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ABSTRACT 

An analytical method is being developed to determine the signature of an 
acoustic emission waveform from a growing crack and the results of this analysis 
are compared to experimentally obtained values. Within the assumptions of linear 
elastic fracture mechanics, a two dimensional model is developed to examine a 
semi-infinite crack that, after propagating with a constant velocity, suddenly 
stops. The analytical model employs an integral equationmethod for the analysis 
of problems of dynamic fracture mechanics. The experimental procedure uses an 
interferometric apparatus that makes very localized absolute measurements with 
very high fidelity and without acoustically loading the specimen. 

INTRODUCTION 

Acoustic emission testing is a method of nondestructive evaluation that 
detects stress wave emissions from fracture and deformation processes within a 
loaded body. This testing differs from other methods of nondestructive 
evaluation in that the signal being detected is released from within the specimen 
rather than being created by the nondestructive testing method. The technique 
offers a distinct advantage over more conventional nondestructive testing 
techniques because it allows for the real time monitoring of in-service 
structures. Some of the potential source mechanisms of acoustic emission 
include: crack propagation and arrest, fretting among fracture surfaces, 
dislocation movement, microcracking, twinning and phase transformations. In 
addition to these failure related mechanisms, other phenomena such as fastener 
fretting, structural vibration and electromagnetic noise can create spurious 
signals which are detected by the acoustic emission instrumentation. Of 
fundamental importance for the advancement of the current state of acoustic 
emission technology is the isolation and identification of the signal from a 
growing crack. The technology for detecting and locating internal sources of  
acoustic emission is well established. However, acoustic emission signals 
contain a vast amount of additional information about the source of the emission 
and the condition of the material being examined. The signal is not only 
influenced by its source but also by the specimen geometry (which effects the 
stress wave propagation from the source to the sensor) and the characteristics 
of the sensor. A thorough understanding of each of these factors is necessary 
in order to accurately interpret the acoustic emission signature. The proposed 
solution procedure will attempt to apply methods from dynamic fracture mechanics 
and wave propagation to the quantitative characterization of acoustic emission 
signals. 

This work complements previous studies by providing a development of the 
analytical form of an acoustic emission waveform caused by a crack growth event. 
An advantage of the proposed analysis is that the source for the acoustic 
emission signature is an actual crack propagation event and not a simple point 
source model. The propagation of the crack greatly influences the stress field 
in the vicinity of the crack tip, causing stress wave fronts to radiate into the 
body and on the crack surface. Acoustic emission testing detects these stress 
waves at the body's surface and relates the signal back to the corresponding 
crack propagation event. The proposed method uses an integral equation technique 
for the analysis of problems of dynamic fracture mechanics developed by Jacobs 
and Bieniek [l] . The problems of dynamic crack propagation have been the subject 
of numerous investigations in the past several years. A majority of the work 
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has been summarized in review articles by Achenbach [ 2 ,  3 1 ,  Freund [4, 51,  Rose 
[6] and in the book by Kanninen and Popelar [7]. The preceding works have 
primarily been concerned with the determination of the dynamic stress field in 
the vicinity of the moving crack tip. They did not examine the effect of the 
propagation and arrest of the crack tips throughout the entire body. Freund [ 8 ]  
determined the pressure discontinuity radiated out from a crack tip when the 
crack, which is initially at rest, begins to grow. Rose [9] calculated explicit 
formulae for the stress discontinuities radiated by a suddenly starting two 
dimensional crack under tension for application to acoustic emission testing. 
Achenbach and Harris [lo] examined the acoustic emission signals from a semi- 
infinite crack of arbitrary shape using the elastodynamic ray theory. Harris 
and Pott [ll] investigated the surface motions excited by fracture processes at 
the edge of a buried crack. 

Previous investigators worked to identify the acoustic emission signal 
from a crack propagation and arrest source. Summaries of this work appears in 
Eitzen and Wadley [12], Pao [13] and in a book by the American Society for 
Nondestructive Testing [14]. Hutton, Friesel, Graham and Elsley [15] 
successfully characterized acoustic emission signals in laboratory investigations 
using statistical pattern recognition algorithms which characterize signals 
empirically on the basis of features observed in a large number of events. These 
methods are strictly empirical in nature and provide little insight into the 
fracture process. Other investigators concentrated on the geometrical effects 
of the acoustic emission signal. Pao, Gajewski and Ceranoglu [16] and Ceranoglu 
and Pao [17, 18, 191 examined the propagation of an acoustic emission signal in 
an elastic plate. These solutions are not empirical, but are based on the 
generation and propagation of elastic waves in a wave guide. The solutions, 
which examine point sources inside an infinite elastic plate, use a generalized 
ray theory and integral transform techniques. They provide numerical results 
for the surface displacements for a variety of dynamic nuclei of strains, 
including concentrated forces and couples. Individual or combinations of these 
sources are used to model the dynamic processes of material defects. Kim and 
Sachse [20, 21, 22, 231 investigated both the analytical and experimental 
signature of an acoustic emission waveform. 

