7,477 research outputs found

    Short-term fire front spread prediction using inverse modelling and airborne infrared images

    Get PDF
    A wildfire forecasting tool capable of estimating the fire perimeter position sufficiently in advance of the actual fire arrival will assist firefighting operations and optimise available resources. However, owing to limited knowledge of fire event characteristics (e.g. fuel distribution and characteristics, weather variability) and the short time available to deliver a forecast, most of the current models only provide a rough approximation of the forthcoming fire positions and dynamics. The problem can be tackled by coupling data assimilation and inverse modelling techniques. We present an inverse modelling-based algorithm that uses infrared airborne images to forecast short-term wildfire dynamics with a positive lead time. The algorithm is applied to two real-scale mallee-heath shrubland fire experiments, of 9 and 25 ha, successfully forecasting the fire perimeter shape and position in the short term. Forecast dependency on the assimilation windows is explored to prepare the system to meet real scenario constraints. It is envisaged the system will be applied at larger time and space scales.Peer ReviewedPostprint (author's final draft

    Assimilation of Perimeter Data and Coupling with Fuel Moisture in a Wildland Fire - Atmosphere DDDAS

    Get PDF
    We present a methodology to change the state of the Weather Research Forecasting (WRF) model coupled with the fire spread code SFIRE, based on Rothermel's formula and the level set method, and with a fuel moisture model. The fire perimeter in the model changes in response to data while the model is running. However, the atmosphere state takes time to develop in response to the forcing by the heat flux from the fire. Therefore, an artificial fire history is created from an earlier fire perimeter to the new perimeter, and replayed with the proper heat fluxes to allow the atmosphere state to adjust. The method is an extension of an earlier method to start the coupled fire model from a developed fire perimeter rather than an ignition point. The level set method is also used to identify parameters of the simulation, such as the spread rate and the fuel moisture. The coupled model is available from openwfm.org, and it extends the WRF-Fire code in WRF release.Comment: ICCS 2012, 10 pages; corrected some DOI typesetting in the reference

    A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    Full text link
    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the International Journal of Wildland Fir

    Forest fire propagation prediction based on overlapping DDDAS forecasts

    Get PDF
    International Conference on Computational Science, ICCS 2015 – Computational Science at the Gates of NatureForest fire devastate every year thousand of hectares of forest around the world. Fire behavior prediction is a useful tool to aid coordination and management of human and mitigation resources when fighting against these kind of hazards. Any fire spread forecast system requires to be fitted with different kind of data with a high degree of uncertainty, such as for example, me- teorological data and vegetation map among others. The dynamics of this kind of phenomena requires to develop a forecast system with the ability to adapt to changing conditions. In this work two different fire spread forecast systems based on the Dynamic Data Driven Application paradigm are applied and an alternative approach based on the combination of both predictions is presented. This new method uses the computational power provided by high performance computing systems to deliver the predictions under strict real time constraints.This research has been supported by the Ministerio de Economía y Competitividad (MECSpain) under contract TIN2011-28689-C02-01 and the Catalan government under grant 2014- SGR-576

    Forest fire simulator system for emergency resources management support

    Get PDF
    Europe suffers approximately 65,000 fires every year, which burn, on average, half a million hectares of forest areas [1]. The main direct effect of forest fires is the destruction of the natural landscape and the consequent loss of ecosystem service that have drastic economic impact, but mainly and much more important, fires also result in the loss of human lives every year. Although being forest fires a problem present in all EU members, the most affected areas to this hazards are the southern countries due to their climatological conditions. All affected countries invest lots of resources to minimize fire damages, but many times when dealing with large fires, regional and national disaster management units are lack of efficient and reliable tools to help wildfire analysts. In this work, we describe a process to generate on-line wildfire simulations coupled with the regional weather forecast service (Servei Meteorològic de Catalunya, SMC) and the helicopter company (Helipistas S.L) who provides isochronous perimeters of the fire behaviour in a certain moment of the emergency and how both of this data sources feed the inputs for the simulation process.Europa sufre aproximadamente 65,000 incendios cada año, de media, medio millón de hectáreas forestales[1]. El principal efecto de los fuegos forestales es la destrucción de la superfície natural y como consecuencia la pérdida del ecosistema y el gran impacto económico, pero principamente y de manera mucho más importante el fuego tambien repercute en la pérdida de vidas humanas año tras año. Los fuegos forestales además de ser un problema para los miembros de la UE, se ven repercutidos, especialmente los paises del sur debido a sus condiciones climatológicas. Todos estos paises afectados invierten gran cantidad de recursos para minimizar estos efectos. Generalmente cuando se trata de grandes incendios forestales, las unidades de mando de estos medios de exinción a nivel regional y nacional se ven necesitados de herramientas eficientes y útiles para el análisis de la predicción del comportamiento de estos grandes incendios forestales. En este trabajo, describimos un sistema de predicción de incendios forestales acoplado con el servicio meteorológicos de catalunya (SMC) y la empresa de helicópteros (Helipistas S.L) los cuales proveen de los perímetros del incendio en un instante de tiempo de la emergencia y cómo estas dos fuentes de datos se anexan al proceso de simulación.Europa pateix aproximadament 65,000 incendis cada any, de mitja, cada mig-milió d'hectàrees forestals[1]. El principal efecte dels focs forestals es la destrucció de la superfície natural i com a conseqüència la pèrdua de l'ecosistema i el gran impacte econòmic, però principalment i de manera molt més important el foc, també, repercuteix en la pèrdua de vides humanes any rere any. Els focs forestals a més a més de representar un problema pels països membres de la UE, es veuen afectats els països del Sud degut a les seves condicions climatològiques. Tots aquests països afectats inverteixen grans quantitat de recursos per a minimitzar aquests efectes. Generalment quan es tracta de grans incendis forestals, les unitats de comandament d'aquests medis d'extinció a nivell regional i nacional es veuen necessitats d'eines útils i eficients per a l'anàlisis de la predicció en el comportament dels grans incendis forestals. En aquest treball, descrivim un sistema de predicció d'incendis forestals acoblat amb el servei meteorològic de Catalunya (SMC) i l'empresa d'helicòpters (Helipistas S.L) els quals proveïxen dels perímetres de l'incendi en un instant de temps de l'emergència i com aquestes dos fonts de dades annexen al procés de simulació

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    Prediction Time Assessment in a DDDAS for Natural Hazard Management: Forest Fire Study Case ✩

    Get PDF
    This work faces the problem of quality and prediction time assessment in a Dynamic Data Driven Application System (DDDAS) for predicting natural hazard evolution. In particular, we used forest fire spread prediction as a case study to show the applicability of the methodology. The improvement on the prediction quality when using a two-stage DDDAS prediction framework has been widely proved. The two-stages DDDAS has a first phase where an adjustment of the input data is performed in order to be applied in the second phase, the prediction. This paper is focused on defining a new methodology for prediction time assessment under this kind of prediction environments by evaluating, in advance, how a certain combination of simulator, computational resources, adjustment strategy, and frequency of data acquisition will perform, in terms of prediction time. Since the time incurred in the hazard simulation is a crucial part of the whole prediction time, we have defined a methodology to classify the simulator’s execution time using Artificial Intelligence techniques allowing us to determine upper bounds for the DDDAS prediction time depending on the particular input parameter setting. This methodology can be extrapolated to any DDDAS for predicting natural hazards evolution, which uses the two-stage prediction scheme as a working framework. Keywords
    • …
    corecore