75,059 research outputs found

    Magnification Control in Self-Organizing Maps and Neural Gas

    Get PDF
    We consider different ways to control the magnification in self-organizing maps (SOM) and neural gas (NG). Starting from early approaches of magnification control in vector quantization, we then concentrate on different approaches for SOM and NG. We show that three structurally similar approaches can be applied to both algorithms: localized learning, concave-convex learning, and winner relaxing learning. Thereby, the approach of concave-convex learning in SOM is extended to a more general description, whereas the concave-convex learning for NG is new. In general, the control mechanisms generate only slightly different behavior comparing both neural algorithms. However, we emphasize that the NG results are valid for any data dimension, whereas in the SOM case the results hold only for the one-dimensional case.Comment: 24 pages, 4 figure

    Self-Organizing Time Map: An Abstraction of Temporal Multivariate Patterns

    Full text link
    This paper adopts and adapts Kohonen's standard Self-Organizing Map (SOM) for exploratory temporal structure analysis. The Self-Organizing Time Map (SOTM) implements SOM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators

    Magnification Control in Winner Relaxing Neural Gas

    Get PDF
    An important goal in neural map learning, which can conveniently be accomplished by magnification control, is to achieve information optimal coding in the sense of information theory. In the present contribution we consider the winner relaxing approach for the neural gas network. Originally, winner relaxing learning is a slight modification of the self-organizing map learning rule that allows for adjustment of the magnification behavior by an a priori chosen control parameter. We transfer this approach to the neural gas algorithm. The magnification exponent can be calculated analytically for arbitrary dimension from a continuum theory, and the entropy of the resulting map is studied numerically conf irming the theoretical prediction. The influence of a diagonal term, which can be added without impacting the magnification, is studied numerically. This approach to maps of maximal mutual information is interesting for applications as the winner relaxing term only adds computational cost of same order and is easy to implement. In particular, it is not necessary to estimate the generally unknown data probability density as in other magnification control approaches.Comment: 14pages, 2 figure

    Information maps: tools for document exploration

    Get PDF
    • …
    corecore