62,217 research outputs found

    Dynamic management of virtual infrastructures

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10723-014-9296-5Cloud infrastructures are becoming an appropriate solution to address the computational needs of scientific applications. However, the use of public or on-premises Infrastructure as a Service (IaaS) clouds requires users to have non-trivial system administration skills. Resource provisioning systems provide facilities to choose the most suitable Virtual Machine Images (VMI) and basic configuration of multiple instances and subnetworks. Other tasks such as the configuration of cluster services, computational frameworks or specific applications are not trivial on the cloud, and normally users have to manually select the VMI that best fits, including undesired additional services and software packages. This paper presents a set of components that ease the access and the usability of IaaS clouds by automating the VMI selection, deployment, configuration, software installation, monitoring and update of Virtual Appliances. It supports APIs from a large number of virtual platforms, making user applications cloud-agnostic. In addition it integrates a contextualization system to enable the installation and configuration of all the user required applications providing the user with a fully functional infrastructure. Therefore, golden VMIs and configuration recipes can be easily reused across different deployments. Moreover, the contextualization agent included in the framework supports horizontal (increase/decrease the number of resources) and vertical (increase/decrease resources within a running Virtual Machine) by properly reconfiguring the software installed, considering the configuration of the multiple resources running. This paves the way for automatic virtual infrastructure deployment, customization and elastic modification at runtime for IaaS clouds.The authors would like to thank to thank the financial support received from the Ministerio de Economia y Competitividad for the project CodeCloud (TIN2010-17804).Caballer Fernández, M.; Blanquer Espert, I.; Moltó, G.; Alfonso Laguna, CD. (2015). Dynamic management of virtual infrastructures. Journal of Grid Computing. 13(1):53-70. https://doi.org/10.1007/s10723-014-9296-5S5370131de Alfonso, C., Caballer, M., Alvarruiz, F., Molto, G., Hernández, V.: Infrastructure deployment over the cloud. In: 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 517–521. IEEE. (2011). doi: 10.1109/CloudCom.2011.77Alvarruiz, F., De Alfonso, C., Caballer, M., Hernández, V.: An energy manager for high performance computer clusters. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, pp. 231–238. (2012). doi: 10.1109/ISPA.2012.38Amazon Web Services: AWS CloudFormation. (2013). http://aws.amazon.com/es/cloudformation/Apache: Whirr (2013). http://whirr.apache.org/Blanquer, I., Brasche, G., Lezzi, D.: Requirements of scientific applications in cloud offerings. In: Proceedings of the 2012 6th Iberian Grid Infrastructure Conference, IBERGRID ’12, pp. 173–182 (2012)Bresnahan, J., Freeman, T., LaBissoniere, D., Keahey, K.: Managing appliance launches in infrastructure clouds. In: Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, TG ’11, pp. 12:1–12:7. ACM, New York (2011). doi: 10.1145/2016741.2016755Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of cloud computing environments for scaling of application services. Algoritm. Archit. Parallel Process. 6081, 20 (2010)Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009). doi: 10.1016/j.future.2008.12.001Caballer, M., De Alfonso, C., Alvarruiz, F., Moltó, G.: EC3: elastic cloud computing cluster. J. Comput. Syst. Sci. (2013). doi: 10.1016/j.jcss.2013.06.005Caballer, M., García, A., Moltó, G., de Alfonso, C.: Towards SLA-driven management of cloud infrastructures to elastically execute scientific applications. In: 6th Iberian Grid Infrastructure Conference (IberGrid), pp. 207–218 (2012)Carrión, J.V., Moltó, G., De Alfonso, C., Caballer, M., Hernández, V.: A generic catalog and repository service for virtual machine images. In: 2nd International ICST Conference on Cloud Computing CloudComp 2010 (2010)Cuomo, A., Modica, G., Distefano, S., Puliafito, A., Rak, M., Tomarchio, O., Venticinque, S., Villano, U.: An SLA-based broker for cloud infrastructures. J. Grid Comput 11(1), 1–25 (2012). doi: 10.1007/s10723-012-9241-4DeHaan, M.: Ansible. http://ansible.cc/ (2013)Distributed Management Task Force, Inc: Open Virtualization Format (OVF) (2010). http://dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdfDistributed Management Task Force, Inc: Cloud