
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 2612–2620
Reducing memory fragmentation in network applications
with dynamic memory allocators optimized for performance q

Stylianos Mamagkakis a,*, Christos Baloukas a, David Atienza b,
Francky Catthoor c,1, Dimitrios Soudris a, Antonios Thanailakis a

a VLSI Design and Testing Center, Democritus University of Thrace, 67100 Xanthi, Greece
b LSI/EPFL 1015-Lausanne, Switzerland and DACYA/UCM, 28040 Madrid, Spain

c IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium

Available online 20 March 2006
Abstract

The needs for run-time data storage in modern wired and wireless network applications are increasing. Additionally, the nature of
these applications is very dynamic, resulting in heavy reliance on dynamic memory allocation. The most significant problem in dynamic
memory allocation is fragmentation, which can cause the system to run out of memory and crash, if it is left unchecked. The available
dynamic memory allocation solutions are provided by the real-time Operating Systems used in embedded or general-purpose systems.
These state-of-the-art dynamic memory allocators are designed to satisfy the run-time memory requests of a wide range of applications.
Contrary to most applications, network applications need to allocate too many different memory sizes (e.g., hundreds different sizes for
packets) and have an extremely dynamic allocation and de-allocation behavior (e.g., unpredictable web-browsing activity). Therefore, the
performance and the de-fragmentation efficiency of these allocators is limited. In this paper, we analyze all the important issues of frag-
mentation and the ways to reduce it in network applications, while keeping the performance of the dynamic memory allocator unaffected
or even improving it. We propose highly customized dynamic memory allocators, which can be configured for specific network needs. We
assess the effectiveness of the proposed approach in three representative real-life case studies of wired and wireless network applications.
Finally, we show very significant reduction in memory fragmentation and increase in performance compared to state-of-the-art dynamic
memory allocators utilized by real-time Operating Systems.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Memory fragmentation; Dynamic memory allocator; Network application; Performance optimized; Operating systems; Customization
1. Introduction

In the last years networks have become ubiquitous.
Modern portable devices are expected to access the internet
(e.g., 3G mobile phones) and communicate with each other
wirelessly (e.g., PDAs with 802.11b/g) or with a wired con-
0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2006.01.031

q Part of this work has been submitted to WWIC 2005.
* Corresponding author. Tel.: +30 6976861165; fax: +30 2541079545.

E-mail addresses: smamagka@ee.duth.gr (S. Mamagkakis), cmpalouk@
ee.duth.gr (C. Baloukas), david.atienza@epfl.ch, datienza@dacya.ucm.es
(D. Atienza), catthoor@imec.be (F. Catthoor), dsoudris@ee.duth.gr (D.
Soudris), thanail@ee.duth.gr (A. Thanailakis).

1 Present address: Also Professor at ESAT/K.U. Leuven, Belgium.
nection (e.g., Ethernet). In order to provide the desired
Quality of Experience to the user, these systems have to
respond to the dynamic changes of the environment (i.e.,
network traffic) and the actions of the user as fast as
possible. Additionally, they need to provide the necessary
memory space for the network applications dynamically at
run-time. Therefore, they have to rely on dynamic
memory allocation mechanisms to satisfy their run-time
data storage needs. Inefficient dynamic memory (DM from
now on) allocation support leads to decreased system per-
formance and increased cost in memory footprint due to
fragmentation [1].

The standard DM allocation solutions for the applica-
tions inside the Terminals, Routers or Access Points are

https://core.ac.uk/display/147946932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:smamagka@ee.duth.gr
mailto:cmpalouk@
mailto:david.atienza@epfl.ch, &emailxl4;
mailto:datienza@dacya.ucm.es
mailto:catthoor@imec.be
mailto:dsoudris@ee.duth.gr
mailto:thanail@ee.duth.gr

Fig. 1. Internal and external memory fragmentation.

S. Mamagkakis et al. / Computer Communications 29 (2006) 2612–2620 2613
activated with the standardized malloc/free functions in C
and the new/delete operators in C++. Support for them is
provided by (real-time) Operating Systems (e.g., uClinux
[9]). These OS based DM allocators are designed for a vari-
ety of applications and thus can not address the specific
memory allocation needs of network applications. This
results in mediocre performance and increased fragmenta-
tion. Therefore, custom DM allocators are needed [8,14]
to achieve better results. Note that they are still realized
in the middleware and usually not in the hardware. In
our case we propose never to use hardware but instead
use only a library (system layer) just on top of the (RT)OS
in the middleware.

In this paper, we propose a systematic approach to
reduce memory fragmentation (up to 98%) and increase
performance (up to 97%), by customizing a DM allocator
to be used especially for the network application domain.
The major contribution of our work is that we explore
exhaustively all the available combinations of de-fragmen-
tation techniques and explain how our custom DM alloca-
tor can decrease fragmentation and improve performance
at the same time in network applications. The remainder
of the paper is organized as follows. In Section 2, we
describe some related work. In Section 3, we analyze frag-
mentation. In Section 4, we show the de-fragmentation
techniques and their trade-off. In Section 5, we describe
our exploration and explain the effect of each de-fragmen-
tation technique in the network application domain. In
Section 6, we present the simulation results of our case
studies. Finally, in Section 7 we draw our conclusions.

