22 research outputs found

    Recursive quantum repeater networks

    Full text link
    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layering, and virtualizes the addresses of resources to improve information hiding and resource management. Our architecture is useful for building arbitrary distributed states, including fundamental distributed states such as Bell pairs and GHZ, W, and cluster states.Comment: 14 page

    Network Access in a Diversified Internet

    Get PDF
    There is a growing interest in virtualized network infrastructures as a means to enable experimental evaluation of new network architectures on a realistic scale. The National Science Foundation\u27s GENI initiative seeks to develop a national experimental facility that would include virtualized network platforms that can support many concurrent experimental networks. Some researchers seek to make virtualization a central architectural component of a future Internet, so that new network architectures can be introduced at any time, without the barriers to entry that currently make this difficult. This paper focuses on how to extend the concept of virtualized networking through LAN-based access networks to the end systems. Our objective is to allow virtual networks that support new network services to make those services directly available to applications, rather than force applications to access them indirectly through existing network protocols. We demonstrate that this approach can improve performance by an order of magnitude over other approaches and can enable virtual networks that provide end-to-end quality of service

    Authenticated Quality-of-Service Signaling for Virtual Networks

    Get PDF

    Parallel and Distributed Immersive Real-Time Simulation of Large-Scale Networks

    Get PDF

    Network Virtualization Over Elastic Optical Networks: A Survey of Allocation Algorithms

    Get PDF
    Network virtualization has emerged as a paradigm for cloud computing services by providing key functionalities such as abstraction of network resources kept hidden to the cloud service user, isolation of different cloud computing applications, flexibility in terms of resources granularity, and on‐demand setup/teardown of service. In parallel, flex‐grid (also known as elastic) optical networks have become an alternative to deal with the constant traffic growth. These advances have triggered research on network virtualization over flex‐grid optical networks. Effort has been focused on the design of flexible and virtualized devices, on the definition of network architectures and on virtual network allocation algorithms. In this chapter, a survey on the virtual network allocation algorithms over flexible‐grid networks is presented. Proposals are classified according to a taxonomy made of three main categories: performance metrics, operation conditions and the type of service offered to users. Based on such classification, this work also identifies open research areas as multi‐objective optimization approaches, distributed architectures, meta‐heuristics, reconfiguration and protection mechanisms for virtual networks over elastic optical networks

    A virtual network (ViNe) architecture for grid computing

    Full text link

    Design of Overlay Networks for Internet Multicast - Doctoral Dissertation, August 2002

    Get PDF
    Multicast is an efficient transmission scheme for supporting group communication in networks. Contrasted with unicast, where multiple point-to-point connections must be used to support communications among a group of users, multicast is more efficient because each data packet is replicated in the network – at the branching points leading to distinguished destinations, thus reducing the transmission load on the data sources and traffic load on the network links. To implement multicast, networks need to incorporate new routing and forwarding mechanisms in addition to the existing are not adequately supported in the current networks. The IP multicast are not adequately supported in the current networks. The IP multicast solution has serious scaling and deployment limitations, and cannot be easily extended to provide more enhanced data services. Furthermore, and perhaps most importantly, IP multicast has ignored the economic nature of the problem, lacking incentives for service providers to deploy the service in wide area networks. Overlay multicast holds promise for the realization of large scale Internet multicast services. An overlay network is a virtual topology constructed on top of the Internet infrastructure. The concept of overlay networks enables multicast to be deployed as a service network rather than a network primitive mechanism, allowing deployment over heterogeneous networks without the need of universal network support. This dissertation addresses the network design aspects of overlay networks to provide scalable multicast services in the Internet. The resources and the network cost in the context of overlay networks are different from that in conventional networks, presenting new challenges and new problems to solve. Our design goal are the maximization of network utility and improved service quality. As the overall network design problem is extremely complex, we divide the problem into three components: the efficient management of session traffic (multicast routing), the provisioning of overlay network resources (bandwidth dimensioning) and overlay topology optimization (service placement). The combined solution provides a comprehensive procedure for planning and managing an overlay multicast network. We also consider a complementary form of overlay multicast called application-level multicast (ALMI). ALMI allows end systems to directly create an overlay multicast session among themselves. This gives applications the flexibility to communicate without relying on service provides. The tradeoff is that users do not have direct control on the topology and data paths taken by the session flows and will typically get lower quality of service due to the best effort nature of the Internet environment. ALMI is therefore suitable for sessions of small size or sessions where all members are well connected to the network. Furthermore, the ALMI framework allows us to experiment with application specific components such as data reliability, in order to identify a useful set of communication semantic for enhanced data services

    Doctor of Philosophy

    Get PDF
    dissertationNetwork emulation has become an indispensable tool for the conduct of research in networking and distributed systems. It offers more realism than simulation and more control and repeatability than experimentation on a live network. However, emulation testbeds face a number of challenges, most prominently realism and scale. Because emulation allows the creation of arbitrary networks exhibiting a wide range of conditions, there is no guarantee that emulated topologies reflect real networks; the burden of selecting parameters to create a realistic environment is on the experimenter. While there are a number of techniques for measuring the end-to-end properties of real networks, directly importing such properties into an emulation has been a challenge. Similarly, while there exist numerous models for creating realistic network topologies, the lack of addresses on these generated topologies has been a barrier to using them in emulators. Once an experimenter obtains a suitable topology, that topology must be mapped onto the physical resources of the testbed so that it can be instantiated. A number of restrictions make this an interesting problem: testbeds typically have heterogeneous hardware, scarce resources which must be conserved, and bottlenecks that must not be overused. User requests for particular types of nodes or links must also be met. In light of these constraints, the network testbed mapping problem is NP-hard. Though the complexity of the problem increases rapidly with the size of the experimenter's topology and the size of the physical network, the runtime of the mapper must not; long mapping times can hinder the usability of the testbed. This dissertation makes three contributions towards improving realism and scale in emulation testbeds. First, it meets the need for realistic network conditions by creating Flexlab, a hybrid environment that couples an emulation testbed with a live-network testbed, inheriting strengths from each. Second, it attends to the need for realistic topologies by presenting a set of algorithms for automatically annotating generated topologies with realistic IP addresses. Third, it presents a mapper, assign, that is capable of assigning experimenters' requested topologies to testbeds' physical resources in a manner that scales well enough to handle large environments
    corecore