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ABSTRACT

Modern multimedia applications possess a very dynamic use of the
memory hierarchy depending on the actual input, therefore requir-
ing run-time profiling techniques to enable optimizations. Because
they can contain hundreds of thousands of lines of complex object-
oriented specifications, this constitutes a tedious time-consuming
task since the addition of profilecode is usually performed manu-
ally. In this paper, we present a high-level library-based approach
for profiling both statically and dynamically defined variables us-
ing templates in C++. Our results in the visual texture coder of the
MPEG4 standard show that using the information it provides, we
can easily achieve 70.56% energy savings and 19.22% memory ac-
cess reduction.

1. INTRODUCTION

Embedded systems have come to support very complex multime-
dia applications. This new set of multimedia applications puts a lot
of pressure on the dynamic memory subsystem and in the process-
ing power of the final embedded system. Therefore, memory ac-
cess optimizations and optimal code generation for the underlying
memory architecture become key elements to improve performance
and reduce energy consumption in new consumer devices [1]. Most
of these high-level optimizing transformations work directly on the
source code. However, due to the dynamism of these new multime-
dia applications, compile-time analysis techniques are no longer able
to provide the necessary information for the high-level optimization
steps. Consequently, accurate profiling is necessary to collect run-
time information for different representative input cases that can then
be employed to define where the bottlenecks reside; thus, what has
to be optimized.

Typically, profiling is performed by manually adding special
lines of code in the source wherever a variable that is to be profiled
is read or modified. This is a very time-consuming and error-prone
process, because it requires a very good understanding of how the
application has been built. As a result, trying to reduce the time
spent on it, or when no sources are available, designers sometimes
utilize automatic profiling by including debugging information into
the compiled application. Nevertheless, the profiling obtained with
the latter approach is very limited and loses a large part of the high-
level view of the application. Consequently, the interactions between
the variables at run-time are lost, limiting the scope of the possible
optimizations that these approaches enable and the overall reachable
gains as well.
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In this paper we present a semi-automatic profiling approach
based on a library of templates that allows profiling of the considered
application with a global scope. Thus, it works without incurring te-
dious manual intervention in the source code to be profiled. Instead
of adding profiling statements wherever data is being accessed, the
user only needs to identify the variables that have to be profiled and
change the type definition of these variables.

The rest of the paper is organized as follows. In Section 2 we
illustrate with a motivational example the struggling points for cur-
rent methodologies. In Section 3 we present relevant related work
for profiling of multimedia applications and embedded systems. In
Section 4 we present our profiling library and the foundations it is
based upon. In Section 5 we apply our approach to a real-life multi-
media application and present how the obtained information can be
easily used to optimize their memory behavior. Finally, in Section 6
we summarize our conclusions.

2. MOTIVATIONAL EXAMPLE
To show the difficulties found when profiling information needs to
be extracted from an application, we present a motivational example
in C++ code that contains some typical struggling points. In Fig-
ure 1, a simple program containing an object-oriented buffer is rep-
resented, it illustrates the issues that occur in the real-life case study
used in this paper, the Visual Texture Coder (or VTC from now on)
of the MPEG4 [2] standard. It creates a buffer, fills this with some
data and then uses this data by sending it to the output. These are
typical phases in a multimedia application. In previous approaches,
when adding profiling information to the source code, each line that
modifies a variable has to increment a certain counter. In C++ this
becomes more complex because references can be passed to or from
the function, and it is not certain at the place where the variable is re-
turned from the class whether it will be read or written. This can be
seen in Figure 1 on line 6. This typical mechanism in C++ can lead
either to a read or a write depending on how the return value is used.
As a result, the developer must find all the places where the class
buffer is used and then he has to manually determine whether the
statement in that location is a read or a write to increment the proper
counter, such as on lines 14, 16 and 19. This means that not only the
source code describing the data to be profiled must be altered, but the
entire application wherever this data may be used. Therefore, adding
this profiling information to the source code is a time-consuming and
a very error-prone task, as a place where a variable is used can easily
be overseen and the compiler will give no warning.