2. Related work

Currently, there are many OS based, general-purpose
DM allocators available. Successful examples include the
Lea allocator in Linux based systems [6], the Buddy alloca-
tor for Unix based systems [6] and variations of the Kings-
ley allocator in Windows XP [13] and FreeBSD based
systems. Their embedded OS counterparts include the
DM allocators of Symbian [11], Enea OSE [10], uClinux
[9] and Windows CE [12]. Other standardized DM alloca-
tion solutions are evaluated in [7] for a wide range of appli-
cations (without evaluating performance). In contrast to
these ‘off-the-shelf’ DM allocation solutions, our approach
provides highly customized DM allocators, fine tuned to
the networking applications for both low memory frag-
mentation and high performance.

Also, in [14], the abstraction level of customizable mem-
ory allocators has been extended to C++. Additionally, the
authors of [8] propose an infrastructure of C++ layers that
can be used to improve performance of general-purpose
allocators. Finally, work has been done to propose several
garbage collection algorithms with relatively limited per-
formance overhead [15]. Contrary to these frameworks,
which are limited in flexibility, our approach is systematic
and is linked with our tools [2], which automate the process
of custom DM allocator construction. This enables us to
explore and validate the efficiency of our customized DM
allocators, combining both memory de-fragmentation and
performance metrics.

Finally, in contrast to our previous work [1] and [2],
which focused on reducing the memory footprint and
power consumption for multimedia and network applica-
tions, in this paper we focus on de-fragmentation and per-
formance improvement. We also show that the latter are
not improving in the same direction as the memory foot-
print or memory access cost functions. So they form impor-
tant complementary objective functions for the
optimization problem that we want to tackle. Additionally,
in this paper we explore exhaustively all the combinations
of de-fragmentation techniques for custom DM allocator
implementations, instead of just giving general guidelines
to achieve low memory footprint. Finally, we compare
our proposed custom DM allocator with three more DM
allocators of embedded real time OSs, on top of the two
general purpose DM allocators that we use in [1] and [2].

3. Memory fragmentation

Memory fragmentation can be divided in internal and
external fragmentation:

1. When the application requests a memory block from
the DM allocator, which is smaller than the memory blocks
available to the allocator, then a bigger block is selected
from the memory pool and allocated (as shown in the
upper part of Fig. 1). This results in wasted memory space
inside the allocated memory block. This space is not used
to store the application’s data and can not be used for a

2614 S. Mamagkakis et al. / Computer Communications 29 (2006) 2612–2620
future memory request. This is called internal fragmenta-
tion, which is common in requests of small memory blocks
[6]. It can be prevented or reduced with the use of freelists,
the best fit policy and the splitting mechanism, which will be
analyzed in detail in the next section.

2. When the application requests a memory block from
the DM allocator, which is bigger than the memory blocks
available to the allocator, then these smaller memory
blocks are not selected for the allocation (because they
are not contiguous) and become unused ’holes’ in memory
(as shown in the lower part of Fig. 1). These ‘holes’ among
the used blocks in the memory pool are called external
fragmentation. If they become too small, then they can
not satisfy any request and they remain unused during
the whole execution time of the application. External frag-
mentation becomes more evident in requests of big memory
blocks [6]. It can be reduced with the use of the coalescing

mechanism and is increased as a by-product of the freelists,
which will be explained in detail in the next section.

We measure the level of both internal and external frag-
mentation (we use the same cost function with [7]). Thus,
we express fragmentation in terms of percentages over
and above the amount of live data, (i.e., increase in mem-
ory usage), not the percentage of actual memory usage that
is due to fragmentation. Therefore, we measure the maxi-
mum amount of memory requested by the application rel-
ative to the maximum amount of memory used by the DM
allocator:

Fragmentation ¼Memoryalloc.
Memoryreq.

� 1;

Memoryalloc. ¼Memoryreq. þMemoryInt.Fragm.

þMemoryExt.Fragm.
4. Memory de-fragmentation techniques and trade-offs

We are going to analyze the de-fragmentation tech-
niques and their trade-offs. All of the techniques are well
known [6] but their trade-offs (when used in conjunction)
have never been evaluated up to now:

1. The most common technique to prevent internal
memory fragmentation is the use of freelists. The freelists

are lists (i.e., double or single linked lists) of memory
blocks, which were no longer needed by the application
and, thus, they were freed by the DM allocator. This tech-
nique can reduce internal fragmentation significantly and
improve performance in most cases. The trade-off is that
it increases external fragmentation, because the freed
blocks are not returned in the main memory pool, where
they can be coalesced with a neighboring free block to pro-
duce a bigger contiguous memory space.

2. Another technique to prevent internal memory frag-
mentation is the use of specific fit policies. The two most
popular fit policies are the first fit policy and the best fit pol-

icy. On the one hand, the first fit policy allocates the first
memory block that it finds that is bigger than the requested
block. On the other hand, the best fit policy searches a part
(or even 100%) of the memory pool in order to find the
memory block closest to the size of the requested block.
Therefore, there will be the least memory overhead per
block and, thus, the least internal fragmentation. The
trade-off is that the performance of the DM allocator
decreases, while it spends more time trying to find the best
fit for the requested block.

