
Authenticated Quality-of-Service Signaling
for Virtual Networks
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Abstract—While virtual networks have been subjected to
detailed analysis, prototypes are usually constructed and
instantiated manually or by means of dedicated control
protocols that mostly neglect security considerations. As the
instantiation and maintenance of virtual networks requires
virtual network operators to gain access to existing network
resources, a proper sender authentication builds an impor-
tant aspect for control protocols. In this work, we present
a Virtual Link Setup Protocol (VLSP) that is designed
as a modular extension to a standardized state-of-the-art
signaling protocol suite. We use these signaling protocols to
combine an authenticated and on-demand setup of virtual
links with the establishment of Quality-of-Service guarantees
in the underlying substrate. The solution presented in this
paper is not limited to a specific set of virtualization
techniques or tunneling mechanisms. We describe the design
and implementation of VLSP and evaluate its signaling
performance, as well as the overhead that is associated with
the instantiation of the virtual links and the authenticity
checks.

I. INTRODUCTION

Network virtualization is a promising abstraction tech-
nique that allows for optimization of network resource
utilization by enabling the concurrent isolated operation
of multiple virtual networks on top of a shared physi-
cal network infrastructure (the ‘substrate’). Furthermore,
virtual networks can be used to test and deploy novel net-
work architectures and protocols, which presents a viable
approach towards the design and deployment of a future
Internet. For these reasons, there has been tremendous
interest in network virtualization over the past few years
and many large research initiatives, e.g., the Global En-
vironment for Network Innovations (GENI) [2], the NSF
NeTS FIND Initiative [3], or the AKARI Architecture
Design Project [4], have examined the subject closely.
Within these research projects, various prototypes for
network virtualization architectures have been developed
and evaluated. Many approaches mainly concentrate on
providing an experimental facility for network researchers
to test novel network architectures based on new proto-
cols. Contrastingly, the 4WARD project [5] of the EU
7th Framework Programme focused on a more general
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network virtualization architecture. Aiming to reflect real-
world business models, the 4WARD network virtualiza-
tion architecture considers different business roles and
various types of providers, which we are going to present
in detail in the next section. In this context, an impor-
tant aspect was to consider the creation of virtual links
with quality-of-service (QoS) guarantees across different
substrate Infrastructure Provider (InP) domains in order
to build larger or even global virtual networks.

In this work, we present a signaling protocol for the
dynamic setup of virtual links with QoS guarantees. We
tightly couple the setup of virtual links with an optional
QoS reservation and additionally enable authentication of
the involved signaling messages. This permits to verify
whether the initiator of the virtual link setup request
is actually allowed to do so in accordance with the
local policy and, if so, to reserve the substrate resources
associated with this virtual link. As a common control
plane for the deployment of virtual networks on a global
scale, we assume an IP-based substrate in conjunction
with the IETF Next Steps in Signaling (NSIS) framework
as an up-to-date IP-based signaling protocol suite. Our so-
lution is independent of a particular system virtualization
technology and can be used with, e.g., XEN or KVM.

The remainder of this paper is organized as follows.
In Section II we give a brief overview of the key goals
of network virtualization. We provide a description of
the 4WARD network virtualization architecture and state
the resulting requirements to setup virtual links on de-
mand. We then describe the design and realization of
an authenticated Virtual Link Setup protocol that fulfills
these requirements in Section III. The evaluation of the
proposed Virtual Link Setup Protocol with regard to
signaling performance is presented in Section IV. We
outline some related work in the context of this paper
in Section V before we conclude in Section VI.

II. NETWORK VIRTUALIZATION

Virtual networks basically consist of two types of
components, virtual nodes and virtual links. Virtual nodes
appear and act like physical network nodes, i.e., they
are interconnected by various (virtual) links, have access
to a specific set of resources, run a (network) operat-
ing system and other software. But instead of running
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directly on dedicated physical hardware, they only run
in a virtual environment, where a virtualization layer
provides access to a set of virtual resources. In general,
a virtual resource appears to a user of that resource as
if she is the (exclusive) owner of that resource. These
virtual resources are composed of logical and physical
resources—e.g., CPU, memory, process table, or memory
buffers—that do not necessarily directly correspond to the
resources of the physical system that hosts the virtual
node. This allows a physical node to host multiple virtual
nodes simultaneously. Hence, physical resources can be
shared between different virtual nodes which may impact
the system’s performance (e.g., the speed to forward
packets) and the isolation between virtual nodes and
virtual networks.

There are many different host virtualization technolo-
gies that can be used to realize virtual nodes based
on commodity PC hardware. The technologies can be
categorized into full virtualization (e.g. Linux’ Kernel-
based Virtual Machine (KVM) or Oracle’s Virtualbox),
para-virtualization (e.g. XEN), and container-based vir-
tualization (e.g. Linux VServer or OpenVZ). However,
a virtual network should conceptually operate indepen-
dently from the actual virtualization technology in use.
Moreover, dedicated router hardware may also provide
corresponding virtualization support.

Virtual links are used to interconnect virtual nodes
and may likewise be realized by a variety of different
substrate technologies, e.g., through VLANs, MPLS, or,
for IP-based substrate networks, by one of the existing
IP tunneling techniques like IP-in-IP tunnels [6], Generic
Routing Encapsulation (GRE) [7], or Layer 2 Tunneling
Protocol (L2TP) tunnels [8]. In some cases the virtual
link may be even realized by internal communication via
memory, e.g., if two virtual nodes are hosted on the same
physical host.

Virtual networks may be administrated and operated
in a wide variety of ways. In order to allow for a
clean separation of responsibility and control, the 4WARD
architecture considers three different entities with corre-
sponding interfaces as illustrated in Figure 1.

