory fragmentation
is the use of freelists. The freelists are lists (i.e. double or single linked lists) of
memory blocks, which were no longer needed by the application and, thus, they
were freed by the DM allocator. This technique can reduce internal fragmentation
significantly and improve performance in most cases. The trade-off is that it
increases external fragmentation, because the freed blocks are not returned in
the main memory pool, where they can be coalesced with a neighboring free
block to produce a bigger contiguous memory space.

2.-Another technique to prevent internal memory fragmentation is the use
of specific fit policies. The two most popular fit policies are the first fit policy
and the best fit policy. On the one hand, the first fit policy allocates the first
memory block that it finds that is bigger than the requested block. On the other
hand, the best fit policy searches a part (or even 100%) of the memory pool
in order to find the memory block closest to the size of the requested block.
Therefore, there will be the least memory overhead per block and, thus, the
least internal fragmentation. The trade-off is that the performance of the DM
allocator decreases, while it spends more time trying to find the best fit for the
requested block.

3.-An additional technique to decrease internal fragmentation is the use of
the splitting mechanism. When the DM allocator finds a block bigger than the
requested block, then it can split it in two. The block can be split precisely to fit
the request and, thus, produce zero internal fragmentation. The trade-off of this
mechanism is that it reduces performance considerably. The mechanism itself
needs a lot of time perform the splitting, plus it generates one more block inside
the pool per split.

4.-Finally, a technique to decrease external fragmentation is the use of the
coalescing mechanism. When the DM allocator frees a block, which has an adja-
cent memory address with another free memory block, then it can coalesce them
to produce a single bigger block. In this way, external memory fragmentation can
be reduced significantly. A positive by-product of the coalescing mechanism is
that it results in one less block inside the pool per coalesce. This in turn reduces
significantly the time needed to traverse all the blocks inside the pool to find
a best or first fit. On the other hand, the trade-off of this mechanism is that
it reduces some performance, because the mechanism itself needs some time to
perform the coalescing.

It is obvious that these four different de-fragmentation techniques have con-
tradicting effects on performance, internal and external fragmentation (e.g. an
increase of usage of the splitting mechanism decreases internal fragmentation but
also decreases performance). To make things even more complicated it appears
that the efficiency of the techniques is interdependent (e.g. the performance of
the best fit policy decreases when the usage of the splitting mechanism increases).
So a Pareto trade-off exploration is necessary. In order to evaluate which tech-
niques should be used to decrease fragmentation and how much they should
be applied, we have explored exhaustively all the available combinations of de-
fragmentation techniques in various levels of usage (ranging from full usage to
no usage of the technique at all).



358 S. Mamagkakis et al.

5 Customization of DM Allocators for Network
Applications

For the purposes of the exhaustive exploration of the different de-fragmentation
techniques we have used our powerful profiling tool (described in more detail
in [2]). Our tool automates the process of building, implementing, simulating and
profiling different customized DM allocators. Every one of these customized DM
allocators implements a different combination of de-fragmentation techniques
with a different combination of usage level for each technique. About 10 levels of
usage have been used for each de-fragmentation technique. The total exploration
effort took 45 days using 2 Pentium IV workstations. On average, there have been
explored about 10.000 different customized DM allocator implementations for
each one of two different networking applications: DRR scheduling and buffering
in Easyport. Finally, 3 to 7 real network traffic trace inputs (of wired and wireless
networks) have been used for each application to make sure that our exploration
strategy is valid for a wide range of dynamic behavior scenarios.

In Fig. 1, a custom DM allocation exploration example for the Easyport
buffering application can be seen (a network traffic trace of various real ftp
sessions was used as input). Each dot in the figure is the simulation results for
performance and memory footprint allocated by one out of the 10.000 explored
custom DM allocators. The results were heavily pruned and (out of the 10.000
custom DM allocator implementations) only a handful with the best performance
and lowest fragmentation were selected (as seen in the upper right corner of
Fig. 1). The same procedure has been used for the other applications and for
each one of the available inputs (i.e. network traffic traces).

Fig. 1. Custom DM allocation exploration example for the Easyport buffering appli-
cation and pareto-optimal DM allocators

Our simulations show that the limited list of resulting ’Pareto-optimal’ cus-
tom DM allocators share some common characteristics, which favor particular
de-fragmentation techniques at certain levels of usage:

1.-Contrary to most application domains (where about 6 different memory
sizes amount for more than 90% of the total requested memory sizes [6]), in
networking applications just 2 memory sizes amount for 30-70% of the total
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requested memory sizes (an example of this bimodal distribution can be seen
in the histograms of Fig. 3). These 2 object sizes are around the size of the
Acknowledgement (or ACK) packet and the Maximum Transmission Unit (or
MTU) packet of each network [3]. The rest of the requested memory sizes are
evenly distributed between these 2 extreme sizes. Our exploration results show
that custom DM allocators, with just 2 freelists of these 2 extreme memory
sizes, managed to reduce considerably internal fragmentation and improve per-
formance, without increasing much the external fragmentation. All five of the
O.S. based DM allocators, which use from 6-64 different freelists, manage to do
the same, but with a very high cost in external fragmentation.