3. An additional technique to decrease internal fragmen-
tation is the use of the splitting mechanism. When the DM
allocator finds a block bigger than the requested block,
then it can split it in two. The block can be split precisely
to fit the request and, thus, produce zero internal fragmen-
tation. The trade-off of this mechanism is that it reduces
performance considerably. The mechanism itself needs a
lot of time perform the splitting, plus it generates one more
block inside the pool per split.

4. Finally, a technique to decrease external fragmenta-
tion is the use of the coalescing mechanism. When the
DM allocator frees a block, which has an adjacent memory
address with another free memory block, then it can coa-
lesce them to produce a single bigger block. In this way,
external memory fragmentation can be reduced significant-
ly. A positive by-product of the coalescing mechanism is
that it results in one less block inside the pool per coalesce.
This in turn reduces significantly the time needed to tra-
verse all the blocks inside the pool to find a best or first
fit. On the other hand, the trade-off of this mechanism is
that it reduces some performance, because the mechanism
itself needs some time to perform the coalescing (Table 1).

It is obvious that these four different de-fragmentation
techniques have contradicting effects on performance,
internal and external fragmentation (e.g., an increase of
usage of the splitting mechanism decreases internal frag-
mentation but also decreases performance). To make
things even more complicated it appears that the efficiency
of the techniques is interdependent (e.g., the performance
of the best fit policy decreases when the usage of the split-
ting mechanism increases). So a Pareto trade-off explora-
tion is necessary. In order to evaluate which techniques
should be used to decrease fragmentation and how much
they should be applied, we have explored exhaustively all
the available combinations of de-fragmentation techniques
in various levels of usage (ranging from full usage to no
usage of the technique at all).

5. Customization of DM allocators for network applications

For the purposes of the exhaustive exploration of the
different de-fragmentation techniques we have used our
powerful profiling tool (described in more detail in [2]).
Our tool automates the process of building, implementing,
simulating and profiling different customized DM alloca-
tors. Every one of these customized DM allocators imple-
ments a different combination of de-fragmentation
techniques with a different combination of usage level for
each technique. About 10 levels of usage have been used

Table 1
Usage of de-fragmentation techniques in OS based dynamic memory allocators)

OS De-fragmentation techniques of DM allocator

Windows CE Windows CE use a memory heap for all the free blocks. The blocks within the heap are singly linked in a LIFO way.
To decrease internal fragmentation, Windows CE use a first-fit algorithm. Free heap blocks are merged on every allocation
or free cycle to decrease external fragmentation

Windows XP Windows XP’s dynamic memory allocation implementation uses 127 freelists of 8-byte aligned blocks ranging from 8 to 1024
bytes and a memory heap, which holds blocks greater than 1024 bytes in size, doubly linked FIFO list. To decrease internal
fragmentation, Windows XP use a first-fit algorithm. It also provides full support for coalescing and splitting operations

Linux In Lea 2.7.2, various levels of coalescing and splitting operations are supported (ranging from 0% for small blocks to 100% for
bigger blocks). This is a best fit allocator, which can utilize up to 128 freelists according to the application memory block requests

Enea OSE In Enea OSE, 8 freelists are used. This is a best fit allocator, which uses just these 8 freelists and no main memory heap.
Coalescing and splitting operations are not supported

uClinux In uClinux, the dynamic memory allocator uses a power-of-two allocator for allocations up to 4 kbyte. Then, for bigger
blocks, it allocates memory rounded up to 4 kbyte. Two freelists are supported but no coalescing or splitting operations

S. Mamagkakis et al. / Computer Communications 29 (2006) 2612–2620 2615
for each de-fragmentation technique. The total exploration
effort took 45 days using 2 Pentium IV workstations. On
average, there have been explored about 10.000 different
customized DM allocator implementations for each one
of three different networking applications: DRR schedul-
ing, buffering in Easyport and URL-based context switch-
ing (presented in Section 6). Finally, 3–7 real network
traffic trace inputs (of wired [5] and wireless [4] networks)
have been used for each application to make sure that
our exploration strategy is valid for a wide range of dynam-
ic behavior scenarios.

In Fig. 2, a custom DM allocation exploration example
for the Easyport buffering application can be seen (a net-
work traffic trace of various real ftp sessions was used as
input). Each dot in the figure is the simulation results for
performance and memory footprint allocated by one out
of the 10.000 explored custom DM allocators. The results
were heavily pruned and (out of the 10.000 custom DM
allocator implementations) only a handful with the best
performance and lowest fragmentation were selected (as
seen in the upper right corner of Fig. 2). The same proce-
dure has been used for the other applications and for each
one of the available inputs (i.e., network traffic traces).

Our simulations show that the limited list of resulting
‘optimal’ custom DM allocators share some common char-
Fig. 2. Custom DM allocation exploration example for the Easyport
buffering application and pareto-optimal DM allocators.
acteristics, which favor particular de-fragmentation tech-
niques (they are seen with bold letters in Table 2) at
certain levels of usage. These common characteristics are
a combination of two or three freelists, first fit policy, full
usage of the splitting mechanism and full usage of the coa-

lescing mechanism. Therefore, this is the custom DM allo-
cator that we propose to use for network applications.