Virtual Network Operator (VNO)

Virtual Network Provider (VNP)

Infrastructure Provider A Infrastructure Provider C

Substrate
Networks

Virtual Network

Setup of
Virtual Links

Infrastructure Provider B

Figure 1. The Network Virtualization Business Model of the 4WARD
architecture

Within this framework an Infrastructure Provider (InP)
is responsible for the operation and management of the
actual physical resources that are located in the physical
substrate. It can partition its resources into a set of slices
that will be made available for the virtual networks and
also re-arrange the actual location of its virtual resources,
e.g., migrate a virtual node between substrate nodes. The
mapping of virtual resources onto substrate resources is
usually defined and governed by the InP. Therefore, the
InP is able to allocate and create virtual resources such
as virtual nodes and virtual links. This article focuses on
the on-demand creation and setup of virtual links by InPs.
An InP also provides a resource control interface for its
virtual resources, so that the entity who operates a virtual
resource can perform some basic control functions, e.g.,
install, reboot, or halt a virtual node.

A Virtual Network Provider (VNP) acts as a customer
of different InPs and is responsible for an on-demand
instantiation of virtual networks by means of the of-
fered resources of these InPs. It therefore creates virtual
topologies that can also be used recursively by or in
cooperation with different VNPs to span an even larger
virtual network.

The Virtual Network Operator (VNO) fulfills the role
of a network operator just as in the traditional way but
in this case based on the virtual network that is provided
by the VNP. The VNP acts as a resource broker for the
VNO and assembles the virtual network from resources
of possibly multiple InPs. The VNO can then maintain
and control the virtual resources in order to offer specific
services to its customers.

The reason for the introduction of an intermediate
VNP is to allow VNOs the instantiation of large virtual
networks that reach from end to end across multiple
InPs without having the VNOs to establish business
relationships with every involved InP. Therefore, this
architecture provides a clean separation of concerns and
responsibilities. However, note that these roles can also be
combined and interact in a wide variety of different ways.
For instance the roles of VNP and VNO can be performed
by the same entity. The 4WARD architecture describes an
exemplary way of how a virtual network architecture can
be constructed and should not necessarily be considered
to be the only solution. The solution outlined in this paper
is intended to be used at InP level, either inside a single
InP or also between different InPs.

It is a key goal of network virtualization to enable
the efficient use of resources, which can be achieved by
sharing resources between concurrent virtual networks.
In order to inhibit virtual networks from affecting each
other adversely, it is the responsibility of the underlying
substrate to construct, monitor, and maintain these virtual
resources and to provide them with a deterministic degree
of mutual isolation. A virtual link should behave very
similarly to a physical link, i.e., providing guaranteed QoS
parameters such as throughput, delay, jitter, packet loss
rate, and packet error rate. Therefore, the provisioning
of Quality-of-Service guarantees and a corresponding
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admission control must provide an integral component
of any comprehensive network virtualization framework
offering virtual links with guarantees.

Since the elasticity of virtual resources is a major
advantage of virtual networks, they must also support
quick instantiation of virtual resources. Thus manual con-
figuration at scale is not feasible but requires a robust and
flexible signaling protocol that allows for an automated
on-demand setup of virtual links.

Many network virtualization architectures consider the
setup of virtual networks across different substrate do-
mains. While the authentication of signaling traffic is
already desirable in an intra-domain setting, it becomes
indispensable in an inter-provider setting to fend off the
setup of virtual links due to forged or tampered signaling
messages. Therefore, it must be ensured that the setup
of virtual links and the reservation of corresponding
resources in the substrate is properly authenticated. Au-
thentication of signaling messages means that there exist
mechanisms so that both the identity of the virtual link
setup request’s initiator and the integrity of a signaling
message—or at least specified parts of it—can be verified.

Figure 2 shows an exemplary setting in which two
virtual nodes (VM1 and VM2) have already been created
in an inter-provider setting and are running on Router
A and Router C in the presence of other virtual nodes
that may be interconnected arbitrarily. Router B is a pure
substrate router without network virtualization support,
i.e., it does not host virtual nodes but supports QoS
reservations in the substrate. Similarly, virtual links are
handled transparently by Router B and it is not aware
of a traversing virtual link. To Router B, the virtual link
simply looks like an ordinary data flow between Router
A and Router C.

Router A

eth0

VM1

Router C

eth0

VM2

Router B

eth0 eth1

Forwarding

Virtual Link
Substrate Link

eth0 eth0

Substrate Domain 1 Substrate Domain 2

Other virtual

networks

Other virtual

networks

... ...

Figure 2. Basic network virtualization example

The request to interconnect the two virtual nodes is
triggered by an abstract management entity, which ini-
tiates the signaling procedure. To fulfill the previously
motivated requirements, i.e., to interconnect the two vir-
tual nodes with a QoS-provisioned virtual link in an
authenticated manner, we need

• a description of the QoS requirements for the virtual
link

• the locators of the substrate end points of the virtual
link

• the identifiers of the virtual link’s endpoints, e.g.,
identifiers of the virtual nodes and their related
virtual interfaces

• the (de-)multiplexing method of the virtual link (e.g.,
a tunnel type, like L2 Tunnel, IP in IP, GRE, . . . )

• a key infrastructure that allows the computation of
a message authentication code or a digital signature
for the signaling messages

With these requirements in mind, the next section
discusses the design and realization of such a virtual link
setup protocol. For the remainder of this paper we assume
an underlying IP-based substrate, since IP is currently
the least common denominator on a global scale and a
common substrate technology is a precondition to deploy
and operate virtual networks across different InP domains.