ANALYTICAL METHOD 

The integral equation in the present application is in two variables, a 
spatial coordinate (x) and time (t). Within the assumptions of linear elastic 
fracture mechanics, the dynamic stresses caused by a prescribed crack growth 
event in an infinite two dimensional body are calculated. These results can be 
used to calculate displacement as a function of time at any point within the 
body. The first step of this analysis, summarized in [ 2 4 ,  251, uses an influence 
function to formulate an integral equation that expresses the boundary conditions 
in the plane of the crack. The steps for the calculation of the dynamic stresses 
are as follows: 

(a) Determination of the influence (or Green’s) function of the problem, 
which is the dynamic displacement of an elastic half -space subjected 
to a unit concentrated impulse acting at the point of, and normal 
to, its edge. 
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(b) Formulation of the integral equation of the problem. This integral 
equation, with the influence function as the kernel and the normal 
stress in the plane of the crack as the unknown function, expresses 
the boundary conditions in the plane of the crack - a stress free 
crack surface and continuity of displacements outside of the crack. 

(c) Solution of the integral equation. 

The solution presented is for a semi-infinite crack that is symmetrically loaded 
(Mode I). First, solve for the influence function, U,(x-x' ,t-t') , in closed form 
using integral transform methods. This is accomplished by taking a one-sided 
Laplace transform in time t and a two-sided Laplace transform in x. In the 
transform space, the two uncoupled partial differential equations are replaced 
by two uncoupled ordinary differential equations. The determination of the 
inverse transformations of the required surface displacement component is 
accomplished using the Cagniard-de Hoop method. 

To formulate the integral equation, assume a crack exists at time t=O with 
its tip located at x=a(O) and y=O. For time t>O, the crack moves from x=a(O) 
to x=a(t). The two relevant boundary conditions are that the newly formed crack 
faces are stress free and that the vertical displacement in front of the moving 
crack tip is zero. Both of these boundary conditions are met by: 

(a) Removing the existing known static stress, a,-P(x), and assuming that 
instead a new unknown time dependent stress, o,=F(x,t), develops. 

(b) Requiring that the new stress distribution be such that there is vertical 
displacement continuity in front of the moving crack tip. 

The continuity boundary condition can be expressed in terms of the influence 
function, U,(x-x',t-t'), as: 

The above is a Volterra integral equation of the first kind in the variables x 
and t. To provide a simple solution of this integral equation, assume some 
spatial form of the unknown stress distribution, F(x',t'). Assume, further, 
that the spatial distribution of F(x',t') contains a square root singularity at 
its tip location a(t'), which is the same spatial form of stresses as a static 
crack with its tip located at a(t'). However, F(x',t') must contain an unknown 
time function, K(t'). Thus, the unknown stress in front of the moving crack tip 
is assumed to have the spatial form of its corresponding static crack multiplied 
by some unknown time function. It should be noted that due to the presence of 
step functions in the influence function, the infinity limits in the x' 
integration of the integral equation can be replaced by the distance that the 
fastest wave will travel in the elapsed time, t-t'. 

The direct quadrature method [26, 271 is used for the solution of the 
integral equation. There are, however, two refinements which are necessary in 
the numerical solution of the integral equation. The first refinement is a 
"subdivision" of the time step, delta t, in the evaluation of the numerical 
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integrations, while the second is a mid-point product integration scheme [28] 
which is employed to handle the singularity of the kernel at t‘-t. For the 
steady state case of a crack propagating with a constant velocity, the 
calculated value of K(t) is a constant that is only a function of the crack tip 
velocity. As the crack tip speed increases, the corresponding constant value 
of K(t) will decrease. The results of the case for a crack that suddenly stops 
after propagating is that the calculated value of K(t) discontinuously jumps to 
the value of the corresponding static stress; there is no transition zone and 
the stress never increases above the value for an equivalent static crack. 

The displacement at any point within the infinite body is determined using 
the previously calculated dynamic stress, F(x,t) and two new influence functions 
UW(x-x‘,y,t-t‘) and Un(x-x’,y,t-t’). These influence functions represent the 
horizontal displacement + and the vertical displacement I+, respectively, at 
point (x,y) within an elastic half-space that is subjected to a vertical unit 
impulse surface loading at x‘. The solution for these new influence functions 
is accomplished using integral transform techniques and the inversion is again 
performed using the Cagniard-de Hoop method. Convolution integrals are 
developed for the vertical and horizontal displacements for any point, (x,y), 
within the body by determining the displacements due to the application of the 
previously calculated dynamic stress distribution and the removal of the initial 
static stress distribution. The displacements are given by: 

F ( T ’ , f ‘ ) l - &  - T‘. y , t  - f ’ )da ’d f ’  ( 2 )  i’ U*(T. y . f )  = - P, ( a ’ ) r r g  ( a  - T’, y. f - l’)dz’df’ -r 