1. Contrary to most application domains (where about 6
different memory sizes amount for more than 90% of the
total requested memory sizes [7]), in networking applica-
tions just 2 memory sizes amount for 30–70% of the total
requested memory sizes (an example of this bimodal distri-
bution can be seen in the histograms of Fig. 4). These 2
object sizes are around the size of the Acknowledgement

(or ACK) packet and the Maximum Transmission Unit

(or MTU) packet of each network [3]. The rest of the
requested memory sizes are evenly distributed between
these 2 extreme sizes. Our exploration results show that
custom DM allocators, with just 2 freelists of these 2
extreme memory sizes, managed to reduce considerably
internal fragmentation and improve performance, without
increasing much the external fragmentation. All five of
the OS based DM allocators, which use from 6 to 128 dif-
ferent freelists, manage to do the same, but with a very high
cost in external fragmentation.
Table 2
Effect of de-fragmentation techniques in networking applications

Defrag.
Techniques

Int.
Fragmentation

Ext.
Fragmentation

Performance

Freelists � � + + +

No Freelists + + � � �
Best fit � � None � �
First fit + + None + +

Split + � � None � �
Split � + + None + +
Coalesce + None � � +

Coalesce � None + + �

+ means increase, � means decrease and None means no effect.

2616 S. Mamagkakis et al. / Computer Communications 29 (2006) 2612–2620
2. Contrary to most application domains (where memo-
ry usage comes in the form of very thin spikes and 10% of
the memory sizes are freed back to the main memory heap
or pool [6,7]), in networking applications the memory
usage form varies greatly [3] (in the upper 3 traces of
Fig. 3 we can see thin and fat spikes, in the lower left trace
of Fig. 3 we can see plateaus and in the lower right trace of
Fig. 3 we can see a ramp). Additionally, about 30–70% of
the memory sizes are returned to the main memory pool.
This means that blocks are not always freed fast (this is
the case of thin spike usage forms only) and that the main
memory pool accommodates a huge number of memory
blocks. It also means that the best fit policy used in all
the OS based DM allocators (except Windows XP and
CE) is extremely slow because it has to traverse too many
blocks in order to find a good fit. Our exploration results
show that custom DM allocators, which use first fit policy

in combination with full usage of the splitting mechanism
0

2

4

6

0

0

1

2

3

0 500 1500

0.5

1

1.5

2

0
0 200 400M

em
or

y
us

ag
e

(M
B

)

M
em

or
y

us
ag

e
(M

B
)

M
em

or
y

us
ag

e
(M

B
)

Time (sec) Tim

Time (sec)

Berry Trace Brown T

Whittemore
Trace

13.6 MB allocated 22 MB alloc

4.3 MB
allocated

273 B
Avg.
alloc.
size

87 B
Avg.
alloc.
size

Fig. 3. Real memory usage of the DRR application for wirele

0
50

100
150
200
250
300
350
400

0 500

0

20

40

60

80

100

120

0 500 1000 1500

0
10
20
30
40
50
60
70
80

0 500 1000 1500

1

1

2

2

Packet size Pack

Packet size

ekca
P #

01(st
3)

ekca
P #

01(st
3)

01(stekca
P #

3)

01(stekca
P #

3)

Berry Tra ce Brown

Whittemore
Trace

ACK + MTU = 39%
of total packets

ACK + MT
of total p

ACK + MTU = 50%
of total packets

1375 different sizes 1016 diffe

932 different sizes

ACK
packet

MTU
packet

Fig. 4. Histograms of memory allocation requests of the DRR a
and the coalescing mechanism, increase dramatically perfor-
mance and suffer only minimal internal fragmentation
overhead.

3. Contrary to most application domains (where about
38 different memory sizes constitute 99% of the total
requested memory sizes [7]), in networking applications
30–70% of the total requested memory sizes are attributed
to 700–1500 different memory sizes (an example of this fact
can be seen in Fig. 4). This produces exceptionally high val-
ues of internal fragmentation, which is different from what
is observed in other application domains. All the OS based
DM allocators (except Linux) have a very low usage level
of the splitting mechanism and therefore suffer massively
from internal fragmentation. Actually, our exploration
showed that this is the major contributor to fragmentation
generally in network applications. Our exploration results
show us that the only way to really decrease fragmentation
is with the full use of the splitting mechanism.
200 400

0

1

2

3

0 1000 3000

1

0.2

0.6

0
0 200 400M

em
or

y
us

ag
e

(M
B

)

M
em

or
y

us
ag

e
(M

B
)

e (sec) Time (sec)

Time (sec)

race Collis
Trace

Sudikoff
 Trace

ated
7.3 MB

allocated

12.2 MB
allocated

440 B
Avg.
alloc.
size

146 B
Avg.
alloc.
size

245 B
Avg.
alloc.
size

ss traffic traces of different buildings [4] (50.000 packets).

1000 1500
0

5

10

15

20

25

30

0 500 1000 1500

0

50

00

50

00

50

0 500 1000 1500

et size Packet size

Packet size

ekca
P #

01(st
3) Trace Collis Trac e

Sudikoff
 Trace

U = 66%
ackets

ACK + MTU = 33%
of total packets

ACK + MTU = 34%
of total packets

rent sizes 1460 different sizes

725 different sizes

pplication for wireless traffic traces of different buildings [4].