III. VIRTUAL LINK SETUP PROTOCOL

In this section, we propose a Virtual Link Setup Pro-
tocol (VLSP) that permits an authenticated and dynamic
setup of virtual links with dedicated Quality-of-Service
guarantees. After successful authentication, the VLSP
allocates the required resources along the substrate path
and connects the virtual link’s ends to the virtual nodes’
interfaces. Virtual nodes themselves are not aware of the
signaling and do not need to run the signaling application.
The setup of the virtual link takes place in the substrate
and is coordinated by the signaling control entities run-
ning solely on the involved substrate nodes.

For the setup of virtual links, the following steps must
be performed:

1) Both infrastructure providers, each operating its
substrate domain and hosting involved virtual
nodes, must acquire the substrate addresses of the
opposite end of the virtual links.

2) The substrate addresses are then used by the sig-
naling control entity to establish a virtual link with
Quality-of-Service guarantees while verifying the
signaling messages’ authenticity. The path-coupled
signaling that the VLSP uses by default ensures that
a feasible substrate path exists between the substrate
nodes hosting the virtual nodes.

3) Resource reservation along the substrate path is
performed by means of the corresponding Resource
Management Functions (RMF) located inside the
substrate nodes.

4) Signaling must reach the opposite substrate node’s
control plane in order to install state for the virtual
links.

5) The final step consists of the involved RMFs at
the endpoints actually installing state required to
connect the substrate tunnel end to the virtual link
end (e.g., network interface of the virtual node) and
bringing up the virtual link.

A. Quality-of-Service Signaling for Virtual Links

In order to perform Quality-of-Service signaling for
virtual links, we rely on the IETF’s Next Steps in Sig-
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naling (NSIS) framework [9], which provides an up-to-
date IP-based signaling protocol suite and can be used
for a variety of signaling applications. Even though QoS
signaling can already be accomplished by means of the
QoS NSLP protocol [10], the current NSIS framework
does not provide support to setup virtual links. As dis-
cussed previously, virtual links need to be tightly coupled
with the provisioning of QoS guarantees in order to
allow concurrent operation of mutually isolated virtual
networks.

Therefore, we integrate the QoS signaling in the sub-
strate with the setup of virtual links and extend the exist-
ing QoS NSLP protocol to include signaling information
for virtual links. This approach provides the following two
advantages: First, the integration of both tasks reduces
the signaling time required in comparison to two distinct
signaling operations and second, by using the QoS NSLP
as a basis, we do not need to create an entirely new NSIS
signaling layer protocol that would otherwise provide a
near-identical set of features.

Infrastructure providers must agree on a common
method and signaling protocol for setting up virtual
links across different substrate InP domains. We therefore
assume that InPs agree a priori (e.g., negotiated out-of-
band via peering agreements) to use NSIS with the VLSP
extension for setting up virtual links between substrate
domains and to run NSIS on the involved substrate nodes.
Intermediate domains may support QoS NSLP only as the
VLSP extension is only required on virtual node hosting
substrate nodes.

Figure 3 gives a conceptual overview of the NSIS
protocol architecture and shows the incorporated VLSP
object as an extension of the QoS NSLP. The Session
Authorization object is an optional security object that
can be employed by any NSLP.

NSIS

Signaling 

Layer

(NSLP)

NSIS

Transport

Layer

(NTLP)

IPsec

SCTPSCTPTCPTCPUDPUDP

TLS

General Internet

Signaling Transport

General Internet

Signaling Transport

IPv4/IPv6IPv4/IPv6

QoS NSLPQoS NSLP

Session

Authorization
VLSP

Figure 3. Conceptual overview of the NSIS protocol architecture with
the VLSP object and the Session Authorization object

The lower layer, called NSIS Transport Layer Protocol
(NTLP), is responsible for the correct routing and trans-
port of signaling messages between two adjacent NSIS
nodes and employs already existing transport protocols
like UDP, TCP, TCP with TLS, or SCTP. The General
Internet Signaling Transport (GIST) [11] protocol fulfills
the requirements of an NTLP.

The upper layer, called NSIS Signaling Layer Protocol
(NSLP), implements the signaling application logic and
operates either from end to end, from edge to end, or

from edge to edge. The QoS NSLP [10] is a soft-state
protocol that reserves resources along a data path and
installs resource reservation state in nodes on this path
accordingly. It conveys a dedicated QoS Specification
template (QSPEC) [12] object for specifying QoS param-
eters. Therefore, it abstracts from the actually used QoS
mechanisms on the data path like IntServ or DiffServ. For
instance each InP domain must determine autonomously
how QoS requests can be met by the actually employed
QoS mechanisms inside the domain, e.g., which DiffServ
class is eligible for conveying the requested data flow.

The QoS NSLP uses path-coupled signaling by default,
which proves especially advantageous for QoS resource
reservations as it allows to install state in exactly those
nodes that belong to the data flow’s path. Furthermore, it
is assured that a working path exists and the signaling path
is automatically adapted in case re-routing events occur.
Note that path-coupled signaling works for any tunneled
solution, where the outer tunnel IP destination address
is used as destination address for the signaling messages
that discover the signaling path.

B. Authenticated Setup of Virtual Links

One of the most important requirements when dealing
with resource reservations and the establishment of virtual
links is the ability to authenticate legitimate requests and
to protect the integrity of critical parts of a signaling
message. The NSIS protocol suite already provides basic
security mechanisms inside the NTLP layer, e.g., by
employing TCP/TLS for messaging associations between
signaling peers. But this protection is limited to adjacent
signaling peers and cannot provide a per-session or per-
user protection of signaling message. The latter is required
if authorization decisions depend on a user identity rather
than on a node identity. Therefore, the NSIS framework
provides an optional so-called Session Authorization Ob-
ject [13] that provides a means to authenticate NSIS
signaling messages on a per user or per session basis
[14] at NSLP level. The object may carry authentication
tokens and can be used for integrity protection of NSLP
messages, too. The latter feature was suggested by the
authors and directly contributed to [13].

