92 research outputs found

    VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc

    Full text link

    Enhancing the Programmability of Cloud Object Storage

    Get PDF
    En un món que depèn cada vegada més de la tecnologia, les dades digitals es generen a una escala sense precedents. Això fa que empreses que requereixen d'un gran espai d'emmagatzematge, com Netflix o Dropbox, utilitzin solucions d'emmagatzematge al núvol. Mes concretament, l'emmagatzematge d'objectes, donada la seva simplicitat, escalabilitat i alta disponibilitat. No obstant això, aquests magatzems s'enfronten a tres desafiaments principals: 1) Gestió flexible de càrregues de treball de múltiples usuaris. Normalment, els magatzems d'objectes són sistemes multi-usuari, la qual cosa significa que tots ells comparteixen els mateixos recursos, el que podria ocasionar problemes d'interferència. A més, és complex administrar polítiques d'emmagatzematge heterogènies a gran escala en ells. 2) Autogestió de dades. Els magatzems d'objectes no ofereixen molta flexibilitat pel que fa a l'autogestió de dades per part dels usuaris. Típicament, són sistemes rígids, la qual cosa impedeix gestionar els requisits específics dels objectes. 3) Còmput elàstic prop de les dades. Situar els càlculs prop de les dades pot ser útil per reduir la transferència de dades. Però, el desafiament aquí és com aconseguir la seva elasticitat sense provocar contenció de recursos i interferències en la capa d'emmagatzematge. En aquesta tesi presentem tres contribucions innovadores que resolen aquests desafiaments. En primer lloc, presentem la primera arquitectura d'emmagatzematge definida per programari (SDS) per a magatzems d'objectes que separa les capes de control i de dades. Això permet gestionar les càrregues de treball de múltiples usuaris d'una manera flexible i dinàmica. En segon lloc, hem dissenyat una nova abstracció de polítiques anomenada "microcontrolador" que transforma els objectes comuns en objectes intel·ligents, permetent als usuaris programar el seu comportament. Finalment, presentem la primera plataforma informàtica "serverless" guiada per dades i elàstica, que mitiga els problemes de col·locar el càlcul prop de les dades.En un mundo que depende cada vez más de la tecnología, los datos digitales se generan a una escala sin precedentes. Esto hace que empresas que requieren de un gran espacio de almacenamiento, como Netflix o Dropbox, usen soluciones de almacenamiento en la nube. Mas concretamente, el almacenamiento de objectos, dada su escalabilidad y alta disponibilidad. Sin embargo, estos almacenes se enfrentan a tres desafíos principales: 1) Gestión flexible de cargas de trabajo de múltiples usuarios. Normalmente, los almacenes de objetos son sistemas multi-usuario, lo que significa que todos ellos comparten los mismos recursos, lo que podría ocasionar problemas de interferencia. Además, es complejo administrar políticas de almacenamiento heterogéneas a gran escala en ellos. 2) Autogestión de datos. Los almacenes de objetos no ofrecen mucha flexibilidad con respecto a la autogestión de datos por parte de los usuarios. Típicamente, son sistemas rígidos, lo que impide gestionar los requisitos específicos de los objetos. 3) Cómputo elástico cerca de los datos. Situar los cálculos cerca de los datos puede ser útil para reducir la transferencia de datos. Pero, el desafío aquí es cómo lograr su elasticidad sin provocar contención de recursos e interferencias en la capa de almacenamiento. En esta tesis presentamos tres contribuciones que resuelven estos desafíos. En primer lugar, presentamos la primera arquitectura de almacenamiento definida por software (SDS) para almacenes de objetos que separa las capas de control y de datos. Esto permite gestionar las cargas de trabajo de múltiples usuarios de una manera flexible y dinámica. En segundo lugar, hemos diseñado una nueva abstracción de políticas llamada "microcontrolador" que transforma los objetos comunes en objetos inteligentes, permitiendo a los usuarios programar su comportamiento. Finalmente, presentamos la primera plataforma informática "serverless" guiada por datos y elástica, que mitiga los problemas de colocar el cálculo cerca de los datos.In a world that is increasingly dependent on technology, digital data is generated in an unprecedented way. This makes companies that require large storage space, such as Netflix or Dropbox, use cloud object storage solutions. This is mainly thanks to their built-in characteristics, such as simplicity, scalability and high-availability. However, cloud object stores face three main challenges: 1) Flexible management of multi-tenant workloads. Commonly, cloud object stores are multi-tenant systems, meaning that all tenants share the same system resources, which could lead to interference problems. Furthermore, it is now complex to manage heterogeneous storage policies in a massive scale. 2) Data self-management. Cloud object stores themselves do not offer much flexibility regarding data self-management by tenants. Typically, they are rigid, which prevent tenants to handle the specific requirements of their objects. 3) Elastic computation close to the data. Placing computations close to the data can be useful to reduce data transfers. But, the challenge here is how to achieve elasticity in those computations without provoking resource contention and interferences in the storage layer. In this thesis, we present three novel research contributions that solve the aforementioned challenges. Firstly, we introduce the first Software-defined Storage (SDS) architecture for cloud object stores that separates the control plane from the data plane, allowing to manage multi-tenant workloads in a flexible and dynamic way. For example, by applying different service levels of bandwidth to different tenants. Secondly, we designed a novel policy abstraction called microcontroller that transforms common objects into smart objects, enabling tenants to programmatically manage their behavior. For example, a content-level access control microcontroller attached to an specific object to filter its content depending on who is accessing it. Finally, we present the first elastic data-driven serverless computing platform that mitigates the resource contention problem of placing computation close to the data