S. Mamagkakis et al. / Computer Communications 29 (2006) 2612–2620 2617
4. Finally, a common characteristic shared among the
networking and the other application domains is that
objects allocated at the same time tend to die and get de-al-
located at the same time. This temporal locality of the allo-
cated objects is something common in both wired and
wireless networks. The reason is that the traffic structure
is imposed implicitly by the tasks initiated by Internet users
at the application layer (e.g., a file transfer or a Web page
download). Therefore, allocated objects are not indepen-
dent and isolated entities; rather they are part of a high-
er-layer logical flow of information [3]. This temporal
locality can easily be converted to spatial locality of the
memory freed, if we pursue high usage levels of the coalesc-

ing mechanism, thus reducing external fragmentation. All
the OS based DM allocators (except Linux) have an
extremely low usage level of the coalescing mechanism

and thus can not take advantage of the locality effect.
Our exploration results have shown, that with full usage
of the coalescing mechanism, external fragmentation in net-
working applications can be eradicated completely.

6. Case studies and simulation results

We have applied the proposed custom DM allocator to
three real case studies that represent the wired and wireless
network application domains. The first case study is Deficit
Round Robin (or DRR) [16], a scheduling algorithm from
the wired and wireless network domain [17]. The second
case study is Easyport from Infineon [18], a buffering algo-
rithm from the wireless network domain. The third case
study is the URL-based switching algorithm [19] from the
wired network domain. The real wireless and wired traffic
input traces were obtained from [4] and [5], respectively.

The simulation results have been obtained using a Pen-
tium IV at 2.4 GHz, with 1 Gbyte of SDRAM. To measure
fragmentation we have used the cost function presented in
Section 3. To measure performance we have evaluated the
execution-time overhead caused by the DM allocator.

The first case study is the Deficit Round Robin (or
DRR) [16] application, which is a scheduling algorithm
implemented in many routers and WLAN Access Points
today [17]. In the DRR algorithm, the scheduler visits each
internal non-empty queue, increments the variable deficit
by the value Quantum (e.g., 9 Kbytes are used in most Cis-
co Routers) and determines the number of bytes in the
Table 3
Simulation results for the DRR scheduling algorithm running for 50.000 pack

DM allocators Fragmentation

Avrg. (%) Ber. (%) Br. (%) Col. (%) Sud. (

Windows CE 83 70 13 59 251
Windows XP 142 169 21 183 256
Linux 66 35 8 59 206
Enea OSE 93 62 8 100 212
uClinux 152 93 49 153 350
Avrg. Alloc. 107 86 20 111 255

Proposed Alloc. 55 20 1 35 183
packet at the head of the queue. If the variable deficit is less
than the size of the packet at the head of the queue (it does
not have enough credits), then the scheduler moves on to
service the next queue. If the size of the packet at the head
of the queue is less than or equal to the variable deficit,
then the variable deficit is reduced by the number of bytes
in the packet and the packet is transmitted on the output
port. The scheduler continues this process, starting from
the first queue each time a packet is transmitted. If a queue
has no more packets it is destroyed. The arriving packets
are queued to the appropriate node and if no such exists
then it is created.

It is important to stress that the simulation results of
the DRR application were taken for 5 real wireless traffic
traces. These traces represent the traffic of 5 different
buildings in Dartmouth University Campus [4]. As noted
in [7], a randomly generated trace is not valid for pre-
dicting how well a particular DM allocator will perform
on a real program. The reason is that for different inputs
there will be different dynamic allocation behaviors and
allocation sizes (as shown in Figs. 3 and 4, respectively).
The effect of the different dynamic behaviors can be seen
in the variation of the simulation results (as shown in
Table 3).

After an exhaustive exploration of the all the custom
DM allocators (as explained in the previous section), we
select to use 2 freelists for memory blocks of 16 bytes and
memory blocks of 1476 bytes and we apply fully the coa-

lescing mechanism, the splitting mechanisms and the first

fit policy. Note that although in the packet traces the
ACK packet has zero size and the MTU packet has a size
of 1460 bytes, 16 bytes more are allocated per objects to
store some application-specific data (e.g., like Quantum).
From our exhaustive exploration we have concluded that
the aforementioned custom DM allocator is the most bal-
anced, giving both low fragmentation and good perfor-
mance (other custom DM allocators give only good
performance or only low fragmentation).

Then we simulate and compare our customized DM
allocator with OS based DM allocators for 5 different net-
work traces [4] (note that the very bad fragmentation and
performance results of all the allocators for the Sudikoff
trace are attributed to the ramp form of its memory usage,
i.e., too much network traffic results in DM allocation bot-
tleneck). We observe that for the average of all the traces
ets per trace (lower fragmentation and execution-time is better)

Performance (execution–time (s))

%) Whit. (%) Avrg. Ber. Br. Col. Sud. Whit.

20 1.78 0.36 0.78 0.34 5.17 2.27
80 1.69 0.28 0.58 0.31 5.25 2.03
23 2.19 0.33 0.79 0.50 6.58 2.74
86 7.91 8.40 10.88 8.55 8.04 3.67

117 2.40 0.13 0.51 0.33 6.68 4.34
65 3.19 1.90 2.71 2.01 6.34 3.01

35 1.62 0.17 0.46 0.24 5.13 2.09

2618 S. Mamagkakis et al. / Computer Communications 29 (2006) 2612–2620
our custom DM allocator is both faster and has less frag-
mentation than any OS based DM allocator. In fact, it
can achieve memory fragmentation reductions up to
97.82% (48.39% on average) and execution time reductions
up to 97.20% (49.22% on average).