In order to be used for an authenticated on-demand
setup of virtual links, the Session Authorization object
provides the following information elements: an authoriz-
ing entity identifier, start and end time of the authorized
session, a list of identifiers for all the objects of this
NSIS message that are covered by the signature data, and
the signature data itself. The integrity protection can be
ensured by means of shared symmetric keys, Kerberos
authentication, public key authorization via X.509, or
PGP certificates.

Figure 4 shows an exemplary binding of a Session
Authorization object and the NSIS message objects. Grey-
shaded objects are included into the signature data’s
calculation in order to be integrity-protected, such as
the Session ID, the Message Routing Information, or the
QSPEC objects, for instance. Furthermore, the signature
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data covers the new VLSP object that is used to setup
virtual links, and important parts of the Session Autho-
rization Object itself, such as the ID of the authorizing
entity, an ID for the used hash algorithm, the aforemen-
tioned list of signed objects, or a key-ID to identify the
corresponding signature key. Other parts of the signaling
message that are subject to change during transition must
not be included into the integrity protection.

Session ID

NTLP

objects

QoS NSLP

objects

VLSP

object

- Authorizing Entity ID

- Hash-Algorithm ID

- List of signed objects

- Signature Key ID Sk

Session

Authorization

Object

Signature Data

NSLP ID

Message Routing

Information

RII

RSN

QSPEC

Data not included 

into calculation

Data included 

into calculation

Signature Data, e.g. HMAC(Sk, Data):

Figure 4. Binding of Session Authorization Object and NSIS message
objects

Note that it is also possible to transport more than
just one Session Authorization Object with each NSIS
message. This allows for the authentication and integrity
protection of NSIS messages even across different admin-
istrative domains.

C. Implementation Overview

For the setup of virtual links, we extended the existing
NSIS QoS NSLP by an optional NSLP object. The newly
defined Virtual Link Setup Protocol object can be added
to QoS NSLP’s RESERVE and RESPONSE messages and
carries the following additional information:

• Virtual Network ID: An identifier for the virtual
network for which the virtual link is created and
which we assume to be globally unique

• Virtual Node IDs of the source and the destination
nodes identifying the virtual nodes within the scope
of a virtual network

• Virtual Interface IDs of the source and the destina-
tion nodes, which have only node-local meaning

• Virtual Link ID (optional)
• Opaque descriptor of the (De-)Multiplex method,

currently the tunnel type.
We used 128 bit identifiers for the Virtual Network

ID and the Virtual Node IDs, 64 bit identifiers for the
Virtual Interface IDs and the Virtual Link ID, and a
32 bit Substrate Tunnel Type as depicted in Figure 5.
Consequently, this object occupies 80 bytes (including
the necessary NSLP object header) of a 240 bytes QoS
NSLP RESERVE message. The overhead in the data plane
depends only on the used tunneling mechanism.

The addressing information carried in the VLSP object
enables the endpoints of the virtual link to connect the

32 127

VNet ID

0 64 96

VNode ID Source

VNode ID Destination

VInterface ID Source VInterface ID Destination

VLink ID Tunnel Type

Figure 5. Conceptual overview of the VLSP object

substrate link ends (e.g., tunnel ingress/egress) to the
virtual link ends. Since the VLSP object information
is only relevant for the virtual link ends, these objects
can be safely ignored by intermediate nodes, which pass
them on unmodified. Intermediate nodes therefore check
the Message Routing Information for the source and
destination address of the tunnel flow and do not process
the VLSP object, since they are not the end of the virtual
link. Furthermore, the VLSP object can be introduced
in a backwards compatible fashion by using the NSLP
object extensibility flags. These flags are set to ’Forward’
in order to instruct intermediate NSIS entities that are not
aware of this newly introduced object to pass this object
unmodified when forwarding the message. Consequently,
NSIS nodes that do not support the VLSP object, are
neither confused nor impede deployment of the VLSP.

Figure 6 illustrates the message sequence of a virtual
link setup procedure. The request starts with a QoS NSLP
RESERVE message that additionally carries a VLSP object
to setup the virtual link and a session authorization object
to authenticate the request and to protect the integrity
of the signaling message. This initial request is directed
towards the destination, i.e., Router C in this case. An in-
termediate NSIS capable router, Router B, intercepts and
interprets the signaling message, upon which it performs
admission control for the Quality-of-Service request, but
ignores the VLSP object as it is not declared as the virtual
link’s destination. Router B then forwards the possibly
adapted resource reservation request with the original
VLSP object and the session authorization object.

Router A

eth0

VMA

tunAC

NSIS

Router C

eth0

VMC

tunCA

NSIS

Router B

eth0 eth1

NSIS

IP Forwarding

1. RESERVE

+ VLSP object

+ AuthSession object

3. RESERVE

+ VLSP object

+ AuthSession object

2. Ignores VLSP

object, performs

admission control

Virtual Link

EGRE Tunnel

VLSP Signaling

4. Setup virtual link

VMC → VMA

8. Setup virtual link

VMA → VMC

5. RESPONSE7. RESPONSE 6. Reserve

Resources

eth0 eth0

br0br0

Figure 6. Exemplified scenario of a virtual link setup procedure

Once the signaling message reaches its designated
destination, the authenticity and integrity of the message
is checked upon which the resource reservation request
is processed by the host’s resource management function
and the virtual link is set up according to the information
contained in the VLSP object. This includes attachment
of the tunnel end to the virtual interface of the virtual ma-
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chine. After that Router C sends a QoS NSLP RESPONSE
back to Router B, which finally allocates the admitted
resources as indicated by the response, and Router B
sends a QoS NSLP RESPONSE back to Router A. Router
A can then allocate the necessary resources and establish
the virtual link on its side.

