166,134 research outputs found

    A semi-atomistic model for flaw-induced fracture in non-ductile materials

    Get PDF
    Semiatomistic model for nonductile fracture based on analysis of static and dynamic stress concentrations in uniaxial fiber-matrix composite material

    Freeze-Thaw Durability and Long-Term Performance Evaluation of Shotcrete in Cold Regions

    Get PDF
    This study’s aim was to evaluate the freeze-thaw durability of shotcrete in cold regions and predict its long-term performance. One benchmark mix design from the WSDOT was chosen to prepare samples for performance evaluation. Shotcrete specimens were conditioned in accordance with ASTM C666. The long-term freeze-thaw performance after certain cycles was evaluated using the dynamic modulus of elasticity test (ASTM C215), fracture energy test (RILEM 50-FMC), and X-ray CT microstructure imaging analysis. Probabilistic damage analysis was conducted to establish the relation between the durability life and the damage parameter for different probabilities of reliability using the three-parameter Weibull distribution model. The fracture energy test was found to be a more sensitive test method than the dynamic modulus of elasticity for screening material deterioration over time and for capturing accumulative material damage caused by rapid freeze-thaw action, because of smaller durability factors (degradation ratios) obtained from the fracture energy test. X-ray CT imaging analysis is capable of detecting microcracks that form and pore evolution in the aggregate and interface transition zone of conditioned samples. Moreover, the continuum damage mechanic-based model shows potential in predicting long-term material degradation and the service life of shotcrete

    A Mixed Eulerian-Lagrangian Model for the Analysis of Dynamic Fracture

    Get PDF
    National Science Foundation Grant MEA 84-0065

    Acoustic emission from a growing crack

    Get PDF
    An analytical method is being developed to determine the signature of an acoustic emission waveform from a growing crack and the results of this analysis are compared to experimentally obtained values. Within the assumptions of linear elastic fracture mechanics, a two dimensional model is developed to examine a semi-infinite crack that, after propagating with a constant velocity, suddenly stops. The analytical model employs an integral equation method for the analysis of problems of dynamic fracture mechanics. The experimental procedure uses an interferometric apparatus that makes very localized absolute measurements with very high fidelity and without acoustically loading the specimen

    Understanding fast macroscale fracture from microcrack post mortem patterns

    Get PDF
    Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultra-fast dynamics of microcrack nucleation, growth and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatio-temporal microcracking dynamics, with micrometer / nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent, velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics.Comment: 9 pages, 5 figures + supporting information (15 pages
    corecore