The second case study presented is the Easyport wire-
less network application produced by Infineon [18]. Easy-
port features packet and ATM cell processing
functionality for data and voice/data Integrated Access
Devices (IADs), enterprise gateways, access routers, and
Voice over IP (VoIP) gateways. Easyport allocates dynam-
ically the packets it receives from the Ethernet channels in
a memory before it forwards them in a FIFO way. To run
simulations of Easyport, we used 3 typical packet traffic
traces provided by Infineon (mainly with ftp sessions)
(Table 4).

After an exhaustive exploration of the all the custom
DM allocators (as explained in the previous section), we
select again to use 2 freelists for memory blocks of 66 bytes
and memory blocks of 1514 bytes and we apply fully the
coalescing mechanism, the splitting mechanisms and the first

fit policy. Again this specific custom DM allocator is the
most balanced. We observe that for the average of all the
traces our custom DM allocator is both faster and has less
fragmentation than any OS based DM allocator. In fact, it
can achieve memory fragmentation reductions up to
50.16% (23.0% on average) and execution time reductions
up to 63.39% (35.62% on average).

The third case study presented is the URL-based
switching wired network application from the Netbench
benchmarking suite [19], which is a commonly used con-
text-switching mechanism. The algorithm works as follows:
Table 5
Simulation results for the URL-based switching algorithm running for 50.000

DM allocators Fragmentation

Avrg. (%) BWY (%) COS (%) UFL1 (%)

Windows CE 5 8 2 8
Windows XP 14 16 16 16
Linux 25 24 25 25
Enea OSE 75 86 78 65
uClinux 99 96 107 96
Avrg. Alloc. 44 46 46 42

Proposed Alloc. 5 8 2 8

Table 4
Simulation results for the Easyport buffering algorithm running for 4.200 pac

DM allocators Fragmentation

Avrg. (%) Trace 1 (%) Trace 2 (%)

Windows CE 46 30 75
Windows XP 49 33 78
Linux 40 29 62
Enea OSE 46 30 70
uClinux 60 40 97
Avrg. Alloc. 48 32 77

Proposed Alloc. 37 20 61
a table with patterns is formed. During the initialization
phase, each pattern corresponds to a specific kind of data
(e.g., to be served by a particular server). Therefore, there
is a route indicating where packets containing similar pat-
terns should be forwarded to. This route is also written to
the table of patterns. During the normal execution phase
of the application, the header of each packet is parsed and
searched to find possible similarities to a pattern in the afore-
mentioned table. Then, the packet is forwarded to the route
corresponding to the pattern match that was found (Table 5).

After an exhaustive exploration of the all the custom
DM allocators (as explained in Section 5), we select to
use 3 freelists for memory blocks of 8, 11 and 20 bytes
and we apply fully the coalescing mechanism, the splitting
mechanisms and the first fit policy. In this case, we have
chosen to add a third freelist instead of using just two,
because the dominant memory blocks have a small size,
so they would not contribute greatly to external fragmenta-
tion (as explained in Section 4). This specific custom DM
allocator is the most balanced and operates without sacri-
ficing fragmentation or speed (i.e., some OS allocators
manage to be slightly faster but with big fragmentation
overhead). We observe that it can achieve memory frag-
mentation reductions up to 98.13% (88.64% on average)
and execution time reductions up to 7.42% (1.64% on
average).

7. Conclusions

Dynamism is an important aspect of wired and wireless
network applications. Therefore, the correct choice of a
Dynamic Memory Allocation subsystem becomes of great
packets per trace (lower fragmentation and execution–time is better)

Performance (execution–time (s))

UFL2 (%) Avrg. BWY COS UFL1 UFL2

2 3.23 3.27 3.21 3.20 3.27
10 3.37 3.39 3.36 3.37 3.39
26 3.03 3.05 3.01 3.01 3.05
73 3.11 3.14 3.1 3.09 3.14
97 3.00 3.04 2.97 2.96 3.04
42 3.15 3.17 3.13 3.12 3.17

2 3.13 3.15 3.12 3.12 3.15

kets per trace (lower fragmentation and execution–time is better)

Performance (execution–time (s))

Trace 3 (%) Avrg. Trace 1 Trace 2 Trace 3

34 0.51 0.62 0.33 0.60
37 0.49 0.59 0.31 0.59
28 0.59 0.69 0.37 0.71
36 1.20 1.42 0.81 1.39
42 0.87 1.02 0.62 0.97
35 0.73 0.86 0.48 0.85

30 0.47 0.52 0.32 0.59

S. Mamagkakis et al. / Computer Communications 29 (2006) 2612–2620 2619
importance. Within this context, memory fragmentation
must be minimized without a performance reduction. In this
paper we have presented a novel approach to explore
exhaustively the combinations of the de-fragmentation tech-
niques in custom DM allocator implementations. The
results achieved with the use of our approach in real wired
and wireless network applications show that our customized
DM allocator solution can reduce memory fragmentation
up to 98% and improve performance up to 97% compared
to the state-of-the-art, OS based DM allocators.
Acknowledgements