We note that the resource reservation is usually uni-
directional only, because the substrate routes from A to
C and from C to A can actually differ. Since virtual
links are usually used for bidirectional communications,
the QoS reservation should also be established in both
directions. Therefore, we assume that Router A initiates
the setup of the direction A↔C and Router C initiates
the setup of the direction C↔A. For instance, the QoS
NSLP responder, Router C in our example, can optionally
initiate a resource reservation in the opposite direction and
use the QoS NSLP’s Bound Session ID object to create a
logical binding between both reservations. The additional
RESERVE and RESPONSE messages for this bidirectional
reservation are not shown in Figure 6.

The QoS NSLP uses soft states for its resource reser-
vations, thus it refreshes the state by periodically sending
RESERVE messages. This accommodates not only for
route changes in the substrate, but it can also be used by
the virtualization layer to detect failures of virtual links,
thereby indicating link breakage to the management and
control plane.

IV. EVALUATION

In this section, we evaluate the signaling performance
of our Virtual Link Setup Protocol. In addition to the
measurements of the overall duration of the virtual
link setup—from the initiation of a VLSP request until
completion—we performed more fine-grained evaluations
regarding the overhead induced by the creation and veri-
fication of the session authorization object, as well as by
the creation of a tunnel for the virtual link. The herein
described evaluation results differ slightly from those
presented in [1], because all experiments were performed
again with a slightly updated software revision and set
up scripts. The most significant differences are related
to execution of the local scripts, whereas the signaling
related measurements are nearly the same.

Note that we do not measure throughput or forwarding
performance as this is highly dependent on the used
virtualization technology and it is out of scope for this
paper to compare different virtualization technologies.
Furthermore, we do not evaluate any QoS-related metrics
in the data forwarding path as the VLSP acts only as a
signaling protocol.

A. Experimental Setup and Measurement Methodology

We evaluated the proposed virtual link setup protocol
in a testbed environment following the setup depicted
in Figure 7. Each node consists of Intel Xeon X3430
quad-core CPUs running at 2.40 GHz, 4 GB RAM, and
four Intel 82580 Gigabit Ethernet network interfaces,
interconnected by a Cisco Catalyst Switch 6500 running

CatOS. All nodes used an Ubuntu 10.10 server installation
with a 2.6.35 Linux kernel as well as our freely available
NSIS-ka implementation [15] at revision r6375. The la-
tency between the endpoints was intentionally kept small
(approximately 0.709 ms between tb1 and tb4 measured
by 100 ping tests) in order to concentrate measurements
on the pure protocol and processing overhead, i.e., no
artificial delay was added.

Two kinds of measurement methods were used: code
instrumentation using measurement points and network
traffic traces (packet capture dumps) generated by tcp-
dump (pcap library). Fine-grained measurements were
performed by putting measurement points into specific
places within the code. Once such a reference point is
executed, a timestamp is generated from the system clock
and recorded in memory. After the entire experiment
is finished, the recorded values are written into a file.
This avoids the measurements to be affected from file
I/O operations. Furthermore, packet capture dumps were
made on tb1–tb4 for each of the interfaces. On tb2 and
tb3 the dumps for eth0 and eth1 were merged for later
analysis. We used a modified Wireshark version that
supports NSIS protocols (also available from [15]) in
order to extract the relevant NSIS protocol messages and
wrote them as Comma Separated Value file for further
processing by calculation scripts.

tb1

eth0

172.1.2.1

VM1

eth0

tun12br0

tb2

eth0

172.1.2.2

eth1

172.2.3.2

NSIS

Router

tb3

eth0

172.2.3.3

NSIS

Router

eth1

172.3.4.3

VLink1 (Ethernet over GRE tunnel)

tb4

eth0

172.3.4.4

VM2

eth0

tun21 br0

NSIS

VLSP!

Client

NSIS

Figure 7. Evaluation setup with four Linux routers and two different
virtual machines being connected through an EGRE tunnel

We decided to use Linux’ Kernel-based Virtual Ma-
chine (KVM) for our tests as KVM is a well-tested
and actively maintained virtualization solution that is
directly integrated into the Linux kernel. As already
mentioned above, the choice of a particular virtualization
technology is conceptually independent from and opaque
to the virtual link setup protocol. The virtual links are
established by means of existing tunneling mechanisms,
i.e., we used a Linux software bridge to interconnect each
virtual interface with a tunnel endpoint. For evaluation
tests, we used Ethernet over GRE (EGRE) tunnels, that
are provided by the Linux kernel itself, between VM1

and VM2. Note again, that the outlined solution is generic
enough to also support different types of tunnels in order
to realize virtual links. We chose to use EGRE as this
tunnel type allows for plain layer 2 connectivity between
the tunnel endpoints, i.e., the virtual machine’s virtual
interfaces.

In order for all four nodes to support the QoS signaling
and establishment of virtual links with QoS guarantees,
each node ran an instance of the freely available NSIS-ka
implementation [15] with disabled logging output. The
VLSP extension as well as the Session Authorization
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Object have been included the main trunk of the software
so that the experiments described in this work can be
repeated and verified by other parties.