With our approach, instead of adding a statement whenever a
variable is used, the type of the internal data is changed which can
be based on an interactive GUI and designer selection. Typically
this needs to be done in only a few limited places. In addition, if any
place is missed, the compiler will automatically issue a compiler er-
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ror due to typing mistakes. The changes that would need to be made
are given in Figure 2. Notice that the use of log int is limited to
the class definition, while one would need to use LOGW and LOGR
everywhere the data of that class is accessed.

1 s t r u c t b u f f e r{
2 b u f f e r ( s i z e t s i z e )
3 : s i z e ( s i z e ) , d a t a (new i n t [ s i z e ] ) {}
4 ˜ b u f f e r ( ) { d e l e t e [ ] d a t a ; }
5 i n t & operator [ ] ( s i z e t i ndex ) { re turn d a t a [ i ndex ] ; }
6 cons t s i z e t s i z e ( ) cons t { re turn s i z e ; }
7 i n t ∗ g e t P o i n t e r ( ) { re turn d a t a ; }
8 s i z e t s i z e ; i n t ∗ d a t a ;
9 } ;

10
11 . . .
12 b u f f e r b u f p t r ( num ) ;
13 f o r ( i n t i = 0 ; i < bu f p t r−>s i z e ( ) ; i ++)
14 { LOGW(& b u f p t r [ i ] ) ; b u f p t r [ i ] = i ; }
15 f o r ( i n t i = 0 ; i < bu f p t r−>s i z e ( ) ; i ++)
16 { LOGR(& b u f p t r [ i ] ) ;LOGW(& b u f p t r [ i ] ) ;
17 b u f p t r [ i ] = . . . b u f p t r [ i ] . . . }
18 f o r ( i n t i = 0 ; i < bu f p t r−>s i z e ( ) ; i ++)
19 { LOGR(& b u f p t r [ i ] ) ; . . . b u f p t r [ i ] . . . }
20 . . .

Fig. 1. Object-oriented buffer profiled with traditional approach

1 s t r u c t b u f f e r{
2 t ypede f var<i n t , 1 , DMMLogger> l o g i n t ;
3 b u f f e r ( s i z e t s i z e )
4 : s i z e ( s i z e ) , d a t a (new l o g i n t [ s i z e ] ) {}
5 ˜ b u f f e r ( ) { d e l e t e [ ] d a t a ; }
6 l o g i n t & operator [ ] ( s i z e t i ndex ) { re turn d a t a [ i ndex ] ;

}
7 cons t s i z e t s i z e ( ) cons t { re turn s i z e ; }
8 i n t ∗ g e t P o i n t e r ( ) { re turn d a t a ; }
9 s i z e t s i z e ; l o g i n t ∗ d a t a ;

10 } ;
11
12 . . .
13 b u f f e r b u f p t r ( num ) ;
14 f o r ( i n t i = 0 ; i < bu f p t r−>s i z e ( ) ; i ++)
15 { b u f p t r [ i ] = i ; }
16 f o r ( i n t i = 0 ; i < bu f p t r−>s i z e ( ) ; i ++)
17 { b u f p t r [ i ] = . . . b u f p t r [ i ] . . . }
18 f o r ( i n t i = 0 ; i < bu f p t r−>s i z e ( ) ; i ++)
19 { . . . b u f p t r [ i ] . . . }
20 . . .

Fig. 2. Simple object-oriented buffer profiled with our approach

3. RELATED WORK
Up until today, a lot of research has been performed in memory
analysis and optimization techniques for embedded systems to re-
duce their power dissipation and increase performance (see surveys
in [3, 4]). Traditional optimizations for embedded systems used
compile-time, manifest information. The source code is completely
transformed to a specific standardized form [1] such that the anal-
ysis can happen easily. For modern multimedia applications in in
oo format this is no longer possible, due to their rewriting overhead.
Additionally, the tools used for this analysis only allow C and can not
deal with C++ code. To enable these kinds of optimizations for non-
manifest code, profiling information is necessary during the analysis
phase to recognize the bottlenecks.