F ( a ’ . f ’ ) r &  - x ’ , y . i  - f’)dr‘dt’ ( 3 )  i’ J_a_ P8(T’)PYY(T - 2.’. y, f  - f’)dT’df‘ + .l J_: u3(z.7J.f)  = - 

These integrals can be evaluated numerically. Difficulties arise in the x‘ 
integration due to both the integrands’ complexity and the presence of 
singularities. There are singularities of different strengths and 
discontinuities associated with the moving crack tip, the original crack tip 
and the various wave fronts. Each of these singularities must be investigated 
separately to properly evaluate the integrals. To avoid numerical problems, 
the final integration technique will involve separating the x’ integration 
interval into singular and non-singular regions. To evaluate the integral in 
the area of the singularity, a hybrid method is proposed. Following Davis and 
Rabinowitz in [71], the singularity is dealt with by breaking up the original 
integral in the singular region into two new integrals. One of the new 
integrals contains the singularity, but it can be evaluated analytically; the 
second integral, which is evaluated numerically, is non-singular since its 
integrand will approach zero as the potential singular point is approached. 

EXPERIMENTAL RESULTS 

The second step is to compare the results of the analytical model with 
experimentally obtained waveforms. It should be noted that the analytical 
procedure being developed is for the time prior to the arrival of stress waves 
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reflected from the test specimen's boundary so it is invalid for the time period 
after the fastest reflected waves interfere with the unadulterated signal from 
the crack propagation event. The experimental test procedure examines an 
existing crack that is forced to propagate a short distance and be arrested. 
The specimen used is a screw loaded, wedge opening load sample, where the crack 
unloads as it extends and the propagation is arrested before complete failure 
occurs. The specimens are made of a brittle material with a low fracture 
toughness, poly methyl methacrylate. Its optical transparency permit the size, 
geometry and location of the cracks to be readily determined. Cracks in these 
specimens are initiated by driving a sharp blade into the notch of the specimen; 
further propagation is produced by tightening the screw. 

A high sensitivity heterodyne interferometer is used to detect acoustic 
emission events. This optical device permits the high fidelity localized 
measurement of velocities from acoustic emission events arriving at various 
points on the sample surface. Since this type of measurement does not 
acoustically load the sample, the event being observed is undisturbed by the 
measurement process. The most commonly used acoustic emission sensor is the 
piezoelectric transducer. Since it must be used in direct contact with the 
specimen, the transducer will disturb the process being measured and the signal 
response will be averaged over this area of contact. Additional limitations of 
these sensors is that it is difficult to manufacture a truly broad band 
transducer, they are extremely difficult to calibrate accurately and there are 
many questions as to exactly what the transducer is measuring. 

The specimen face opposite the crack is polished and placed in the 
interferometer and becomes one mirror surface. The beam striking the face is 
approximately 1.5 mm in diameter and samples the average displacement taking 
place over this region, which is much smaller than the wavelength of the 
acoustic events being observed. The operation of the heterodyne interferometer 
is described in [ 3 0 ] .  Briefly, single frequency laser light is split into two 
components using an acousto-optic modulator. These two components, which are 
separated in frequency by 40 MHz, are sent along two arms of an interferometer 
one of which contains the sample being monitored. The beams are recombined on 
the surface of a photodetector where they beat together at a frequency of 40 
MHz. Phase shifts in the light reflected from the sample surface result in 
equivalent phase shifts in the 40 MHz beat signal received at the photodetector. 
This carrier signal can then be demodulated to determine the time dependent 
displacement occurring at the sample surface. The detection system has a band 
width of 10 MHz which is further limited to the spectral region 0 to 2 MHz in 
order to reduce the noise in the signal. All signals are acquired on a digital 
oscilloscope and stored for later processing. The crack velocity is measured 
with conventional crack propagation gages. This also aids in determining the 
time difference between the crack growth event and the arrival of its signal at 
the measurement point. This is accomplished by pretriggering the measurement 
system on the start of the crack propagation event and not the arrival of the 
first wavefront. 

DISCUSSION 

A characteristic crack emission is shown in figure 1. Care must be taken 
to calculate the effect of wave reflections and mode conversions that occur at 
the specimen's boundaries. The experimentally obtained waveforms will be 
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interpreted using the results of the analytical model being developed in the 
first task. Since the dynamic stress calculations indicate sharp stress 
discontinuities associated with the starting and stopping phases, it is 
anticipated that there will be corresponding displacement variations that will 
become evident in the experimental modeling. Anomalies in the fracture behavior 
of the specimen included out of plane growth and some crack tunneling. The out 
of plane growth could be caused by twisting due to the bearing stress between 
the bolt and the lower crack surface. Further development of the analytical 
model is necessary before the experimentally obtained waveforms can be 
interpreted. 
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Figure 1: Acoustic Emission Signal from a Growing Crack 
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