Nodes tb1 and tb4 used the NSIS suite to establish a
QoS reservation and setup the virtual links, whereas the
intermediate nodes tb2 and tb3 were only involved in the
QoS resource reservation but not in the interpretation of
the VLSP object as described earlier.

B. Signaling Performance

We performed 100 separate runs to evaluate the sig-
naling performance of our virtual link setup protocol.
A detailed sequence of an experiment run is shown in
Figure 8. First, an external program on tb1 issues a request
to setup a virtual link between VM1 and VM2 via a UNIX
Domain Socket interface towards the NSIS instance. After
that, the NSIS signaling entity starts a VLSP request to-
wards tb4. This signaling request consists of a GIST three-
way handshake between each adjacent NSIS peer and
corresponding QoS NSLP RESERVE messages carrying
the VLSP object and Session Authorization Object. Once
the RESERVE reaches tb4, it establishes its virtual link
endpoint by calling a shell script (execution time period
denoted as [C]). After successful creation of that tunnel,
tb4 sends a RESPONSE back towards tb1. Once the NSIS
instance on tb1 receives the RESPONSE (note time period
[B]) it also establishes its virtual link’s endpoint (calling
a corresponding script for GRE tunnel setup, note time
period [A]) upon which it finally informs the external
program about the success of the operation.

tb1 tb2

GIST Query

GIST Response

GIST Confirm

RESERVE

RESERVE

RESPONSE

RESPONSE

GIST Query

GIST Response

GIST Confirm

GIST Query

GIST Response

GIST Confirm

RESERVE

RESPONSE

tb3

Execute script for

GRE tunnel setup

Execute script for

GRE tunnel setup

[A]

[B]

[D][E]

[F]

[G]

tb4

[H]

[C]

Figure 8. Message Sequence Diagram and Measured Periods

Figure 9 illustrates the duration of a virtual link setup
request for 100 separate runs. The entire time from
initiating a request until the external program receives the
notification of a successful reservation and an established
virtual link took 56.8 ms on average with a standard
deviation of only 1.96 ms.

As outlined above, virtual links were established by
calling a shell script from the NSIS-ka instance that
performs the necessary Linux commands to setup an
EGRE tunnel for this specific virtual link and connect
it to the corresponding bridge of the virtual node. The
time to setup the virtual links took 22.7 ms on average
on tb1 and 23.0 ms on tb4 (see lowest green line), with
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Figure 9. Signaling duration to setup a reservation and establish the
corresponding virtual link between tb1 and tb4

a standard deviation of 1.3 ms and 0.23 ms respectively.
Note that the signaling time [B] between the initial GIST
QUERY and the corresponding QoS NSLP RESPONSE,
as shown by the blue line, already contains the time
required to setup the virtual link on tb4. Once the QoS
NSLP RESPONSE reaches tb1, it reserves the resources
and sets up the virtual link accordingly. Therefore, we can
determine, that the difference between the blue and the
green line accounts for the plain signaling overhead. The
second line from the top is the sum of the time required
for the NSIS signaling and the time required to setup
the virtual link on tb1. The difference between this black
line and the top red line accounts for the communication
overhead induced by the UNIX Domain Socket interface
between the NSIS instance and the external program.

Figure 10 shows the measurement results in case reser-
vations and virtual links are torn down. This is again
initiated from an external program on tb1. The entire time
from initiating this request until the final confirmation is
sent to the external program took 348.5 ms on average
with a standard deviation of 57.7 ms. This relatively
high number—compared to the previously discussed setup
request—stems from the rather high costs that are asso-
ciated with the removal of a virtual link, i.e. the EGRE
tunnel in our case. It took 189.8 ms on average to call a
script on tb1 that detaches endpoints from a tunnel and
then removes the tunnel from the system. Freeing tunnel
resources, however, is more costly than setting them up
due to additional checks on resource usage and clean up
of structures.
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Figure 10. Signaling duration to tear down a reservation and to remove
the corresponding virtual link between tb1 and tb4

The virtual link on the initiator’s side (tb1) was not
removed at the beginning of the tear down request, but
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rather once the corresponding RESPONSE message from
tb4 has been received. The signaling time is measured
from the emitting tearing RESERVE on tb1, until the corre-
sponding RESPONSE reaches tb1 and already contains the
removal of the virtual link on tb4. In this case, the plain
signaling overhead is negligible compared to the costs
that are associated with the removal of an EGRE tunnel.
The same applies for the overhead of the communication
with the external program via the UNIX Domain Socket
interface. Compared to the sum of the signaling overhead
and the time required to remove the virtual link on tb1, the
difference between this sum and the total time measured
on the external program is negligible.

Table I summarizes the evaluation results. In both cases,
for the establishment and the removal of virtual links, we
see that the overall time, seen from the external program,
is composed of the total NSIS signaling duration plus the
virtual link setup on tb1 plus an overhead for the inter-
process communication. The NSIS signaling duration
itself contains the time required to setup or remove a
virtual link on the receiver’s side, i.e. tb4.

Table I
EVALUATION RESULTS FOR THE ESTABLISHMENT AND REMOVAL OF

VIRTUAL LINKS FOR 100 RUNS

Establishment of a virtual link with QoS guarantee [ms]
Avg StdDev 95% Conf. Int.

External program [A] 56.8 1.96 [56.40, 57.16]
Virtual link setup on
tb1

[H] 22.7 1.30 [22.47, 23.00]

Virtual link setup on
tb4

[C] 23.0 0.23 [22.96, 23.06]

Total NSIS signaling
duration

[B] 32.4 1.10 [32.17, 32.60]

Removal of a virtual link and tear down of QoS reservation [ms]
Avg StdDev 95% Conf. Int.