Infrastructure Management Interface (CIMI) Model and REST Interface over HTTP Specification (2012). http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdfEGI.eu: Seeking new horizons: EGI’s role for 2020. Tech. rep. (2012). https://documents.egi.eu/public/RetrieveFile?docid=1098&version=4&filename=EGI-1098-D230-final.pdfElmroth, E., Tordsson, J., Hernández, F.: Self-management challenges for multi-cloud architectures. Towards a service-based internet. Lect. Notes Comput. Sci. 6994, 38–49 (2011)HashiCorp: Vagrant (2013). http://www.vagrantup.com/Jacob, A.: Infrastructure in the cloud era. In: Proceedings of the 2009 International OReilly Conference Velocity (2009)Juve, G., Deelman, E.: Automating application deployment in infrastructure clouds. In: Proceedings of the 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, CLOUDCOM ’11, pp. 658–665. IEEE Computer Society, Washington DC (2011). doi: 10.1109/CloudCom.2011.102Keahey, K., Freeman, T.: Contextualization: providing one-click virtual clusters. In: 4th IEEE International Conference on eScience, pp. 301–308 (2008)Keahey, K., Freeman, T.: Architecting a large-scale elastic environment: recontextualization and adaptive cloud services for scientific computing (2012)Kecskemeti, G., Kertesz, A., Marosi, A., Kacsuk, P.: Interoperable resource management for establishing federated clouds. In: Achieving Federated and SelfManageable Cloud Infrastructures Theory and Practice, pp. 18–35 (2012). doi: 10.4018/978-1-4666-1631-8.ch002Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs, S., Rodríguez, M., Mercù, O., Marosi, A.C., Marco, J., Franch, X.: Enhancing federated cloud management with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720 (2013). doi: 10.1007/s10723-013-9269-0Loutas, N., Kamateri, E., Bosi, F., Tarabanis, K.: Cloud computing interoperability: the state of play. 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 752–757 (2011). doi: 10.1109/CloudCom.2011.116Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to elastically extend site resources. In: Proceedings of the 2010 IEEE/ACM 10th International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pp. 43–52. IEEE Computer Society, Washington DC (2010). doi: 10.1109/CCGRID.2010.80Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput. 30(5-6), 817–840 (2004)Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Publication 800-145 (Final). Tech. rep. (2011). http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdfMoltó, G., Caballer, M., Romero, E., Alfonso, C.D.: Elastic memory management of virtualized infrastructures for applications with dynamic memory requirements. In: Proceedings of the International Conference on Computational Science ICCS 2013, pp. 159–168. Elsevier (2013). doi: 10.1016/j.procs.2013.05.179Morfeo: Claudia (2013). http://claudia.morfeo-project.org/wiki/index.php/Main_PageOASIS: Topology and Orchestration Specification for Cloud Applications Version 1.0 (2013). http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.htmlOCCI working group within the Open Grid Forum: Open Cloud Computing Interface Infrastructure (2011). http://ogf.org/documents/GFD.184.pdfOpscode: Chef (2013). http://www.opscode.com/chef/Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing STRATOS: a cloud broker service. In: 2012 IEEE 5th International Conference on Cloud Computing, pp. 891–898 (2012). doi: 10.1109/CLOUD.2012.24Puppet Labs: IT Automation Software for System Administrators (2013). http://www.puppetlabs.com/Redl, C., Breskovic, I., Brandic, I., Dustdar, S.: Automatic SLA matching and provider selection in grid and cloud computing markets. In: Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing, GRID ’12, pp. 85–94. IEEE Computer Society, Washington (2012). doi: 10.1109/Grid.2012.18Rodero-Merino, L., Vaquero, L.M., Gil, V., Galán, F., Fontán, J., Montero, R.S., Llorente, I.M.: From infrastructure delivery to service management in clouds. Futur. Gener. Comput. Syst. 26(8), 1226–1240 (2010). doi: 10.1016/j.future.2010.02.013StratusLab: Claudia Platform (2013). http://stratuslab.eu/doku.php/claudiaSundareswaran, S., Squicciarini, A., Lin, D.: A brokerage-based approach for cloud service selection. In: Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing, CLOUD ’12, pp. 558–565 (2012). doi: 10.1109/CLOUD.2012.119Telefónica Investigación y Desarrollo S.A. Unipersonal.: Telefónicas TCloud API Specification. (2010). http://www.tid.es/files/doc/apis/TCloud_API_Spec_v0.9.pdfYangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: CompatibleOne: The open source cloud broker. J. Grid Comput. (2013). doi: 10.1007/s10723-013-9285-