Most profiling tools work directly on the binary application with-
out requiring source code modifications. Tools such as gprof [5] use

debugging information to find out the number of function calls and
the time spent in each of these functions. However, they are not
designed to provide insights for optimizations according to memory
access patterns defined by the applications. More recent tools such
as Valgrind [6] are also able to look at the memory accesses and
use this information to provide consistency checks for the executed
programs. They allow to trace on which line in the program an ac-
cess occurs, but cannot give a semantical analysis of which variable
it is that was actually accessed. In addition, although these tools
and the previous tools do not require extra code to be added to the
applications, they require a recompilation of the sources to include
custom debugging information, hence requiring the source code to
be present.

Eventually, given that the above approaches cannot detail ex-
actly how the profiling information depends on the concepts present
in the source code, developers typically need to add profiling infor-
mation by hand, which is a very time-consuming and error-prone
process. While this profiling information does not provide absolute
power usage numbers, it can show the number of memory accesses
and this allows for a relative comparison between different optimiza-
tions of that application. There is currently no approach to profile in-
dividual data types in a C++ object-oriented application in a method-
ological manner.

4. LIBRARY DESCRIPTION
Our profiling library has its foundations in the concept of abstract
classes or templates. Templates are compile-time constructs that de-
scribe the general behavior of a class or function without having to
specify the underlying type within the class. The description of the
class or function is parameterized with one or more types to define a
family of functions or classes. When the class template is then used,
it is instantiated with the desired type, and the compiler will generate
the correct instructions to deal with that type.

Using the basic idea of templates, our profiling library consists
of several class templates that log different information. Each of
these class templates is built to be as little obtrusive as possible,
thereby removing the need for manually changing a significant part
of the original source code of the considered application. More pre-
cisely, the four class templates are the following ones:
- var - This class template keeps track of all the memory accesses
to the wrapped variable.
- scope - This class template allows for control-flow logging.
- MemLogger - This class template logs any memory allocation
or deallocation performed through it.
- allocated - This class template serves for sending allocations
and deallocation requests from operators new and delete to a cus-
tom memory allocator. For logging purposes, more specifically, it is
useful for sending allocation and deallocation requests to MemLogger.

The above given templates can be used in different ways depend-
ing on exactly what must be logged, either a basic type variable or a
pointer variable. For example, one typical use when studying mem-
ory allocator behavior is to measure how much memory is allocated
when and how often it is accessed [7, 8, 9]. In this case, instead
of manually checking each function call to malloc(), free(),
new() or delete(), the type that is pointed to only needs to be
wrapped as shown below:

var<i n t , 1 , DMMLogger ,
MemLogger<0, DMMLogger> >∗ d a t a ;

The variable data is a pointer to the var template, because the
data that is pointed is tracked and not the actual pointer. Through
the use of MemLogger, whenever the data is allocated with new or
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new[] and subsequently deallocated with delete or delete[],
this information is logged to the DMMLogger with id 0. The id of
the MemLogger template instantiation and surrounding var tem-
plate instantiation need not be the same. In this way, the toolchain
subsequently analyzes which accesses belong to which memory blocks.
Typically, only one identifier is needed for all the MemLogger tem-
plates. Conceptually, the var id refers to the variable which is per-
forming the accesses, while the MemLogger id refers to the mem-
ory allocator that allocates this memory.

Then, when the accesses to the pointer need to be tracked instead
of the basic type, the previous example would look as follows:

var<i n t ∗ , 2 , DMMLogger> d a t a ;

In this case, the MemLogger can be left out as a pointer itself
is not allocated. The allocator used by the allocated class tem-
plate from which the var class template derives then just calls the
system malloc and free. As a result, current compilers would
inline these calls resulting in no overhead compared to not using the
allocated class template.