This work is partially supported by the European founded
program AMDREL IST-2001-34379 and the Spanish Gov-
ernment Research Grant TIC2002/0750. We want to thank
Matthias Wohrle (Advanced Systems and Circuits group,
Infineon Technologies, Munich, Germany) and Arnout
Vandecappelle (IMEC, DESICS group, Leuven, Belgium)
for their help and support in the simulation of the Easyport
application.
References

[1] D. Atienza, S. Mamagkakis, F. Catthoor, J. Manual Mendias, D.
Soudris. Dynamic Memory Management Design Methodology for
Reduced Memory Footprint in Multimedia and Wireless Network
Applications, in: Proceedings of IEEE/ACM DATE 04, France, 2004.

[2] D. Atienza, S. Mamagkakis, F. Catthoor, J. Manual Mendias, D.
Soudris. Modular Construction and Power Modelling of Dyn. Mem.
Managers for Embedded Systems, in: Proceedings of LNCS PAT-
MOS’04, Greece, 2004.

[3] C. Williamson, A tutorial on Internet traffic measurement, Proc.
IEEE Internet Comput. 5 (6) (2001).

[4] D. Kotz, K. Essien, Analysis of a campus-wide wireless network, In:
Proceedings of the 8th Annual International Conference on Mobile
Computing and Networking. 107118. Revised and corrected as
Dartmouth CS Technical Report TR2002-432.

[5] National Laboratory for Applied Network Research, <http://
www.nlanr.net/>.

[6] P.R. Wilson, M.S. Johnstone, M. Neely, D. Bowles, Dynamic storage
allocation, a survey and critical review, in: International Workshop
on Memory Management, UK, 1995.

[7] M.S. Johnstone, P.R. Wilson. The memory fragmentation problem:
Solved? in: Proceedings of the International Symposium on Memory
Management, 1998.

[8] E.D. Berger, B.G. Zorn, K.S. McKinley, Composing high-perfor-
mance memory allocators, in: Proceedings of ACM SIGPLAN PLDI,
USA, 2001.

[9] Dynamic Allocation in uClinux RTOS, <http://linuxdevices.com/
articles/AT7777470166.html/>.

[10] Dynamic Allocation in Enea OSE RTOS, <http://www.realtime-info.
be/magazine/01q3/2001q3_p047.pdf/>.

[11] Dynamic Allocation in Symbian RTOS, <http://www.symbian.
com/developer/techlib/v70docs/sdl_v7.0/doc_source/reference/cpp/
MemoryAllocation/RHeapClass.html#%3a%3aRHeap/>.

[12] Dynamic Allocation in MS Windows CE, <http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/wcecoreos5/
html/wce50conheaps.asp/>.

[13] Dynamic Allocation in MS Windows XP, <http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/dngenlib/html/heap3.asp/>.
[14] G. Attardi, T. Flagella, P. Iglio, A customizable memory manage-
ment framework for c++, Software Pract. Exper. 28 (11) (1998).

[15] David F. Bacon, Perry Cheng, V.T. Rajan. A Real-time garbage
collector with low overhead and consistent utilization, in: Proceedings
of SIGPLAN 2003, pp. 285–298.

[16] M. Shreedhar, G. Varghese, Efficient fair queuing using deficit round
robin, in: Proceedings of SIGCOMM 1995, pp. 231–242.

[17] M. Gerharz, C. de Waal, M. Frank, P. James, A practical view on
quality-of-service support in wireless ad hoc networks, in: Proceed-
ings of IEEE ASWN 2003, Switzerland, 2003, pp. 185–196.

[18] Infineon Easyport, <http://www.itc-electronics.com/CD/infineon%
2010063/cd1/html/p_ov_33433_-9542.html>.

[19] G. Memik, W.H. Mangione-Smith, W. Hu, NetBench: a benchmarking
suite for network processors, in: Proceedings of the 2001 IEEE/ACM
International Conference on Computer-Aided Design, pp. 39–42.

Stylianos Mamagkakis: Stylianos Mamagkakis
received his Diploma in Electrical and Computer
Engineering from the Democritus University of
Thrace, Greece, in 2002. He is currently a senior
PhD candidate in the VLSI Design and Testing
Center in the Democritus University of Thrace.
His research interests include optimizations in
dynamic memory management on wired and
wireless network applications for low power and
high performance, embedded systems using
high-level design optimizations. He has published

more than 14 papers in international journals and conferences. He was
investigator in four research projects funded from the Greek Government

and Industry as well as the European Commission. He is a member of the
IEEE.