    Data Resource Management in Throughput Processors

    Full text link
    Graphics Processing Units (GPUs) are becoming common in data centers for tasks like neural network training and image processing due to their high performance and efficiency. GPUs maintain high throughput by running thousands of threads simultaneously, issuing instructions from ready threads to hide latency in others that are stalled. While this is effective for keeping the arithmetic units busy, the challenge in GPU design is moving the data for computation at the same high rate. Any inefficiency in data movement and storage will compromise the throughput and energy efficiency of the system. Since energy consumption and cooling make up a large part of the cost of provisioning and running and a data center, making GPUs more suitable for this environment requires removing the bottlenecks and overheads that limit their efficiency. The performance of GPU workloads is often limited by the throughput of the memory resources inside each GPU core, and though many of the power-hungry structures in CPUs are not found in GPU designs, there is overhead for storing each thread's state. When sharing a GPU between workloads, contention for resources also causes interference and slowdown. This thesis develops techniques to manage and streamline the data movement and storage resources in GPUs in each of these places. The first part of this thesis resolves data movement restrictions inside each GPU core. The GPU memory system is optimized for sequential accesses, but many workloads load data in irregular or transposed patterns that cause a throughput bottleneck even when all loads are cache hits. This work identifies and leverages opportunities to merge requests across threads before sending them to the cache. While requests are waiting for merges, they can be reordered to achieve a higher cache hit rate. These methods yielded a 38% speedup for memory throughput limited workloads. Another opportunity for optimization is found in the register file. Since it must store the registers for thousands of active threads, it is the largest on-chip data storage structure on a GPU. The second work in this thesis replaces the register file with a smaller, more energy-efficient register buffer. Compiler directives allow the GPU to know ahead of time which registers will be accessed, allowing the hardware to store only the registers that will be imminently accessed in the buffer, with the rest moved to main memory. This technique reduced total GPU energy by 11%. Finally, in a data center, many different applications will be launching GPU jobs, and just as multiple processes can share the same CPU to increase its utilization, running multiple workloads on the same GPU can increase its overall throughput. However, co-runners interfere with each other in unpredictable ways, especially when sharing memory resources. The final part of this thesis controls this interference, allowing a GPU to be shared between two tiers of workloads: one tier with a high performance target and another suitable for batch jobs without deadlines. At a 90% performance target, this technique increased GPU throughput by 9.3%. GPUs' high efficiency and performance makes them a valuable accelerator in the data center. The contributions in this thesis further increase their efficiency by removing data movement and storage overheads and unlock additional performance by enabling resources to be shared between workloads while controlling interference.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146122/1/jklooste_1.pd

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Runtime scheduling and updating for deep learning applications

    Get PDF
    Recent decades have witnessed the breakthrough of deep learning algorithms, which have been widely used in many areas. Typically, deployment of deep learning applications consists of compute-intensive training and latency-sensitive inference. To support deep learning applications, enterprises build large-scale computing clusters composed of expensive accelerators, such as GPUs, FPGAs or other domain-specific ASICs. However, it is challenging for deep learning applications to achieve high resource utilization and maintain high accuracy in the face of dynamic workloads. On the one hand, the workload of deep learning tasks always changes over time, which leads to a gap between the required resources and statically allocated resources. On the other hand, the distribution of input data may also change over time, and the accuracy of inference could decrease before updating the model. In this thesis, we present a new deep learning system architecture which can schedule and update deep learning applications at runtime to efficiently handle dynamic workloads. We identify and study three key components. (i) PipeSwitch: A deep learning system that allows multiple deep learning applications to time-share the same GPU with the entire GPU memory and millisecond-scale switching overhead. PipeSwitch enables unused cycles of inference applications to be dynamically filled by training or other inference applications. With PipeSwitch, GPU utilization can be significantly improved without sacrificing service level objectives. (ii) DistMind: A disaggregated deep learning system that enables efficient multiplexing of deep learning applications with near-optimal resource utilization. DistMind decouples compute from host memory, and exposes the abstractions of a GPU pool and a memory pool, each of which can be independently provisioned and dynamically allocated to deep learning tasks. (iii) RegexNet: A payload-based, automated, reactive recovery system for web services under regular expression denial of service attacks. RegexNet adopts a deep learning model, which is updated constantly in a feedback loop during runtime, to classify payloads of upcoming HTTP requests. We have built system prototypes for these components, and integrated them with existing software. Our evaluation on a variety of environments and configurations shows the benefits of our solution

    Low power processor architecture and multicore approach for embedded systems

    Get PDF
    13301甲第4319号博士(工学)金沢大学博士論文本文Full 以下に掲載:1.IEICE Transactions Vol. E98-C(7) pp.544-549 2015. IEICE. 共著者: S. Otani, H. Kondo. /2.Reuse 許可エビデンス送

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    corecore