If the pointer and the pointed data need to be tracked, then a
combination of both techniques is employed:

var<var<i n t , 1 ,
DMMLogger , MemLogger<0, DMMLogger> >∗ , 2 ,

DMMLogger> d a t a ;

The basic data is wrapped with the var class template which
then overrides all the different operators to ensure profiling occurs.
It is only necessary to change the type definition of the underly-
ing buffer in the class buffer. Also, if a pointer to the internal
buffer is passed then a compile error will occur unless a pointer to
the wrapped type is given. Due to the typing rules of C++ this is
guaranteed. This reduces the errors that can occur during profil-
ing. Together with the fact that only the type definitions need to
be changed, this leads to a major decrease in developer effort for
adding profiling information. With a C++ parser and type-inference
this could even possibly be automated.

Because the the var wrapper logs the address from which is
read or to which is written, and because the MemLogger logs the
addresses and sizes of allocated buffers, it is possible to know to
what size of allocated memory a read or write occurs. In fact, the
analysis toolset will keep an active set of allocated blocks as it goes
through the logfile, thereby knowing the exact conditions in which
the program resided, and therefore being able to gather more detailed
information. This is why it is important that the logging file is chosen
before any memory is allocated.

The var wrapper can wrap any basic type that can be stored
in C++ (e.g. char, int, etc...), as well as pointers. Nevertheless,
there is no way to wrap structures as there is no way overload the
member access operator for structures ’.’. In any case, this poses
no limitation to our library because within structures only the basic
variables can take up memory and need to be profiled. According to
our experience, such cases are very rare in multimedia applications,
where data typically comes as numbers or arrays of data.

5. APPLICATION AND EXPERIMENTAL RESULTS
In this section, we describe the use of our profiling toolset to con-
sistently profile and optimize a modern real-life multimedia applica-
tion, namely the VTC, which is in charge of still texture decoding.
The central part of this application is the Wavelet transformer that
produces an RGB-output. The application consists of around 6000
lines of complex C++ code and includes 42 dynamic variables that
require profiling.

In order to efficiently analyze the profiling information provided
by the presented profiling library, stored in our own binary format,

we have developed a complete toolset. This profiling analysis toolset
is written in O’Caml [10] to enable a very modular and easily exten-
sible way, and with a reasonable performance for large applications.
In fact, for the processing of 1.17 GBytes of stored profiling infor-
mation (equivalent to approximately 73 M log packets) for the VTC,
the completion of our complete toolset only required 11 minutes.

The toolset allows developers to obtain many different types of
information without any additional effort. As basic information it
provides the number of accesses to each of the different block sizes
that are allocated. It also enumerates this information by var id,
so it is possible to identify which variables put the highest strain on
the memory subsystem. Then, our toolset can automatically get a
time-wise graph of the different blocksizes that have been allocated
in the memory management system (an example is shown in Table 1
for our real-life case study). An extra option that it also allows is
the visualization of the number of reads and writes, as well as al-
locations and deallocations, in a scope-call tree. That way different
phases of the application can be identified based on this scope-call
tree and optimized, limiting the wasted effort in non-critical parts of
the application under study. The scope-call tree itself is defined by
the invocations of the scope template detailed in Section 4.

To prove the versatility and efficiency of our proposed approach,
our template-based profiling approach is illustrated in the VTC ap-
plication in two ways. First, we show how designers can use the
provided information for dynamic memory usage analysis, which is
one of the most critical and difficult parts to refine in latest embedded
systems with static analysis, due to the very irregular access patterns
of each application [11]. Second, we indicate how the provided in-
formation by our approach can be used to refine the data flow and
use of auxiliary variables in the application.

First of all, our profiling library has been used to analyse the be-
haviour of this application. The time required for the analysis is only
2 hours to insert the library, and only 11 minutes to automatically ob-
tain the required profiling reports, as described previously. First, the
data types that need to be profiled are identified and then changed
to be wrapped by the var template, then the source code is recom-
piled to allow the compiler to point us where this affects source code.
Then, these reports are utilized to reduce the cost of memory allo-
cation for the application by designing a custom dynamic memory
allocator, which has taken 3 days to be implemented; Thus, less than
4 days in total. In contrast, previous traditional manual instrumen-
tation and profiling extraction of the same application have taken at
least 3 weeks according to designer input, while the final 3 additional
days for the implementation of the dynamic memory allocator rep-
resent a very justified effort taking into account the gains in perfor-
mance, memory footprint and energy that can be achieved compared
to state-of-the-art general-purpose allocators for embedded systems
that would have been used otherwise. Moreover, in case custom dy-
namic memory allocators are manually designed without our profil-
ing library, more than two weeks are required on average with real-
life applications to identify which are the most critical blocks sizes
to optimize [11, 7].