    CrossFlow: Cross-Organizational Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises

    Get PDF
    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on dynamic service outsourcing specified in electronic contracts. Service enactment is performed by dynamically linking the workflow management infrastructures of the involved organizations. Extended service enactment support is provided in the form of cross-organizational transaction management and process control, advanced quality of service monitoring, and support for high-level flexibility in service enactment. CrossFlow technology is realized on top of a commercial workflow management platform and applied in two real-world scenarios in the contexts of a logistics and an insurance company

    Single sign-on and authorization for dynamic virtual organizations

    Get PDF
    The vision of the Grid is to support the dynamic establishment and subsequent management of virtual organizations (VO). To achieve this presents many challenges for the Grid community with perhaps the greatest one being security. Whilst Public Key Infrastructures (PKI) provide a form of single sign-on through recognition of trusted certification authorities, they have numerous limitations. The Internet2 Shibboleth architecture and protocols provide an enabling technology overcoming some of the issues with PKIs however Shibboleth too suffers from various limitations that make its application for dynamic VO establishment and management difficult. In this paper we explore the limitations of PKIs and Shibboleth and present an infrastructure that incorporates single sign-on with advanced authorization of federated security infrastructures and yet is seamless and targeted to the needs of end users. We explore this infrastructure through an educational case study at the National e-Science Centre (NeSC) at the University of Glasgow and Edinburgh

    CrossFlow: Integrating Workflow Management and Electronic Commerce

    Get PDF
    The CrossFlow1 architecture provides support for cross-organisational workflow management in dynamically established virtual enterprises. The creation of a business relationship between a service provider organisation performing a service on behalf of a consumer organisation can be made dynamic when augmented by virtual market technology, the dynamic configuration of the contract enactment infrastructures, and the provision of fine grained service monitoring and control. Standard ways of describing services and contracts can be combined with matchmaking technology to create a virtual market for such service provision and consumption. A provider can then advertise its services in the market and consumers can search for a compatible business partner. This provides choice in selecting a partner and allows the deferment of the decision to a point in time where it can be made on the most up-to-date requirements of the consumer and service offers in the market. The penalty for deferred decision making is the time to set up the infrastructure in each organisation for the dynamically established contract. Thus, a further aspect of CrossFlow was to exploit the contract in the dynamic and automatic configuration of the contract enactment and supervision infrastructures of the respective organisations and in linking them in a dynamic fashion. The electronic contract, which results from the agreement between the newly established business partners, completely specifies the intended collaboration between them. Given the importance of the business process enacted by the provider, this includes fine-grained monitoring and control to allow tight co-operation between the organisations

    DyVOSE project: experiences in applying privilege management infrastructures

    Get PDF
    Privilege Management Infrastructures (PMI) are emerging as a necessary alternative to authorization through Access Control Lists (ACL) as the need for finer grained security on the Grid increases in numerous domains. The 2-year JISC funded DyVOSE Project has investigated applying PMIs within an e-Science education context. This has involved establishing a Grid Computing module as part of Glasgow University’s Advanced MSc degree in Computing Science. A laboratory infrastructure was built for the students realising a PMI with the PERMIS software, to protect Grid Services they created. The first year of the course centered on building a static PMI at Glasgow. The second year extended this to allow dynamic attribute delegation between Glasgow and Edinburgh to support dynamic establishment of fine grained authorization based virtual organizations across multiple institutions. This dynamic delegation was implemented using the DIS (Delegation Issuing) Web Service supplied by the University of Kent. This paper describes the experiences and lessons learned from setting up and applying the advanced Grid authorization infrastructure within the Grid Computing course, focusing primarily on the second year and the dynamic virtual organisation setup between Glasgow and Edinburgh