Christos Baloukas: Christos Baloukas received his
Diploma in Electrical and Computer Engineering
from the Democritus University of Thrace,
Greece, in 2004. He is currently a post graduate
student in the VLSI Design and Testing Center in
the Democritus University of Thrace. His research
interests include dynamic access and storage opti-
mization on communications applications for low
power and high performance, embedded systems
and high-level design optimizations.
David Atienza: David Atienza received the M.Sc.

and PhD degrees in Computer Science from
Complutense University of Madrid (UCM), Spain
in June 2001 and June 2005, respectively. Cur-
rently he is Post-Doc at the Integrated Systems
Laboratory at EPFL, Switzerland. He also holds
the position of invited Assistant Professor at the
Computer Architecture and Automation Depart-
ment (DACYA) of UCM. His research interests
include several aspects of design technologies for
integrated circuits and systems, with particular

emphasis on dynamic memory management on embedded systems, flexible
Networks-On-Chip (NoC) interconnection paradigms for Multi-Processors

System-on-Chip, design automation and low-power design. In these fields,
he is reviewer and co-author of various publications in prestigious journals
and international conferences: ACM TODAES, IEEE Trans. on VLSI
Systems, VLSI Journal, Journal of Embedded Systems, DATE, DAC, etc.
Also, he is part of the Technical Program Committee of the IEEE/ACM
DATE conference.

http://www.nlanr.net
http://www.nlanr.net
http://linuxdevices.com/articles/AT7777470166.html
http://linuxdevices.com/articles/AT7777470166.html
http://www.realtime-info.be/magazine/01q3/2001q3_p047.pdf
http://www.realtime-info.be/magazine/01q3/2001q3_p047.pdf
http://www.symbian.com/developer/techlib/v70docs/sdl_v7.0/doc_source/reference/cpp/MemoryAllocation/RHeapClass.html#%3a%3aRHeap
http://www.symbian.com/developer/techlib/v70docs/sdl_v7.0/doc_source/reference/cpp/MemoryAllocation/RHeapClass.html#%3a%3aRHeap
http://www.symbian.com/developer/techlib/v70docs/sdl_v7.0/doc_source/reference/cpp/MemoryAllocation/RHeapClass.html#%3a%3aRHeap
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcecoreos5/html/wce50conheaps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcecoreos5/html/wce50conheaps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcecoreos5/html/wce50conheaps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dngenlib/html/heap3.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dngenlib/html/heap3.asp
http://www.itc-electronics.com/CD/infineon%2010063/cd1/html/p_ov_33433_-9542.html
http://www.itc-electronics.com/CD/infineon%2010063/cd1/html/p_ov_33433_-9542.html

2620 S. Mamagkakis et al. / Computer Com
Francky Catthoor: Francky Catthoor received a
PhD in El. Eng. from the K.U. Leuven, Belgium
in 1987. Since then, he has headed several
research domains in the area of architectural
methodologies and system synthesis for embed-
ded multimedia and telecom applications. His
current research activities mainly belong to the
field of system-level exploration, with emphasis
on data storage/transfer and concurrency
exploitation, both in customized and program-
mable (parallel) instruction-set processors. All

this within the DESICS division at IMEC, Leuven, Belgium where he is
currently a research fellow. He is also professor at the K.U. Leuven. He

has (co-)authored over 500 papers in international conferences and jour-
nals, and has worked on 8 text books in this domain. He was the program
chair and organizer of several conferences including ISSS’97 and SIPS’01.

Dimitrios Soudris: Dimitrios Soudris received his
Diploma in Electrical Engineering from the
University of Patras, Greece, in 1987. He received
the PhD Degree in Electrical Engineering, from
the University of Patras in 1992. He is currently
working as Ass. Professor in Department of
Electrical and Computer Engineering, Democr-
itus University of Thrace, Greece. His research
interests include low power design, parallel
architectures, embedded systems design, and vlsi
signal processing. He has published more than

140 papers in international journals and conferences. He was leader and
principal investigator in numerous research projects funded from the

Greek Government and Industry as well as the European Commission
(ESPRIT II-III-IV and 5th and 6th IST). He has served as General Chair
and Program Chair for the International Workshop on Power and Timing
Modelling, Optimisation, and Simulation (PATMOS). Recently, received
an award from INTEL and IBM for the project results of LPGD #25256
(ESPRIT IV) and two awards in ASP-DAC 05 and VLSI 05 for the
project AMDREL (5th IST-2001-34379). He is a member of the IEEE, the
VLSI Systems and Applications Technical Committee of IEEE CAS and
the ACM.
Antonios Thanailakis: Antonios Thanailakis was
born in Greece on August 5, 1940. He received
B.Sc. degrees in physics and electrical engi-
neering from the University of Thessaloniki,
Greece, 1964 and 1968, respectively, and the
M.sc. and PhD Degrees in electrical engineering
and electronics from UMIST, Manchester, UK
in 1968 and 1971, respectively. He has been a
Professor of Microelectronics in Department of
Electrical and Computer Eng., Democritus
University of Thrace, Xanthi, Greece, since

1977. He has been active in electronic device and VLSI system design
research since 1968. His current research activities include microelec-

munications 29 (2006) 2612–2620
tronic devices and VLSI systems design. He has published a great
number of scientific and technical papers, as well as ve textbooks. He
was leader for carrying out research and development projects funded
by Greece, EU, or other organizations on various topics of Micro-
electronics and VLSI Systems Design (e.g., NATO, ESPRIT, ACTS,
STRIDE).

	Reducing memory fragmentation in network applications with dynamic memory allocators optimized for performance
	Introduction
	Related work
	Memory fragmentation
	Memory de-fragmentation techniques and trade-offs
	Customization of DM allocators for network applications
	Case studies and simulation results
	Conclusions
	Acknowledgements
	References