2.-Contrary to most application domains (where memory usage comes in the
form of very thin spikes and 10% of the memory sizes are freed back to the main
memory heap or pool [5] [6]), in networking applications the memory usage form
varies greatly [3] (in the upper 3 traces of Fig. 2 we can see thin and fat spikes,
in the lower left trace of Fig. 2 we can see plateaus and in the lower right trace of
Fig. 2 we can see a ramp). Additionally, about 30-70% of the memory sizes are
returned to the main memory pool. This means that blocks are not always freed
fast (this is the case of thin spike usage forms only) and that the main memory
pool accommodates a huge number of memory blocks. It also means that the
best fit policy used in all the O.S. based DM allocators (except Windows XP and
CE) is extremely slow because it has to traverse too many blocks in order to
find a good fit. Our exploration results show that custom DM allocators, which
use first fit policy in combination with full usage of the splitting mechanism and
the coalescing mechanism, increase performance dramatically and suffer only
minimal internal fragmentation overhead.

3.-Contrary to most application domains (where about 38 different memory
sizes constitute 99% of the total requested memory sizes [6]), in networking ap-
plications 30-70% of the total requested memory sizes are attributed to 700-1500
different memory sizes (an example of this fact can be seen in Fig. 3). This pro-
duces exceptionally high values of internal fragmentation, which is different from
what is observed in other application domains. All the O.S. based DM alloca-
tors (except Linux) have a very low usage level of the splitting mechanism and
therefore suffer massively from internal fragmentation. Actually, our exploration
showed that this is the major contributor to fragmentation generally in network
applications. Our exploration results show us that the only way to really decrease
fragmentation is with the full use of the splitting mechanism.

4.-Finally, a common characteristic shared among the networking and the
other application domains, is that objects allocated at the same time tend to die
and get de-allocated at the same time. This temporal locality of the allocated
objects is something common in both wired and wireless networks. The reason is
that the traffic structure is imposed implicitly by the tasks initiated by Internet
users at the application layer (e.g. a file or a Web page download). Therefore,
allocated objects are not independent and isolated entities; rather they are part
of a higher-layer logical flow of information [3]. This temporal locality can easily
be converted to spatial locality of the memory freed, if we pursue high usage
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levels of the coalescing mechanism, thus reducing external fragmentation. All
the O.S. based DM allocators (except Linux) have an extremely low usage level
of the coalescing mechanism and thus can not take advantage of the locality
effect. Our exploration results have shown, that with full usage of the coalescing
mechanism, external fragmentation in networking applications can be eradicated.

These favorable common characteristics are a combination of just two freel-
ists, first fit policy, full usage of the splitting mechanism and full usage of the
coalescing mechanism. Therefore, this is the custom DM allocator that we pro-
pose to use for network applications.

6 Case Studies and Simulation Results

We have applied the proposed custom DM allocator to two real case studies:
The first case study, is the Deficit Round Robin (or DRR) [14] application,

which is a scheduling algorithm implemented in many routers and WLAN Access
Points today [15]. In the DRR algorithm, the scheduler visits each internal non-
empty queue, increments the variable deficit by the value Quantum (e.g. 9 Kbytes
are used in most Cisco Routers) and determines the number of bytes in the packet
at the head of the queue. If the variable deficit is less than the size of the packet
at the head of the queue (it does not have enough credits), then the scheduler
moves on to service the next queue. If the size of the packet at the head of the
queue is less than or equal to the variable deficit, then the variable deficit is
reduced by the number of bytes in the packet and the packet is transmitted on
the output port. The scheduler continues this process, starting from the first
queue each time a packet is transmitted. If a queue has no more packets it is
destroyed. The arriving packets are queued to the appropriate node and if no
such exists then it is created.

Fig. 2. Real memory usage of the DRR application for wireless traffic traces of different
buildings [4] (50.000 packets)
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It is important to stress that the simulation results of the DRR application
were taken for 5 real wireless traffic traces. These traces represent the traffic
of 5 different buildings in Dartmouth University Campus [4]. As noted in [6], a
randomly generated trace is not valid for predicting how well a particular DM
allocator will perform on a real program. The reason is that for different inputs
there will be different dynamic allocation behaviors and allocation sizes(as shown
in Fig. 2 and 3 respectively). The effect of the different dynamic behaviors can
be seen in the variation of the simulation results (as shown in Table 2).