    C2MS: Dynamic Monitoring and Management of Cloud Infrastructures

    Full text link
    Server clustering is a common design principle employed by many organisations who require high availability, scalability and easier management of their infrastructure. Servers are typically clustered according to the service they provide whether it be the application(s) installed, the role of the server or server accessibility for example. In order to optimize performance, manage load and maintain availability, servers may migrate from one cluster group to another making it difficult for server monitoring tools to continuously monitor these dynamically changing groups. Server monitoring tools are usually statically configured and with any change of group membership requires manual reconfiguration; an unreasonable task to undertake on large-scale cloud infrastructures. In this paper we present the Cloudlet Control and Management System (C2MS); a system for monitoring and controlling dynamic groups of physical or virtual servers within cloud infrastructures. The C2MS extends Ganglia - an open source scalable system performance monitoring tool - by allowing system administrators to define, monitor and modify server groups without the need for server reconfiguration. In turn administrators can easily monitor group and individual server metrics on large-scale dynamic cloud infrastructures where roles of servers may change frequently. Furthermore, we complement group monitoring with a control element allowing administrator-specified actions to be performed over servers within service groups as well as introduce further customized monitoring metrics. This paper outlines the design, implementation and evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), 8 page

    CrossFlow: Cross-Organizational Workflow Management in Dynamic Virtual Enterprises

    Get PDF
    In this report, we present the approach to cross-organizational workflow\ud management of the CrossFlow project. CrossFlow is a European research\ud project aiming at the support of cross-organizational workflows in dynamic\ud virtual enterprises. The cooperation in these virtual enterprises is based on\ud dynamic service outsourcing specified in electronic contracts. Service enactment\ud is performed by dynamically linking the workflow management infrastructures\ud of the involved organizations. Extended service enactment support is provided in the form of cross-organizational transaction management and process control, advanced quality of service monitoring, and support for high-level flexibility in service enactment. CrossFlow technology is realized on top of a commercial workflow management platform and applied in two real-world scenarios in the contexts of a logistics and an insurance company

    Data centre optimisation enhanced by software defined networking

    Get PDF
    Contemporary Cloud Computing infrastructures are being challenged by an increasing demand for evolved cloud services characterised by heterogeneous performance requirements including real-time, data-intensive and highly dynamic workloads. The classical way to deal with dynamicity is to scale computing and network resources horizontally. However, these techniques must be coupled effectively with advanced routing and switching in a multi-path environment, mixed with a high degree of flexibility to support dynamic adaptation and live-migration of virtual machines (VMs). We propose a management strategy to jointly optimise computing and networking resources in cloud infrastructures, where Software Defined Networking (SDN) plays a key enabling role

    An online algorithm for dynamic NFV placement in cloud-based autonomous response networks

    Get PDF
    Autonomous response networks are becoming a reality thanks to recent advances in cloud computing, Network Function Virtualization (NFV) and Software-Defined Networking (SDN) technologies. These enhanced networks fully enable autonomous real-time management of virtualized infrastructures. In this context, one of the major challenges is how virtualized network resources can be effectively placed. Although this issue has been addressed before in cloud-based environments, it is not yet completely resolved for the online placement of virtual machines. For such a purpose, this paper proposes an online heuristic algorithm called Topology-Aware Placement of Virtual Network Functions (TAP-VNF) as a low-complexity solution for such dynamic infrastructures. As a complement, we provide a general formulation of the network function placement using the service function chaining concept. Furthermore, two metrics called consolidation and aggregation validate the efficiency of the proposal in the experimental simulations. We have compared our approach with optimal solutions, in terms of consolidation and aggregation ratios, showing a more suitable performance for dynamic cloud-based environments. The obtained results show that TAP-VNF also outperforms existing approaches based on traditional bin packing schemes.Postprint (published version
    • 

    corecore