Within this process, one of the most useful for this specific opti-
mization is the table BlockAccesses, as can be seen in Table 1.
From this information it is possible to easily understand which block
sizes require the most attention in the design of the dynamic memory
allocator. In fact, according to the presented analysis for the block
sizes of 128, 256, 1024 and 2048 bytes, quicklists were used to speed
up allocation since they account for more than 80% of the total mem-
ory request (de)allocations. After customizing the memory alloca-
tor based on the profile information, the energy consumption of the
memory allocation subsystem has been decreased by 42.55% with
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block-size #allocs #frees #data-accs max-live
32 16 16 17152 16
64 1 1 9504 1

128 873 873 166080 39
170 6 6 261630 6
256 1737 1737 663936 71
512 3465 3465 2654976 135
682 3 3 524799 3

1024 7194 7194 14440509 536
2048 5643 5643 26351611 1551

65536 8 8 1562227 8
131072 6 6 1571840 6
262144 5 5 3802107 5
524288 2 2 2096640 2

Table 1. Block Accesses: typical profile information regarding the
allocations and deallocations of blocks, as well as the accesses.

Fig. 3. Gains in energy consumption of memory accesses before and
after transformations enabled by profiling information.

respect to the Kingsley allocator (soft real-time allocator in Win-
dows CE [12]), as can be seen in Figure 3 when comparing the first
two columns.

Second, the profiling information quickly gives us insight as
to current bottlenecks in how memory is being allocated and used.
Through a few simple code transformations, namely by removing
auxiliary buffers, the memory accesses are reduced from 50M to
40M, i.e. an improvement of 19.22%. When the custom memory
allocator is then used instead of the Kingsley allocator, a total saving
of 70.56% in energy consumption can be obtained in the memory
allocation subsystem, as can be seen in Figure 3 when comparing
the first and the last column. It should be noted that this technique
is applicable to other multimedia applications that contain many dy-
namically allocated data types.

The presented toolset have also been used to debug several exist-
ing memory management problems in the studied application. Our
analysis showed that the original code of the VTC, due to the com-
plex integration process of all the different modules in the appli-
cation and the large amount of dynamic memory variables shared
between them, has originated several memory leaks and, more im-
portantly, where they exactly occur at run-time. Thus, as a result of
being able to see where the variables are being allocated and used
with our proposed profiling library and toolset, it has been a mat-

ter of minutes to find out where in the code each of them should be
deallocated. This has saved us many hours (or even days due to the
large number of dynamic variables included in the code) of manual
instrumentation and debugging of the application.

6. CONCLUSION
In this paper we have presented a profiling library that largely al-
leviates the manual work needed to add profiling information to
an object-oriented application. Through the use of the typing con-
straints of C++ in the definition of the our profiling library a lot of
errors that can occur when adding profiling information (e.g. mis-
understood and overlook accesses) are eliminated. Next, our exten-
sive use of templates to do profiling enables the collection of a large
range of information in a uniform and consistent way for all types of
variables (both static and dynamic) in complex C++ real-life applica-
tions. This fact, together with the analysis toolset we have proposed,
gives a comprehensive overview of the behaviour of the application,
including the behaviour of the dynamic memory subsystem. There-
fore, making use of this detailed information the developer can then
apply a series of application-specific optimizations to increase per-
formance or reduce energy consumption on an embedded platform.
Finally, in this paper we have illustrated how the information pro-
vided by our proposed profiling framework can be used to design
custom dynamic memory allocators for each studied application, and
also to debug any possible error of its memory management. Al-
together, reducing the required time for this complex process from
approximately 3 weeks to 4 days with complex multimedia applica-
tions thanks to the important automation of a large part of the pro-
cess.
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