After an exhaustive exploration of all the custom DM allocators (as explained
in the previous section), we use an instantiation of the proposed parameterized
setup that is described at the end of section 5. Namely, we use 2 freelists for
memory blocks of 16 Bytes and memory blocks of 1476 Bytes and we fully apply
the coalescing mechanism, the splitting mechanisms and the first fit policy. Note
that although in the packet traces the ACK packet has zero size and the MTU
packet has a size of 1460 Bytes, 16 Bytes more are allocated per objects to
store some application-specific data (e.g. like Quantum). From our exhaustive
exploration we have concluded that the aforementioned custom DM allocator is
the most balanced, giving both low fragmentation and good performance (other
custom DM allocators give only good performance or only low fragmentation).

Fig. 3. Histograms of memory allocation requests of the DRR application for wireless
traffic traces of different buildings [4]

Then we simulate and compare our customized DM allocator with O.S. based
DM allocators for 5 different network traces (note that the very bad fragmen-
tation and performance results of all the allocators for the Sudikoff trace are
attributed to the ramp form of its memory usage, i.e. too much network traffic
results in DM allocation bottleneck). We observe that for the average of all the
traces our custom DM allocator is both faster and has less fragmentation than
any O.S. based DM allocator. In fact, it can achieve memory fragmentation re-
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Table 1. Simulation results for the DRR scheduling algorithm running for 50.000
packets per trace (lower fragmentation and execution-time is better)

DM Fragmentation Performance (execution-time sec.)
Allocators Avrg. Ber. Br. Col. Sud. Whit. Avrg. Ber. Br. Col. Sud. Whit.

Windows CE 83% 70% 13% 59% 251% 20% 1.78 0.36 0.78 0.34 5.17 2.27

Windows XP 142% 169% 21% 183% 256% 80% 1.69 0.28 0.58 0.31 5.25 2.03

Linux 66% 35% 8% 59% 206% 23% 2.19 0.33 0.79 0.50 6.58 2.74

Enea OSE 93% 62% 8% 100% 212% 86% 7.91 8.40 10.88 8.55 8.04 3.67

uClinux 152% 93% 49% 153% 350% 117% 2.40 0.13 0.51 0.33 6.68 4.34

Avrg. Alloc. 107% 86% 20% 111% 255% 65% 3.19 1.90 2.71 2.01 6.34 3.01

Proposed Alloc. 55% 20% 1% 35% 183% 35% 1.62 0.17 0.46 0.24 5.13 2.09

Table 2. Simulation results for the Easyport buffering algorithm running for 4.200
packets per trace (lower fragmentation and execution-time is better)

DM Fragmentation Performance (execution-time sec.)
Allocators Avrg. Trace 1 Trace 2 Trace 3 Avrg. Trace 1 Trace 2 Trace 3

Windows CE 46% 30% 75% 34% 0.51 0.62 0.33 0.60

Windows XP 49% 33% 78% 37% 0.49 0.59 0.31 0.59

Linux 40% 29% 62% 28% 0.59 0.69 0.37 0.71

Enea OSE 46% 30% 70% 36% 1.20 1.42 0.81 1.39

uClinux 60% 40% 97% 42% 0.87 1.02 0.62 0.97

Avrg. Alloc. 48% 32% 77% 35% 0.73 0.86 0.48 0.85

Proposed Alloc. 37% 20% 61% 30% 0.47 0.52 0.32 0.59

ductions up to 97.82% (48.39% on average) and execution time reductions up to
97.20% (49.22% on average).

The second case study presented is the Easyport wireless network application
produced by Infineon [16]. Easyport features packet and ATM cell processing
functionality for data and voice/data Integrated Access Devices (IADs), enter-
prise gateways, access routers, and Voice over IP (VoIP) gateways. Easyport
allocates dynamically the packets it receives from the Ethernet channels in a
memory before it forwards them in a FIFO way. To run simulations of Easy-
port, we used 3 typical packet traffic traces provided by Infineon (mainly ftp
sessions).

After an exhaustive exploration of the all the custom DM allocators (as ex-
plained in the previous section), we again use an instantiation of the proposed
parameterized setup that is described at the end of section 5. Namely, 2 freelists
for memory blocks of 66 Bytes and memory blocks of 1514 Bytes and we fully
apply the coalescing mechanism, the splitting mechanisms and the first fit pol-
icy. Again this specific custom DM allocator is the most balanced. We observe
that for the average of all the traces our custom DM allocator is both faster
and has less fragmentation than any O.S. based DM allocator. In fact, it can
achieve memory fragmentation reductions up to 50.16% (23.0% on average) and
execution time reductions up to 63.39% (35.62% on average).
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7 Conclusions

Dynamism is an important aspect of wired and wireless network applications.
Therefore, the correct choice of a Dynamic Memory Allocation subsystem be-
comes of great importance. Within this context, memory fragmentation must be
minimized without a performance reduction. In this paper we have presented a
novel approach to explore exhaustively the combinations of the de-fragmentation
techniques in custom DM allocator implementations. The results achieved with
the use of our approach in real wired and wireless network applications show
that our customized DM allocator solution can reduce memory fragmentation
up to 97% and improve performance up to 97% compared to state-of-the-art,
O.S. based DM allocators.
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