External program 348.5 57.7 [337.03, 359.94]
Virtual link tear down on
tb1

189.8 33.4 [183.16, 196.43]

Virtual link tear down on
tb4

152.5 51.9 [142.25, 162.83]

Total NSIS signaling dura-
tion

157.2 51.8 [146.92, 167.50]

The results obtained are perfectly in line with the
detailed measurements for the plain signaling overhead.
As shown in Figure 11 a GIST three-way handshake
took 1.25 ms between tb3 and tb4 (cf. [D] in Figure 8)
on average, processing and forwarding of a QoS NSLP
RESERVE on tb3 (calculated by [E]-[D]) took 1.15 ms on
average, and processing and forwarding a RESPONSE on
tb3 took 0.75 ms on average.

The signaling between tb1 and tb4 consists of three
GIST three-way handshakes (3 × 1.25 ms = 3.75 ms),
three times processing a RESERVE (3 × 1.15 ms =
3.45 ms) and three times processing and forwarding of a
RESPONSE (3 × 0.75 ms = 2.25 ms). Therefore, the plain
signaling overhead between an initial GIST QUERY and
the final QoS NSLP RESPONSE equals to approximately
3.75 ms + 3.45 ms + 2.25 ms = 9.45 ms which equals
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Figure 11. Plain signaling overhead on tb3

almost exactly the time calculated from the results gained
from Table I with 32.4 ms – 23.0 ms = 9.4 ms.

The evaluation results clearly demonstrate that the
necessary signaling to setup and tear down virtual links
with Quality-of-Service guarantees can be performed very
quickly. Especially with regard to the critical factor of a
quick instantiation of virtual links upon a user’s request,
the provided NSIS-based solution performed quite well
with overall performance costs of less than 60 ms in our
setup. Furthermore, we showed that the NSIS signaling
and QoS resource reservation only account for a marginal
amount of the total time consumed to setup or remove
a virtual link, since the main time is spent on local
actions (script execution) to set up the virtual link. In
case a virtual link is established, the plain NSIS signaling
accounts for 9.45 ms on average which translates to about
17% of the total time required. In case a user requests a
virtual link to be torn down, the plain NSIS signaling
accounts for 4.7 ms on average which translates to only
1.2% of the total time required to tear down the virtual
link.

The results can be extrapolated into a formula for the
setup delay between nodes n0, . . . , nh as follows:

dsetup = 2ts +
h−1∑
i=0

(gi + qi + ri) + qh + rh

whereby ts is the tunnel setup time on one system, h is
the number of substrate links (or hops) between the tunnel
ends n0 and nh, gi is the duration of the GIST three-way
handshake between nodes i and i+1, qi, ri are the dura-
tions for the QoS NSLP processing (including admission
control) for a RESERVE and RESPONSE respectively. gi
depends on the ’distance’ (e.g., round-trip time) between
nodes i and i + 1 while qi and ri depend on the local
processing performance on each node i.

On the basis of our previously described measurements
(and assumption of identical values per node) we estimate
the setup delay in a ten node case (eight intermediate
nodes and two end nodes) coarsely to

dsetup = 2 · 23 +
9∑

i=1

(1.25 + 1.15 + 0.75) + 1.19ms

= 75.54ms
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The value of 1.19 ms for qh + rh was calculated by
subtracting the script execution time (cf. [C] in Figure 8)
of 23 ms from the average time between the incoming
RESERVE and the outgoing RESPONSE of 24.19 ms mea-
sured by tcpdump.

So one can expect that setting up a virtual link even
across a larger distance is usually well below 100 ms and
still dominated by the time for execution of the setup
scripts.

The session authorization object from [13] was also
implemented and secured the signaling message exchange
by applying an HMAC-based signature. The signature key
for the HMAC was pre-shared and installed on tb1 and tb4
prior to the signaling message exchange. Figure 12 and
Table II show the measurement results of 100 consecutive
runs. An HMAC signature generation takes 29µs on
average at tb1, the corresponding HMAC verification
takes 33µs at tb4. The HMAC verification is somewhat
slower, because some basic parsing must be performed
in order to collect all necessary objects that are integrity
protected. Strong variations as present in Figure 12 in
may stem from system interrupts.

In our implementation the HMAC verification takes
place as early as possible, i.e., directly after receipt of
a GIST PDU. The latter is not fully parsed, only object
headers and types are analyzed to determine whether
an HMAC verification is necessary. In case an HMAC
verification must be performed, i.e., a Session Authoriza-
tion Object of type HMAC_Signed is present containing
a corresponding authorizing entity, the PDU parsing is
continued only after a successful HMAC verification,
otherwise the PDU gets discarded.
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Figure 12. HMAC Creation and Verification

The session authorization object comprised 104 bytes
of data and included also the VLSP object contents in
its message authentication digest. These results show
that integrity protection of virtual link setup signaling is
possible with small computational overhead.

Table II
EVALUATION RESULTS FOR HMAC GENERATION AND VERIFICATION

FOR 100 RUNS

Duration of HMAC-based integrity operations [µs]
Avg Min Max StdDev

HMAC creation 28.672 24.026 79.77 7.011
HMAC verification 33.903 30.095 44.746 2.465

Figure 13 shows that the overhead implied by the
additional Session Authorization Object and the integrity
check is negligible. The overhead includes generation of
the Session Authorization Object, creation of the integrity
checksum (HMAC) at tb1, and its verification at tb4. The
intermediate systems have to parse the Session Autho-
rization Object, but ignore it since they are intermediate
nodes. All RESERVE as well as all RESPONSE messages
are protected by an additional Session Authorization
Object. The shared key between tb1 and tb2 for HMAC
calculation was pre-installed.

The upper two curves are based on the internal mea-
surement points and are calculated by subtracting the
durations for script execution [C] and [H] (cf. Figure 8)
from the overall duration [A]. Since they are overlapping
most of the time, the overhead for authenticated signal-
ing is negligible for the overall signaling process. The
lower two curves are based on the packet captures and
are calculated by subtracting the script execution at tb4
[C] from the duration [B]. They exclude all the local
processing at tb1 that precedes the first GIST QUERY
and that follows the reception of the RESPONSE. Since
they are also overlapping, they confirm that the overhead
for authenticated signaling is negligible. The shape of the
lower curves fits perfectly with the corresponding upper
curves, i.e., there is only a constant offset between them,
stemming from additional internal processing that was
included in the internal measurement points, but not in
the packet captures.
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Figure 13. Signaling with and without authentication in comparison

As a conclusion we note that the time required for
signaling is very small compared to the time for actually
setting up a tunnel end for the virtual link. Furthermore,
the signaling can be secured without noticeable overhead.

V. RELATED WORK

One of the most popular network virtualization research
systems is the X-Bone[16], which deploys and manages
IP-based virtual networks. X-Bone overlay networks use
two-folded IP-in-IP tunneling, provide a user-interface for
the configuration of overlay networks, and support the use
of recursive overlays. X-Bone uses scripting to manage its
networks. In this work we focus on the signaling for plain
virtual links on top of an IP-based substrate. We therefore
do not require any particular overlay addressing scheme
that must be used within the virtual network. Instead, the
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virtual links can be used as-is which allows for general
purpose use of such virtual links, e.g., running IP or other
protocols inside the virtual network. Comparable to the
X-Bone approach, security can be achieved either for the
overlay link itself via IPsec or through another appropriate
form of security protection inside the virtual link.

In earlier work, Lim et al. introduced a Virtual Network
Service (VNS) architecture that can be used to deploy cus-
tomizable virtual private networks with QoS guarantees
[17]. A dedicated signaling protocol called Beagle is used
for resource allocation for virtual links. This QoS support
is, however, only enforced on virtual routers and does
not perform flow-based signaling along the underlying
substrate’s data path.

Integrated Quality-of-Service support for virtual net-
works was also part of several overlay systems, such
as Darwin [18] which also uses Beagle as its resource
allocation protocol and includes a VNS component called
supranet [19] for dynamic overlay deployment. This com-
ponent requires, however, OS modifications in order to
use custom tunneling and Quality-of-Service support. As
in the X-Bone approach we aim at avoiding any operating
system or application modifications that are necessary in
order to use our virtual links.

Bandwidth sharing between virtual links is of particular
importance for virtual networks. In order to overcome
inefficient static division of resources for virtual networks,
the DaVinci architecture [20] uses optimization theory
to efficiently share underlying network resources. In our
approach we do not aim at an optimum resource sharing
between virtual links, but want to provide guaranteed
Quality-of-Service resource reservations for virtual links,
for which we install and maintain state on network nodes
by means of IP-based signaling protocols.

In [21] Feamster et al. propose a high-level design of an
architecture for concurrent virtual networks by separating
infrastructure from service providers. The architecture
supports real end-to-end services. According to the au-
thors, signaling protocols should then be used for the
coordination between service and infrastructure providers.

A very promising approach towards a network virtu-
alization platform is Trellis [22], [23]. Virtual links are
realized via a Ethernet GRE (EGRE) tunneling mecha-
nism, which allows for direct layer-two link connectivity
between any two virtual nodes on top of an existing
IP-substrate. The implementation is flexible enough to
allow virtual hosts to control their own forwarding ta-
bles and still provide isolation of different virtual links
by terminating virtual links in the root context rather
than in the virtual host containers. We partially follow
this approach and do also provide layer-two connectivity
between virtual nodes. However, Trellis does not consider
signaling mechanisms to control elements in the substrate,
e.g., for QoS guarantees or an on-demand setup of virtual
links.

Schaffrath et al. [5] recently presented a proposal and
initial prototype of a network virtualization architecture.
Different from research initiatives like GENI, which fo-

cused on the provisioning of an experimental facility, this
proposal identifies the different entities and roles that are
necessary for a network virtualization architecture. In this
proposed architecture, the responsibilities to manage a
virtual network are separated between virtual network
operators, virtual network providers, and infrastructure
providers. Virtual link setup was not explicitly considered
or described in detail. The approach, however, fits well
to the proposal of our virtual link setup protocol that is
triggered by the infrastructure providers on behalf of the
requests coming from the virtual network providers.

VI. CONCLUSION

The herein proposed virtual link setup scheme couples
a Quality-of-Service resource reservation in the substrate
with the setup of a virtual link between virtual nodes.
While resource reservation and its related signaling ba-
sically take only a small amount of time, setup and tear
down of virtual links take more time due to shell script
execution. Instead of using a resource reservation protocol
and a separate tunnel setup protocol we combined both
protocols leading to a more efficient solution, which is
additionally secured by using the session authorization
object. Furthermore, since the QoS signaling follows the
substrate path it is assured that the virtual link is actually
working after setup.

As the Quality-of-Service guarantees are currently
bound to the outer tunnel endpoints, IPv6 could provide
an even better isolation between different virtual links in
terms of QoS, as each virtual node may be easily equipped
with a dedicated IPv6 address of the substrate node’s
subnet. This would allow for an easier flow classification.
However, this is future work since the current Linux
kernels do unfortunately not yet provide support for
IPv6 as substrate protocol for GRE and L2TP. We are
currently extending our approach by using NSIS also for
virtual node setup thus working towards a more integrated
solution.
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